
1. Chain complexes

Definition. A sequence of abelian groups

. . . C−2, C−1, C0, C1, . . .

with homomorphisms ∂i : Ci+1 → Ci is called a (homological) chain complex if
∂i−1 ◦ ∂i = 0 for all i ∈ Z.

A cohomological chain complex is almost the same thing, but with reversed
grading: a sequence of abelian groups

. . . C−2, C−1, C0, C1, . . .

together with homomorphisms di : Ci−1 → Ci such that di ◦ di−1 = 0 for all i ∈ Z.
We will concentrate on homological chain complexes; all results hold analogously

for cohomological chain complexes.
A chain complex (or just a sequence of abelian groups with homomorphisms) is

called bounded below (bounded above) if Ci = 0 for i � 0 (resp. i � 0). It
is called non-negatively graded (non-positively graded) if Ci = 0 for i < 0
(resp. i > 0).

Definition. We call the subgroup Zi(C•) = ker(∂i−1 : Ci → Ci−1) < Ci the sub-
group of i-cycles and the subgroup Bi(C•) = im(∂i : Ci+1 → Ci) < Ci the sub-
group of i-boundaries.

Lemma 1.1. For any chain complex C•, Bi(C•) is a subgroup of Zi(C•).

Definition. The ith homology group of a chain complex C• is defined as the
quotient group

Hi(C•) = Zi(C•)/Bi(C•).

If Zn = Bn for all n (and thus Hn = 0), we call C• exact or acyclic. An exact
chain complex is more usually called exact sequence. An exact sequence of the
form

0→ A′ → A→ A′′ → 0

is often called a short exact sequence.

Lemma 1.2. Let A, B, C be abelian groups and f : A → B and g : B → C
homomorphisms.

(1) 0→ A
f−→ B is exact iff f is injective.

(2) A
f−→ B → 0 is exact iff f is surjective.

(3) 0→ A
f−→ B → 0 is exact iff f is an isomorphism.

(4) 0 → A
f−→ B

g−→ C → 0 is exact iff f is injective, g is surjective, and
ker g = im f .

Definition. Let A•, B• be sequences of abelian groups and homomorphisms (or
chain complexes). A map of sequences (or map of chain complexes) is a
commutative diagram

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

∂A
n

∂B
n

∂A
n−1

∂B
n−1

fn+1 fn fn−1

1
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Lemma 1.3. A map of chain complexes f : C• → D• induces maps

Z(f) : Zn(C•)→ Zn(D•) of n-cycles,

B(f) : Bn(C•)→ Bn(D•) of n-boundaries, and

Hn(f) = f∗ : Hn(C•)→ Hn(D•) on homology.

Lemma 1.4 (Five-lemma). Let

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5

be a commutative diagram of abelian groups with exact rows. Then:

(1) if f2, f4 are surjective and f5 is injective then f3 is surjective.
(2) if f2, f4 are injective and f1 is surjective then f3 is injective.
(3) in particular, if f1, f2, f4, f5 are isomorphisms then so is f3.

Definition. A short exact sequence of the form 0 → A′ → A′ ⊕ A′′ → A′′, where
the first map is the inclusion into the first summand and the second map is the
projection onto the second, is called split exact.

See homework problem 1.2 for characterizations of split exact sequences.

Definition. Let f : A → B be a homomorphism between abelian groups. Define
its cokernel coker(f) to be the quotient group B/ im(f) and its coimage coim(f)
to be A/ ker(f).

Lemma 1.5. For any homomorphism f : A→ B of abelian groups, we have:

(1) f : coim(f)→ im(f) is an isomorphism;

(2) 0→ ker(f)→ A
f−→ B → coker(f)→ 0 is exact.

Lemma 1.6 (Snake lemma). Given a diagram of abelian groups

(1.7)

A1 A2 A3 0

0 B1 B2 B3

with exact rows. Let Ki denote the kernel of Ai → Bi and Ci its cokernel. Then
there is a “snake homomorphism” K3 → C1 such that the sequence

K1 → K2 → K3 → C1 → C2 → C3
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is exact:

0 0 0

K1 K2 K3

A1 A2 A3 0

0 B1 B2 B3

C1 C2 C3.

0 0 0

If A1 → A2 is injective then so is K1 → K2, and if B2 → B3 is injective then so is
C2 → C3.

Furthermore, the snake map is natural, meaning that if we have a map (Ai, Bi)→
(A′i, B

′
i) of diagrams of the type (1.7) then the following square commutes:

K3 C1

K ′3 C ′1.

Theorem 1.8. Let 0 → A•
i−→ B•

p−→ C• → 0 be a short exact sequence of chain
complexes (meaning 0 → An → Bn → Cn → 0 is exact for each n ∈ Z). Then
there is a connecting homomorphism δn : Hn+1(C•) → Hn(A•) such that the
following long sequence is exact:

· · · p∗−→ Hn+1(C•)
δn−→ Hn(A•)

i∗−→ Hn(B•)
p∗−→ Hn(C•)

δn−1−−−→ Hn−1(A•)
i∗−→ · · · .

The homomorphism δ is natural: given a map of short exact sequences of chain
complexes (A•, B•, C•)→ (A′•, B

′
•, C

′
•), the following square commutes:

Hn+1(C•) Hn(A•)

Hn+1(C ′•) Hn(A′•).

δ

δ

2. Categories and functors

Definition. A category C consists of:

• a class ob(C) of objects;
• for each pair of objects X, Y ∈ ob(C), a set of morphisms HomC(X,Y );
• for each object X ∈ ob(C), an element idX ∈ HomC(X,X) called identity

morphism;
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• for each three objects X, Y , Z ∈ ob(C), a map

◦ : HomC(Y,Z)×HomC(X,Y )→ Hom(X,Z), (g, f) 7→ g ◦ f

called composition.

These have to satisfy the following axioms:

(1) The composition ◦ is associative;
(2) For f ∈ HomC(X,Y ), idY ◦f = f and f ◦ idX = f .

A morphism f ∈ HomC(X,Y ) is called an isomorphism (and the objects X, Y
isomorphic) if there is another morphism g ∈ HomC(Y,X) such that g ◦ f = idX
and g ◦ g = idY . If such a g exists, it is unique and is denoted by f−1.

We will often abuse notation and write X ∈ C for X ∈ ob(C), f ∈ Hom(X,Y )
or even just f : X → Y for f ∈ HomC(X,Y ), and id for idX . We will also use
commutative diagrams to denote equalities between compositions of morphisms.

Definition. We use the following standard notations for familiar categories:

Set: The category of sets and functions;
Ab: The category of abelian groups and homomorphisms;
Top: The category of topological spaces and continuous maps.

Definition. Let C, D be categories. A (covariant) functor F : C → D consists
of:

• a function ob(C)→ ob(D), also called F ; and
• for every X, Y ∈ ob(C), a function HomC(X,Y ) → HomD(F (X), F (Y ))

denoted by f 7→ F (f) or f 7→ f∗

satisfying (idX)∗ = idF (X) and (g ◦ f)∗ = g∗ ◦ f∗.
A contravariant functor F : C → D consists of:

• a function ob(C)→ ob(D), also called F ; and
• for every X, Y ∈ ob(C), a function HomC(X,Y ) → HomD(F (Y ), F (X))

denoted by f 7→ F (f) or f 7→ f∗

satisfying (idX)∗ = idF (X) and (g ◦ f)∗ = f∗ ◦ g∗. (“It turns arrows around.”)

Definition. A natural transformation η : F → G between two functors F ,
G : C → D consists of a morphism ηX ∈ HomD(F (X), G(X)) for each object X ∈ C
such that for each morphism f : HomC(X,Y ), the following diagram commutes:

F (X) G(X)

F (Y ) G(Y ).

ηX

F (f)

ηY

G(f)

Natural transformations between contravariant functors are defined analogously.
A natural transformation η : F → G is called natural isomorphism (and F

and G isomorphic, F ' G) if ηX is an isomorphism for all X ∈ C.

Definition. A covariant functor F : C → D is called an equivalence of categories
if there is another functor G : D → C such that G◦F ' IdC and F ◦G ' IdD, where
IdC , IdD denote the identity functors on C and D, respectively.
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Definition. Let C be a category and (Xi)i∈I a family of objects in C, for some index
set I. An object X together with morphisms ιi : Xi → X is called coproduct of
the Xi, and is denoted by

∐
i∈I Xi, if for each test object Y ∈ C, the map

HomC(X,Y )
HomC(ιi,−)−−−−−−−→

∏
i∈I

HomC(Xi, Y )

is a bijection. The coproduct of only two objects is denoted by X1 tX2.
Similarly, an object X with morphism πi : X → Xi is called product of the Xi,

and is denoted by
∏
i∈I Xi, if for each test object Y ∈ C, the map

HomC(Y,X)
HomC(−,πi)−−−−−−−−→

∏
i∈I

HomC(Y,Xi)

is a bijection. The product of only two objects is denoted by X1 ×X2.

Lemma 2.1. In an arbitrary category C, (co-)products need not exist, but if they
do, they are unique up to isomorphism.

3. Rings and modules

Definition. A ring R is an abelian group together with a unity 1 ∈ R and an
associative bilinear map R × R → R, (x, y) 7→ xy, such that 1x = x1 = x for all
x ∈ R. A ring is called commutative if xy = yx for all x, y ∈ R.

A map f : R → S between rings is called a ring homomorphism or map of
rings if it is linear, f(1R) = 1S , and f(xy) = f(x)f(y) for all x, y ∈ R.

Definition. A left module M over a ring R is an abelian group M together with
a bilinear multiplication map R×M →M , (r,m) 7→ r.m, such that 1.m = m and
(r1r2).m = r1.(r2.m) for all m ∈M , ri ∈ R.

A right module is an abelian group M with a bilinear multiplication map
M × R → M , (m, r) 7→ m.r, such that m.1 = m and m.(r1r2) = (m.r1).r2 for all
m ∈M , ri ∈ R.

When we just say “module”, we agree to mean a left module.
A map f : M → N between two (left or right) R-modules M , N is an R-module

homomorphism if it is a abelian group homomorphism and f(r.m) = r.f(m)
(resp. f(m.r) = f(m).r) for all r ∈ R, m ∈M .

The category of left R-modules and R-module homomorphisms is denoted by
ModR.

Definition. The product of a family (Mi)i∈I of R-modules, denoted by
∏
i∈IMi,

is the module whose underlying abelian group is the product groups, and the R-
module structure is given by r.((mi)i∈I) = (r.mi)i∈I . The direct sum of the
family, denoted by

⊕
i∈IMi, is the submodule of families (mi)i∈I where all but

finitely many mi = 0.
An R-module M is called free if it is isomorphic to an (arbitrarily indexed)

direct sum of copies of R.

Lemma 3.1. The direct product is a product in ModR in the category-theoretic
sense, and the direct sum is a coproduct.

Definition. Let R be a ring, M a right R-module, and N a left R-module. The
tensor product M ⊗R N is the abelian group obtained as follows. Denote by
Fr(M×N) the free abelian group with generators pairs (m,n) with m ∈M , n ∈ N .
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Then M ⊗RN is the quotient of Fr(M ×N) with respect to an equivalence relation
∼ given by:

• (m1 +m2, n) ∼ (m1, n) + (m2, n)
• (m,n1 + n2) ∼ (m,n1) + (m,n2)
• (m.r, n) ∼ (m, r.n)

We denote the equivalence class of (m,n) in M ⊗R N by m⊗ n.

Proposition 3.2. In the context of the previous definition, let T be an abelian
group. Denote by Bil(M,N ;T ) the set of all bilinear homomorphisms f : M ×N →
T with f(m.r, n) = f(m, r.n). Then there is a natural isomorphism

Bil(M,N ;T ) ∼= HomZ(M ⊗R N,T ).

Definition (and lemma). An R-module M is called projective if it satisfies the
following equivalent conditions:

(1) For each diagram in ModR

M

N1 N2 0

with exact row, a lift (dotted arrow) exists such that the resulting diagram
commutes.

(2) There is an R-module N such that M ⊕N is free.
(3) Every shot exact sequence 0→ N1 → N2 →M → 0 splits.
(4) The functor HomR(M,−) maps exact sequences to exact sequences (the

functor “is exact”).

Lemma 3.3. Let 0→ N ′ → N → N ′′ → 0 be an exact sequence of right R-modules,
and let M be a left R-module. Then the sequence of abelian groups

N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM → 0

is exact. Let 0→ N ′ → N → N ′′ → 0 be an exact sequence of left R-modules, and
let M be another left R-module. Then the sequence of abelian groups

0→ HomR(N ′′,M)→ HomR(N,M)→ HomR(N ′,M)

is exact.

Definition. A left R-module M is called flat if the functor −⊗RM from right R-
modules to abelian groups is exact. A right R-module is flat if the functor M ⊗R−
from left R-modules to abelian groups is exact.

Lemma 3.4. Free modules are projective. Projective modules are flat. Not every
flat module is projective, and not every projective module is free.

4. Resolutions and derived functors

Definition. Let R be a ring. A nonnegatively graded chain complex P• of R-
modules together with a map εP0 →M (the “augmentation”) is called a projective
resolution of M if

• For every i ≥ 0, Pi is projective;

• The extended chain complex · · · → P1 → P0
ε−→M is exact.
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Proposition 4.1. Every R-module M has a projective resolution.

Corollary 4.2. If R is a principal ideal domain then every R-module has a pro-
jective resolution of length 2:

0→ P1 → P0 →M → 0

Definition. Let C•, D• be nonnegatively graded chain complexes of R-modules
and let f , g : C• → D• be two chain maps. A chain homotopy from f to g is a
sequence of R-linear maps hn : Cn−1 → Dn such that

g − f = h ◦ ∂C + ∂D ◦ h.

If such a chain homotopy exists, we call f and g chain homotopic and write
f ' g.

If f : C• → D• and g : D• → C• are chain maps with chain homotopies g ◦ f '
idC• and f ◦ g ' idD• , we call f and g chain homotopy equivalences and the
chain complexes C• and D• chain homotopy equivalent.

Proposition 4.3. If f ' g then f∗ = g∗ : H∗(C•)→ H∗(D•).

Theorem 4.4. Let f : M → N be a morphism of R-modules, P• → M a chain
complex where all Pi are projective, and N• → N → 0 be an exact complex. Then

(1) The exists a chain map f• : P• → N• making the following ladder commute:

· · · P1 P0 M 0

· · · N1 N0 N 0

f1 f0 f

(2) Any two such extensions f•, g• are chain homotopic.

Corollary 4.5. Any two projective resolutions of M are chain homotopy equivalent.

Definition. Let R, S be two rings and F : ModR → ModS a (covariant or con-
travariant) functor. We call F additive if the induced map on Hom-sets

HomR(M,N)
F−→ HomS(F (M), F (N)) (resp. HomS(F (N), F (M)))

is a homomorphism of abelian groups.
Let F be an additive covariant functor as above. Then we call F

• left exact if 0→ F (M ′)→ F (M)→ F (M ′′) is exact;
• right exact if F (M ′)→ F (M)→ F (M ′′)→ 0 is exact;
• exact if it is right and left exact, i. e. if 0→ F (M ′)→ F (M)→ F (M ′′)→

0 is exact

for all choices of exact sequences 0→M ′ →M →M ′′ → 0 of R-modules.
Similarly, if F is contravariant, we call it

• left exact if 0→ F (M ′′)→ F (M)→ F (M ′) is exact;
• right exact if F (M ′′)→ F (M)→ F (M ′)→ 0 is exact;
• exact if it is right and left exact, i. e. if 0→ F (M ′′)→ F (M)→ F (M ′)→

0 is exact

for all choices of exact sequences 0→M ′ →M →M ′′ → 0 of R-modules.
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Definition (and lemma). Let F : ModR → ModS be a covariant right exact func-
tor, M an R-module, and P• → M a projective resolution of M . Define the nth
left derived functor LnF : ModR → ModS by

(LnF )(N) = Hn(F (P•)).

Similarly, if F is a contravariant left exact functor, define the n right derived
functor RnF : ModR → ModS by

(RnF )(N) = Hn(F (P•)).

This is independent of the choice of resolution and extends to a functor by defining
it on morphisms as follows: if f : M → M ′ is a morphism of R-modules, extend it
to a morphism f• : P• → P ′• by Thm. 4.4 and set

Ln(F )(f) = Hn(F (f•));

similarly for right derived functors.

Lemma 4.6. If F is covariant right exact then L0F = F . If F is contravariant
left exact then R0F = F .

Lemma 4.7. If R is a principal ideal ring and F : ModR → ModS a right exact
covariant or left exact contravariant functor. Then LnF = 0 (resp. RnF = 0) if
n ≥ 2.

Lemma 4.8. Let F be a covariant left exact functor. Then LnF = 0 for all n ≥ 1
if and only if F is exact.

Definition. Let R be a ring, M a right R-module, and N a left R-module. Define
TorRn (M,N) to be the nth left derived functor of the functor −⊗RN : R Mod→ Ab,
applied to M :

TorRn (M,N) = [Ln(−⊗R N)] (M).

Let M and N be left modules. Define ExtnR(M,N) to be the nth right derived
functor of the functor HomR(−, N), applied to M :

ExtnR(M,N) = [Rn Hom(−, N)] (M)

Proposition 4.9. (symmetry of Tor) The functor TorRn coincides with the nth left
derived functor of the functor M ⊗R − : ModR → Ab, applied to N :

TorRn (M,N) = [Ln(M ⊗R −)] (N).

5. Homology of spaces

Definition. Denote by Top the category of topological spaces and continuous maps.
We also write Top∗ for the category of pointed spaces. Its objects are pairs (X,x0)
where X is a topological spaces and x0 ∈ X. Morphisms from (X,x0) to (Y, y0) in
Top∗ are continuous maps f : X → Y such that f(x0) = y0.

Definition (recollection). Two maps f, g : X → Y are called homotopic (f ' g)
if there exists a homotopy between them, i.e. a map H : X × [0, 1] → Y with
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. We call two spaces X and Y
homotopy equivalent if there are maps f : X → Y and g : Y → X such that
g ◦ f ' idX and f ◦ g ' idY .
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5.1. Cones, mapping cones, and suspensions.

Definition. Let X be a space. Its (unreduced) cone is the space

CX = X × [0, 1]/ ∼,
where (x, 1) ∼ (x′, 1) for all x, x′ ∈ X. If x0 is a fixed base point of X, we also
denote its reduced cone by CredX; it is defined by

CX = X × [0, 1]/sim,

where (x, 1) ∼ (x′, 1) as before but also (x0, t) = (x0, t
′) for all t, t′ ∈ [0, 1].

Lemma 5.1. A map f : X → Y is homotopic to a constant map (“null-homotopic”)

iff it extends to a map f̃ : CX → Y from the unreduced cone on X to Y .
A pointed map f : (X,x0)→ (Y, y0) is homotopic to the constant map with value

y0 via a homotopy that does not move x0 iff it extends to a map f̃ : CredX → Y
from the reduced cone on X to Y .

Definition. Given a map f : A→ X, define its (unreduced) mapping cone by

Cf = (A× [0, 1] tX)/ ∼,
where (a, 1) ∼ (a′, 1) for all a, a′ ∈ A and (a, 0) ∼ f(a) for a ∈ A. Similarly, if f is
a pointed map with f(a0) = x0, the reduced mapping cone Cred

f is obtained by
adding

(a0, t) ∼ (a0, t
′) ∼ x0

to the equivalence relation, for all t, t′ ∈ [0, 1].

Lemma 5.2. Let f : A → X, g : X → Y be maps. Then g extends to g̃ : Cf → Y
iff the composite g ◦ f is homotopic to a constant map.

If all maps are pointed then g extends to g̃ : Cred
f → Y iff the composite g ◦ f is

homotopic to the constant map with value y0 via a homotopy that does not move
x0.

Definition. The unreduced suspension SX of a space X is the unreduced
mapping cone of the unique map X → ∗; the reduced suspension ΣX of a
pointed space X is the reduced mapping cone of the unique pointed map X → ∗.

Remark 5.3. For “good” spaces X and base points x0 ∈ X, the quotient maps
CX → CredX, SX → ΣX, and, for based maps A→ X, Cf → Cred

f , are homotopy
equivalences. “Good” here means “well-pointed”, which is implied for instance if
x0 has a contractible neighborhood in X.

5.2. The Eilenberg-Steenrod axioms. Let R be a ring, A an R-module, and

Hn : Top→ ModR

be a sequence of functors. We write H̃n(X) = ker (Hn(X)→ Hn(∗)), where the
map is induced by the unique map X → ∗.

Then (Hn)n∈Z is called a homology theory with coefficients in A if the
following axioms hold:

homotopy: if f ' g then Hn(f) = Hn(g) for all n ∈ Z.
additivity: if X =

∐
i∈I Xi then

⊕
i∈I Hn(Xi) ∼= Hn(X); the isomorphism

is given by the canonical inclusions Xi ↪→ X.

dimension: Hn(∗) =

{
0; n 6= 0

A; n = 0.
In particular, Hn(X) ∼= H̃n(X) for n 6= 0.
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exactness: Let f : A→ X be a map and g : X → Cf be the standard inclu-
sion. Then there is a natural long exact sequence

· · · → Hn(A)
f∗−→ Hn(X)

g∗−→ H̃n(Cf )→ Hn−1(A)→ · · ·

Mayer-Vietoris: Let X = U ∪ V , where U and V are open subsets of X,
and Z = U ∩ V . Then there is a long exact sequence

· · · → Hn(Z)
i∗−j∗−−−−→ Hn(U)⊕Hn(V )

p∗+q∗−−−−→ Hn(X)→ Hn−1(Z)→ · · · ,

where the map i : Z ↪→ U , j : Z ↪→ V , p : U ↪→ X, q : V ↪→ X are all the
standard inclusions.

Theorem 5.4. For every ring R and every R-module A, there exists (up to equiv-
alence of functors) precisely one homology theory with coefficients in A.

5.3. Beginning calculations. For simplicity, let R = Z, A = Z.

Lemma 5.5. If X is discrete then Hn(X) ∼=

{
0; n 6= 0⊕

x∈X Z; n = 0.

Lemma 5.6. Denote by Sk the standard k-dimensional sphere. Then

H̃n(Sk) ∼=

{
0; n 6= k

Z; n = k.

Lemma 5.7. For any pointed space X, Hn+1(ΣX) ∼= H̃n(X).

Lemma 5.8. Let Dn+1 be the (n + 1)-dimensional disk, which has Sn as bound-
ary. There is no continuous function Dn+1 → Sn which is the identity, or even
homotopic to the identity, on Sn.

Corollary 5.9 (Brouwer’s fixed point theorem). Every continuous self-map of Dn

has a fixed point.

5.4. Mapping degrees. A map f : Sn → Sn gives a homomorphism of homology
groups Hn(Sn) ∼= Z, so it’s multiplication by a number d, called the mapping degree
of f , deg(f).

Lemma 5.10. If f : Sn → Sn is homotopic to a constant map then deg(f) = 0. �

Lemma 5.11. deg(id) = 1

Lemma 5.12. deg(f ◦ g) = deg(f) deg(g).

Lemma 5.13. If f ∈ O(n+ 1) then deg(f) = det(f).

Corollary 5.14. The map x 7→ −x on Sn has degree (−1)n+1. (This map is called
the antipodal map.)

Corollary 5.15. If f : Sn → Sn has no fixed points then deg f = (−1)n+1.

Theorem 5.16 (Hairy ball theorem). Let n be even and f : Sn → Rn+1 be a
continuous map such that f(x) ⊥ x for all x. Then f(x) = 0 for some x ∈ Sn.
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6. Singular homology

Definition. The standard n-simplex is the topological space

∆n = {(t0, . . . , tn) | 0 ≤ ti ≤ 1, t0 + · · ·+ tn = 1} ⊂ Rn+1,

topologized as a subspace of Rn+1.
A singular n-simplex in a topological space X is a continuous map

σ : ∆n → X.

The set of singular n-simplices in X is denoted SnX.
The group of n-chains is defined to be

Cn(X) = ZSnX,

the free abelian group on the set of singular n-simplices of X. Thus, its elements
are formal linear combinations ∑

σ∈SnX

aσσ,

where aσ ∈ Z, and aσ = 0 for all but finitely many σ.
The boundary homomorphism

∂n : Cn(X)→ Cn−1(X),

is defined by

∂n(σ) =

n∑
i=0

(−1)idi(σ),

where the face maps di : SnX → Sn−1X (i = 0, 1, . . . , n), are defined by

di(σ)(t0, . . . , tn−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tn−1).

The singular chain complex C∗(X) is the chain complex

· · · → Cn+1(X)
∂n+1→ Cn(X)

∂n→ Cn−1(X)→ · · · → C1(X)
∂1→ C0(X)→ 0.

The identity ∂n ◦ ∂n+1 = 0 follows from the identities di ◦ dj = dj−1 ◦ di for i < j.
The singular homology of X is defined to be the homology groups of the

singular chain complex;

Hn(X) = Hn(C∗(X)).

Functoriality. Given a continuous map f : X → Y , there is an induced chain
map f∗ : C∗(X) → C∗(Y ) defined by f∗(σ) = f ◦ σ. Hence, there is an induced
homomorphism in homology f∗ : Hn(X) → Hn(Y ), and this makes Hn(−) into a
functor from topological spaces to abelian groups.

6.1. Eilenberg-Steenrod axioms for singular homology.

Theorem 6.1. Singular homology satisfies the Eilenberg-Steenrod axioms.

(Dimension) The singular chain complex of a one-point space is isomorphic to

· · ·Z =→ Z
0→ Z

=→ Z
0→ Z→ 0.

The homology groups are clearly H0(∗) = Z and Hn(∗) = 0 for n 6= 0.
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(Additivity) Since ∆n is connected, every continuous map σ : ∆n →
∐
i∈I Xi

factors through some Xi. This observation can be used to establish an isomorphism
of chain complexes

C∗(
∐
i∈I

Xi) ∼=
⊕
i∈I

C∗(Xi),

which in turn implies additivity of singular homology.
(Homotopy) Given continuous maps f, g : X → Y , and a homotopy h : f ' g,

it is possible to construct an explicit chain homotopy Hn : Cn(X) → Cn+1(Y )
between the induced chain maps f∗, g∗ : C∗(X)→ C∗(Y ). One sets

Hn(σ) =

n∑
i=0

(−1)ihi(σ),

where h0, . . . , hn : SnX → Sn+1Y are defined by

hi(σ)(x0, . . . , xn) = h(σ(x0 . . . , x̂i, . . . , xn), xi).

Here we are using a new set of coordinates for the standard (n+ 1)-simplex;

∆n+1 ∼= {(x0, . . . , xn) | 0 ≤ x0 ≤ . . . ≤ xn ≤ 1} ⊂ Rn+1,

see Homework 8.
(Exactness) Later in the course.
(Mayer-Vietoris) Later in the course.

6.2. Singular homology and cohomology with coefficients.

Definition. Let M be an abelian group. Define

Cn(X;M) = Cn(X)⊗Z M.

Then we obtain a chain complex C∗(X;M). The singular homology of X with
coefficients in M is

Hn(X;M) = Hn(C∗(X;M)).

Let

Cn(X;M) = HomZ(Cn(X),M)

be the abelian group of homomorphisms from Cn(X) to M . The coboundary
map

δn : Cn(X;M)→ Cn+1(X;M)

is defined by δn(f) = f ◦ ∂n+1. We obtain the singular cochain complex of X
with coefficients in M

0→ C0(X;M)
∂0

→ C1(X;M)
∂1

→ C2(X;M)→ · · ·

and the singular cohomology of X with coefficients in M are the cohomology
groups

Hn(X;M) = Hn(C∗(X;M)) = ker ∂n/ im ∂n−1.

Theorem 6.2 (Universal coefficient theorem for homology). There is a natural
short exact sequence

0→ Hn(X)⊗Z M → Hn(X;M)→ TorZ1 (Hn−1(X),M)→ 0

for every n. The sequence splits, but the splitting is not natural.
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Theorem 6.3 (Universal coefficient theorem for cohomology). There is a natural
short exact sequence

0→ Ext1Z(Hn−1(X),M)→ Hn(X;M)→ HomZ(Hn(X),M)→ 0

for every n. The sequence splits, but the splitting is not natural.

Theorem 6.4. (1) H̃n(X) = 0 for all n if and only if

H̃n(X; Q) = 0 and H̃n(X; Fp) = 0

for all n and all prime numbers p.
(2) Let f : X → Y be a continuous map. Then

f∗ : Hn(X)→ Hn(Y )

is an isomorphism for all n if and only if

f∗ : Hn(X; Q)→ Hn(Y ; Q) and f∗ : Hn(X; Fp)→ Hn(Y ; Fp)

are isomorphisms for all n and all prime numbers p.

7. Cell complexes

Recall the definition of the n-disk and the (n− 1)-sphere;

Dn = {x ∈ Rn | |x| ≤ 1} ,
Sn−1 = ∂Dn = {x ∈ Rn | |x| = 1} .

Definition. A cell complex (or CW-complex) is a topological space constructed
inductively as follows.

• Start with a discrete set of points X0.
• The n-skeleton Xn is obtained from Xn−1 by attaching n-dimensional

cells. More precisely, there is a family of n-disks

{Dn
i }i∈In

together with attaching maps from their boundaries to Xn−1,

ϕi : ∂D
n
i → Xn−1, i ∈ In,

such that Xn is the quotient space

Xn = Xn−1
∐
i

Dn
i / ∼

where we make the identifications

a ∼ ϕi(a), for a ∈ ∂Dn
i .

• Finally X = ∪nXn, where U ⊆ X is open if and only if U ∩Xn is open in
Xn for every n.

A finite dimensional cell complex is a cell complex X such that X = Xn for
some n. The cell complex X is of dimension n if X = Xn but X 6= Xn−1. A finite
cell complex is a finite dimensional cell complex that has finitely many cells in
each dimension. The Euler characteristic of a finite n-dimensional cell complex
X is defined as the alternating sum

χ(X) =

n∑
i=1

(−1)ici,

where ci is the number of i-dimensional cells in X.



14

7.1. Cellular homology.

Definition. Let X be a cell complex. The cellular chain complex Ccell∗ (X),

· · · → Ccelln
∂n→ Ccelln−1(X)→ · · · → Ccell1

∂1→ Ccell0 (X)→ 0,

has

Ccelln (X) =
⊕
i∈In

Zeni ,

the free abelian group on the n-dimensional cells in X. The differential

∂n : Ccelln (X)→ Ccelln−1(X)

is defined, on basis elements, by

∂(eni ) =
∑

j∈In−1

[i : j]en−1j ,

where [i : j] ∈ Z is the degree of the following self-map of Sn−1:

Sn−1 = ∂Dn
i
ϕi→ Xn−1 → Xn−1/

(
Xn−1 \ en−1j

) ∼= Sn−1.

Here Xn−1/
(
Xn−1 \ en−1j

)
denotes the result of collapsing everything except the

cell indexed by j ∈ In−1 to a point, and ϕi denotes the attaching map of the n-cell
indexed by i ∈ In. The cellular homology of X is the homology of the cellular
chain complex:

Hcell
n (X) = Hn(Ccell∗ (X)).

We can also define cellular homology, or cohomology, with coefficients in an abelian
group M as follows:

Hcell
n (X;M) = Hn(Ccell∗ (X)⊗Z M),

and

Hn
cell(X;M) = Hn

(
HomZ(Ccell∗ (X),M)

)
,

respectively.

Theorem 7.1. For every cell complex X, the cellular homology groups are isomor-
phic to the singular homology groups,

Hcell
n (X) ∼= Hsing

n (X),

for all n.

Corollary 7.2. • Cellular homology is independent of the choice of cell de-
composition. In fact, it is a homotopy invariant.

• For X a finite cell complex, the homology groups (cellular or singular)
Hn(X) are finitely generated abelian groups. Moreover, Hn(X) = 0 for
n > dim(X).

• The Euler characteristic χ(X) is independent of the cell decomposition. In
fact, it is a homotopy invariant, and it may be calculated as

χ(X) =

dim(X)∑
i=0

(−1)ihi,

where hi = dimkHi(X;k). Here k is any field.
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8. Proof of the Eilenberg-Steenrod axioms for singular homology

It remains to prove the Mayer-Vietoris axiom and the Exactness axiom for sin-
gular homology.

Definition. Let U = {Ui}i∈I be a family of subspaces of a topological space X.
The chain complex

CU∗ (X) ⊆ C∗(X)

is defined as the subcomplex spanned by all singular n-simplices σ : ∆n → X such
that im(σ) ⊆ Ui for some i ∈ I.

Theorem 8.1. If X is covered by the interiors of the Ui, then the inclusion
CU∗ (X)→ C∗(X) is a chain homotopy equivalence.

This theorem easily implies the following.

Theorem 8.2 (Mayer-Vietoris axiom). Let X = U ∪ V , where U and V are open
subsets of X. Then there is a long exact sequence

· · · → Hn(U ∩ V )
i∗−j∗−−−−→ Hn(U)⊕Hn(V )

p∗+q∗−−−−→ Hn(X)→ Hn−1(U ∩ V )→ · · · ,

8.1. Relative homology and excision.

Definition. Let A ⊆ X be a subspace. The relative chain complex is defined
as the quotient chain complex

C∗(X,A) = C∗(X)/C∗(A).

The relative homology groups are the homology groups of the relative chain
complex,

Hn(X,A) = Hn(C∗(X,A)).

By definition, there is a short exact sequence of chain complexes

0→ C∗(A)→ C∗(X)→ C∗(X,A)→ 0,

and this induces a long exact sequence in homology

· · · → Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ · · · .
A pair of topological spaces is a pair (X,A) where A is a subspace of X.

A map of pairs f : (X,A) → (Y,B) is a continuous map f : X → Y such that
f(A) ⊆ B.

A homotopy between two maps of pairs f, g : (X,A)→ (Y,B) is a map of pairs
h : (X × I, A × I) → (Y,B) such that h(x, 0) = f(x) and h(x, 1) = g(x) for all
x ∈ X. A map of pairs f : (X,A) → (Y,B) is a homotopy equivalence of pairs
if there is a map g : (Y,B) → (X,A) such that the maps of pairs fg and gf are
homotopic to the respective identity maps. Relative homology may be viewed as
a functor from the category of pairs to the category of abelian groups, and this
functor is homotopy invariant in the sense that homotopic maps of pairs induce
identical maps in relative homology.

Proposition 8.3. Given a map of pairs f : (X,A) → (Y,B), there is an induced
homomorphism

(8.4) f∗ : Hn(X,A)→ Hn(Y,B),

for every n. If f∗ : Hn(X) → Hn(Y ) and (f |A)∗ : Hn(A) → Hn(B) are isomor-
phisms for all n, then (8.4) is an isomorphism for all n.
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Theorem 8.5 (Excision). Let Z ⊂ A ⊂ X be subspaces such that the closure of Z
is contained in the interior of A. Then the inclusion of pairs (X\Z,A\Z)→ (X,A)
induces an isomorphism in relative homology

Hn(X \ Z,A \ Z)
∼=−→ Hn(X,A)

for all n.

Theorem 8.6 (Exactness axiom). Let f : A → X be a map and g : X → Cf be
the standard inclusion into the mapping cone. Then there is a natural long exact
sequence

· · · → Hn(A)
f∗−→ Hn(X)

g∗−→ H̃n(Cf )→ Hn−1(A)→ · · ·

The idea of the proof is to look at the long exact sequence in relative homology
associated to the pair (Mf , A), where Mf is the mapping cylinder of f ;

Mf = X
∐

A× I/(a, 0) ∼ f(a).

By excision and homotopy invariance, we may make the identifications Hn(Mf ) ∼=
Hn(X) and Hn(Mf , A) ∼= H̃n(Cf ).

9. Real projective spaces

Definition. Real projective n-space RPn is defined to be the set of lines in
Rn+1 through the origin. For a non-zero vector x = (x0, . . . , xn) ∈ Rn+1, let

(x0 : . . . : xn) ∈ RPn

denote the line through 0 and x. The map

π : Rn+1 \ {0} → RPn

π(x0, . . . , xn) = (x0 : . . . : xn)

is surjective, and we give RPn the quotient topology:

U ⊆ RPn open⇐⇒ π−1(U) ⊆ Rn+1 \ {0} open.

Proposition 9.1. The restriction of π to Sn ⊂ Rn+1 \ {0} is a quotient map

Sn
π−→ RPn,

and it identifies RPn with the sphere Sn with antipodal points identified. In partic-
ular, RPn is compact.

Proposition 9.2. There is a homeomorphism

RPn−1
⋃
π

Dn ∼=−→ RPn .

In other words, RPn is obtained from RPn−1 by attaching an n-cell, using the
quotient map π : Sn−1 → RPn−1 as attaching map.

Corollary 9.3. RPn is an n-dimensional cell complex with one cell in each di-
mension 0, 1, . . . , n. The k-skeleton is RPk, where we identify RPk with the sub-
space of RPn consisting of all points with homogeneous coordinates of the form
(x0 : . . . : xk : 0 : . . . : 0).
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Proposition 9.4. The map

p : RPn → Rn ∪ {∞}

(x0 : . . . : xn) 7→
(x0
xn
, . . . ,

xn−1
xn

)
,

induces a homeomorphism

RPn /RPn−1 ∼= Rn ∪ {∞},

where the right hand side denotes the one-point compactification of Rn.

The one-point compactification of Rn is the topological space Rn∪{∞} obtained
by adding a ‘point at infinity’ ∞, and where the open subsets are the open subsets
of Rn together with all sets of the form U ∪ {∞}, where U ⊆ Rn is a set with
compact complement.

Choosing a point p ∈ Sn, we can define a map, called stereographic projec-
tion,

s : Sn → Rn ∪ {∞}

by declaring s(p) = ∞ and, for x 6= p, letting s(x) be the point of intersection
between the line through x and p and the hyperplane through the origin in Rn+1

orthogonal to p (we identify this hyperplane with Rn).

Proposition 9.5. Stereographic projection defines a homeomorphism Sn ∼= Rn ∪
{∞}.

By combining the homeomorphisms of Proposition 9.4 and 9.5, we obtain a
homeomorphism

RPn /RPn−1 ∼= Sn.

Proposition 9.6. The self-map of Sn given by the composite

Sn
π−→ RPn → RPn /RPn−1 ∼= Sn

has degree 1 + (−1)n+1.

Corollary 9.7. The cellular chain complex of RPn may be identified with

0→ Zen
1+(−1)n−−−−−−→ Zen−1 → · · · 2−→ Ze3

0−→ Ze2
2−→ Ze1

0−→ Ze0 → 0.

From this we can read off the homology of RPn:

Hk(RPn) ∼=

 Z, k = 0, or k = n odd,
Z/2Z, 0 < k < n, k odd,
0, otherwise.

If we take coefficients in F2, we get

Hk(RPn; F2) ∼=
{

F2, 0 ≤ k ≤ n,
0, k > n.
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10. Cohomology ring

Let X be a topological space and let k be a ring with unit. We may identify the
group of singular cochains Cn(X;k) with the set of all functions f : SnX → k. For
0 ≤ i0 ≤ . . . ≤ ik ≤ n, let

(i0 · · · ik) : ∆k → ∆n

denote the linear map that sends ej to eij , for j = 0, 1, . . . , k. For a singular n-

simplex σ : ∆n → X, we may compose to get a singular k-simplex σ(i0 · · · ik) : ∆k →
X. For instance, di(σ) = σ(01 · · · î · · ·n) in this notation.

We have the singular cochain complex

0→ C0(X;k)
δ0−→ C1(X;k)

δ1−→ C2(X;k)
δ2−→ · · · ,

where the coboundary map δn−1 is given by

δn−1(f)(σ) =

n∑
i=0

(−1)if(di(σ)),

for f ∈ Cn−1(X;k) and σ ∈ SnX. Recall that the cohomology ofX with coefficients
in k is defined by

Hn(X;k) = ker δn/ im δn−1.

If f ∈ ker δn, then let [f ] ∈ Hn(X;k) denote the cohomology class that f represents.

Definition. The cup product

Cp(X;k)× Cq(X;k)
∪−→ Cp+q(X;k)

is defined by

(f ∪ g)(σ) = f(σ(0 · · · p))g(σ(p · · · p+ q)).

for f ∈ Cp(X;k), g ∈ Cq(X;k) and σ ∈ Sp+qX. There is a distinguished 0-cochain
1 ∈ C0(X), defined by

1(σ) = 1,

for all σ ∈ S0X, where the right hand side denotes the unit element 1 in the ring k.

Proposition 10.1. For all f, f ′ ∈ Cp(X;k), g, g′ ∈ Cq(X;k) and h ∈ Cr(X;k),
we have

• (f + f ′) ∪ g = f ∪ g + f ′ ∪ g and f ∪ (g + g′) = f ∪ g + f ∪ g′.
• 1 ∪ f = f ∪ 1 = f .
• (f ∪ g) ∪ h = f ∪ (g ∪ h).
• δ(f ∪ g) = δ(f) ∪ g + (−1)pf ∪ δ(g).

Theorem 10.2. The cup product in cohomology

Hp(X;k)×Hq(X;k)
∪−→ Hp+q(X;k),

([f ], [g]) 7→ [f ∪ g],

is well-defined and makes

H∗(X;k) =
⊕
n≥0

Hn(X;k)

into a graded associative ring with unit.
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Given a continuous map ϕ : X → Y , there is an induced homomorphism

ϕ∗ : Cn(Y ;k)→ Cn(X;k),

defined by ϕ∗(f)(σ) = f(ϕ ◦ σ), for σ ∈ SnX. It satisfies the following:

• ϕ∗(δ(f)) = δ(ϕ∗(f)).
• ϕ∗(f ∪ g) = ϕ∗(f) ∪ ϕ∗(g).
• ϕ∗(1) = 1.

This implies that the map

ϕ∗ : H∗(Y )→ H∗(X)

[f ] 7→ [ϕ∗(f)]

is a well-defined ring homomorphism. Moreover, (ψ◦ϕ)∗ = ϕ∗ ◦ψ∗ and id∗ = id, so
we may view cohomology as a contravariant functor H∗(−) from topological spaces
to graded rings.

The cross product

× : Hp(X;k)×Hq(Y ;k)→ Hp+q(X × Y ;k)

([f ], [g]) 7→ [f × g]

is defined by (f × g)(σ) = f(σX(0 · · · p))g(σY (p · · · p + q)), for σ ∈ Sp+q(X × Y ),
where σ = (σX , σY ).

Theorem 10.3 (Künneth formula). If k is a field and if H∗(X;k) or H∗(Y ;k) is
finite dimensional, then the cohomology ring H∗(X×Y ;k) is generated by all cross
products of elements from H∗(X;k) and H∗(Y ;k).

Theorem 10.4. The cohomology ring of projective space H∗(RPn; F2) is isomor-
phic to

H∗(RPn; F2) = F2α
0 ⊕ F2α

1 ⊕ F2α
2 ⊕ · · · ⊕ F2α

n,

where αk ∈ Hk(RPn; F2) is the unique non-zero element. The cup product is given
by

αp ∪ αq = αp+q

for p+ q ≤ n, and α0 = 1.

11. The Borsuk-Ulam theorem

Theorem 11.1 (Borsuk-Ulam theorem). For every continuous map f : Sn → Rn,
there is a point x ∈ Sn such that f(x) = f(−x).

If we take S2 as a model for the surface of the earth and if we let f : S2 → R2

be the function that measures the temperature and humidity at a given point, then
the Borsuk-Ulam theorem tells us that there are always two opposite points on the
earth with the exact same temperature and humidity!

Another striking application of the Borsuk-Ulam theorem is the so-called “Ham
sandwich theorem”.

Theorem 11.2. Let A1, . . . , An be compact subsets of Rn. Then there is a hyper-
plane H in Rn that simultaneously bisects each of the sets A1, . . . , An.



20

Here is some explanation: Every hyperplane H in Rn is determined by any of
its normal vectors n;

H = {x ∈ Rn | n · x = 0} .
The hyperplane divides any subset A ⊂ Rn into two components A+ and A−,
namely the points a ∈ A satisfying n · a > 0 or n · a < 0, respectively. That H
bisects the set A means that

µ(A+) = µ(A−) =
1

2
µ(A),

where µ denotes the standard Lebesgue measure on Rn.
For n = 3, if we let A1, A2, A3 be the sets of bread, ham and cheese in a sandwich,

then the theorem says that no matter how messily made it is, the sandwich can be
cut by a straight cut into two halves with the exact same amount of bread, ham
and cheese in each half.

There are many equivalent formulations of the Borsuk-Ulam theorem. We men-
tion two here:

Theorem 11.3. The following statements are equivalent to the Borsuk-Ulam the-
orem:

(1) There is no antipodal map g : Sn → Sn−1.
(2) For every continuous map f : Dn → Rn that satisfies f(−x) = −f(x) for

all x ∈ ∂Dn, there is a point x ∈ Dn such that f(x) = 0.

The proof of Theorem 11.3 is left as an assignment (Assignment 14). The proof of
the Borsuk-Ulam theorem is a very nice and illustrative application of cup products
and the calculation of the cohomology of RPn.

Proof of the Borsuk-Ulam theorem. The proof is by contradiction. Assume that
there is an antipodal map f : Sn → Sn−1. Then there is an induced continuous
map f : RPn → RPn−1, determined by commutativity of the diagram

(11.4) Sn
f
//

π

��

Sn−1

π

��

RPn
f
// RPn−1 .

The map f induces a homomorphism of graded rings

f
∗

: H∗(RPn−1; F2)→ H∗(RPn,F2).

Let α1 denote the non-zero element in H1(RPn−1; F2) and let β1 denote the non-
zero element in H1(RPn; F2) (here we assume n > 1).

Lemma 11.5. We have f
∗
(α1) = β1.

Assume for the moment the validity of the lemma. By Theorem 10.4, we have
that the n-fold cup product of β1 with itself is

β1 ∪ · · · ∪ β1 = βn,

where βn is the non-zero element in Hn(RPn; F2). On the other hand, if we take
the n-fold cup product of α1, we get

α1 ∪ · · · ∪ α1 = 0,
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simply because there is nothing in that degree; Hn(RPn−1; F2) = 0. Now for the

punchline: because f
∗

is a ring homomorphism we must have

0 = f
∗
(0) = f

∗
(α1 ∪ · · · ∪ α1) = f

∗
(α1) ∪ · · · ∪ f∗(α1)

= β1 ∪ · · · ∪ β1

= βn

where we have used Lemma 11.5 in the middle step. This gives us the contradiction
0 = βn. Thus, our assumption that there exists an antipodal map f : Sn → Sn−1

must be wrong. �

Proof of Lemma 11.5. It follows from the universal coefficient theorem that if F is
a field, then the first cohomology group H1(X; F) is just the vector space dual of
the first homology group H1(X,F), for any space X. Thus, we might as well show
that the induced map in homology

f∗ : H1(RPn; F2)→ H1(RPn−1,F2)

is non-zero. We know that both groups are one-dimensional, but how can we
describe the generator?

Well, first of all identify ∆1 with the unit interval I = [0, 1]. For every path
(aka singular 1-simplex) γ : I → Sn such that γ(0) is antipodal to γ(1), we have
that the composite πγ : I → RPn is a loop (because the start and end point get
identified), and hence it is a cycle when viewed as an element of the singular chain
complex C∗(RPn; F2). The associated homology class [πγ] ∈ H1(RPn; F2) does
not depend on what path γ we use, as long as γ(0) is antipodal to γ(1), and
in fact [πγ] is the non-zero element. With this description, one can show that
f∗ : H1(RPn; F2)→ H1(RPn−1; F2) is non-zero (see Assignment 14). �


