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Matematiska Institutionen
KTH

Solutions to the exam to the course Discrete Mathematics, SF2736, 08.00 to
13.00 on June 7, 2011.

Observe:

1. Nothing else than pencils, rubber, rulers and papers may be used.

2. Bonus points from the homeworks will be added to the sum of points on part I.

3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21 points will
give D; 22-27 points will give C; 28-31 points will give B; 32-36 points will give A.

Part I

1. (3p) Find the least positive remainder when 71024 is divided by 31.

Solution: We will use the theorem of Fermat, that is, if p is a prime number that
does not divide the integer a, then

ap−1 ≡ 1 (mod p) .

Further, 1024 = 34 · 30 + 4, and hence,

71024 ≡31 (730)3474 ≡31 74 ≡31 7272 ≡31 (−13) · (−13) ≡31 169 ≡31 14 .

ANSWER: 14.

2. (3p) Draw three graphs G1, G2 and G3, each with 12 vertices and 18 edges, with
the following properties:

(i) G1 have an Euler circuit but no Hamiltonian cycle.

(ii) G2 have an Hamiltonian cycle but no Euler circuit

(iii) G3 have neither an Eulerian circuit nor an Hamiltonian cycle.

Solution: We first draw four parallel edges between the vertices a and b. Then
we mark the remaining 10 vertices on these four edges with at least two on each of
these four edges, so there will be two vertices x and y that are not neighbors of a
nor b. Every time you mark such a vertex you get a new edge, so in total we now
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have 14 edges. Now draw edges from the vertices a and b to the vertices x and y.
This will be the graph G1, as every vertex has an even degree, and you must pass
the vertex a more than once, if you will follow a route to all vertices.

Draw a cycle graph with 12 vertices a1, a2, ..., a12. It does not matter how you
fill in with further edges, this cycle will always constitute an Hamilton cycle of the
graph. From the vertex a1, draw edges to the vertices a3, a4, ..., a8. The graph has
now 18 edges and 12 vertices, but there are vertices of odd degree, for example the
vertex a3, so there will be no Euler circuit. This will be the graph G2.

A disconnected graph can neither contain an Eulerian circuit nor an Hamilton cycle.
Thus any disconnected graph can be the graph G3.

3. (3p) In how many ways can the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be partitioned into
three subsets such that the elements 1, 2 and 3 will be placed in different sets?

Solution: Place the elements in three different sets. For each of the remaining
elements there are three possibilities, either to be placed in the set with the element
1, or the set with the element 2 or the set with the element 3. Hence,

ANSWER: 37.

4. (3p) Let G denote the group (Z24, + ). Find cosets S1 and S2 of two distinct non
trivial subgroups H1 and H2, respectively, of G, with the property that S1 and S2

have exactly two elements in common of which one is the element 7.

Solution: Let H1 = {0, 12} and H2 = {0, 6, 12, 18}. Then, with

S1 = 7 + H1 = {7, 19} S2 = 7 + H2 = {1, 7, 13, 19} ,

the problem is solved.

5. (a) (1p) Let A denote a set of positive integers. Give a suitable definition of the
concept greatest common divisor, below denoted gcd(A), of the numbers in the
set A.

Solution: The non negative integer D is the greatest common divisor to the
integers in the set A if the following to conditions are satisfied

(i) D divides all integers in the set A.

(ii) if the integer d divides all integers in the set A then d divides D.

(b) (2p) Show that for every non empty subset B of A it is true that gcd(A) divides
gcd(B).

Solution: We assume that D = sgd(A) and D′ = sgd(B), respectively, always
exist.

From the condition (i) we get that D divides all integers in the set A and hence
D will divide all integers in B, as B is a subset of A. By the condition (ii) this
implies that sgd(B) must be divisible by D, which was to be proved.
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Part II

6. (3p) Find the number of integers n in the interval 1 ≤ n ≤ 1320 such that n is not
divisible by 10, 11 or 12.

Solution: We will use the principle of inclusion exclusion and for that purpose we
define the sets A, B and C that consists of those integers in the interval 1 to 320
that are divisible by 10, 11, and 12, respectively. Hence, the answer S is given by

S = 1320− |A ∪B ∪ C| .

We get that
|A| = 1320

10
= 132

|B| = 1320
11

= 120
|C| = 1320

12
= 110

|A ∩B| = 1320
mgm(10,11)

= 12

|A ∩ C| = 1320
mgm(10,12)

= 22

|B ∩ C| = 1320
mgm(11,12)

= 10

|A ∩B ∩ C| = 1320
mgm(10,11,12)

= 2

The formula for inclusion exclusion

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

now gives the

ANSWER: 1320− 132− 120− 110 + 12 + 22 + 10− 2 = 1000.

7. (3p) Find an 1-error correcting linear code C with as many words as possible and
such that

(i) the word 10101011 belongs to C.

(ii) the word 00111100 cannot be corrected.

(iii) the word 11000011 can be corrected.

Solution: We describe the code C by giving its parity check matrix H. The number
of columns is equal to eight, as the word length of the code is eight. These columns
must be distinct, and distinct from the zero column, and hence, the number of rows
must be at least equal to four (as else we can produce just seven distinct non zero
columns if there were just three rows). Furthermore, the number of words of C, will
be less the more linearly independent rows the matrix H has. By trial and error we
find the following matrix with four rows and that satisfies the given conditions, and
thus solves our problem: 

1 1 0 1 0 0 0 1
0 1 1 1 0 1 0 1
0 1 0 0 1 1 0 1
0 0 0 0 0 1 1 1
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8. (a) (2p) Find a non abelian (non commutative) group G with identity e with
subgroups H1, H2, ..., Hk, where k > 1, of G such that Hi∩Hj = {e} for i 6= j,
and such that

H1 ∪H2 ∪ . . . ∪Hk = G .

Solution: The group S3 consisting of all permutations of the set of elements
{1, 2, 3} has this property as it has the subgroups

H1 =< (1 2) >, H2 =< (1 3) >, H3 =< (2 3) >, H4 =< (1 2 3) > ,

that just have the identity permutation in common and together cover the
group S3.

(b) (2p) Assume that G is a group with the property that every element, except
the identity, has the same order p, where p is a prime number. Show that G
has subgroups H1, H2, ..., Hk, k > 1, that partition the set of non identity
elements of the group G, in the same way as the subgroups in problem 8 (a)
do.

Solution: We assume that the group G has a finite number of elements. Every
element a 6= e in G generates a subgroup < a > of size p. The intersection of
any two such subgroups, < a > ∩ < b >, is a subgroup of both < a > and
< b >, and hence of an order that divides the prime number p. So, for any two
elements a, b ∈ G, either

< a >=< b > ,

which means that b ∈< a >, or

< a > ∩ < b >= {e} ,

which is the case when b 6∈< a >. Now recursively pick elements a1, a2, ..., an

such that, for k = 1, 2, . . . , n,

ak 6∈ ∪k−1
i=1 < ai > .

As the group G is finite, this procedure terminates after a finite number n of
steps. Let Hi =< ai >.

Alternatively, and in the infinite case, consider the set of subgroups

{ < a > | a ∈ G } ,

that has the property that any two distinct members of the set have the trivial
intersection {e} and the property that every element belongs to at least one
member of the set.

(c) (1p) Let p = 5. Give an explicit example that demonstrates the facts in
subproblem 8 (b).
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Solution: Let G = (Z5, +) × (Z5, +). The following six subgroups of G will
do:

< (1, 0) > = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0)},
< (0, 1) > = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)},
< (1, 1) > = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)},
< (2, 1) > = {(0, 0), (2, 1), (4, 2), (1, 3), (3, 4)},
< (3, 1) > = {(0, 0), (3, 1), (1, 2), (4, 3), (2, 4)},
< (4, 1) > = {(0, 0), (4, 1), (3, 2), (2, 3), (1, 4)}.

Part III

9. Let Sn denote the set of all permutations of the elements in the set {1, 2, . . . , n}.
Two permutations α and β are said to commute if αβ = βα. Below permutations
are described by their cycle notation.

(a) (1p) Find all elements in S3 that commute with the permutation α = (1 2 3).

Solution: The set S3 have the six elements (1), (1 2), (1 3), (2 3), (1 2 3) and
(1 3 2), and it is easy to check that

ANSWER: only (1), (1 2 3) and (1 3 2) commute with (1 2 3).

(b) (1p) Find five elements in S5 that commute with the permutation α = (1 2 3 4 5).

Solution: As α · αk = αk+1 = αk · α we immediately get

ANSWER: α, α2, α3, α4 och α5 = (1).

(c) (3p) For every positive integer n, find all elements in Sn that commute with
the permutation α = (1 2 . . . n).

Solution: We first observe that as above we have that the n distinct permu-
tations αk, for k = 1, 2, . . . , n, commute with α.

If βα = αβ then βαβ−1 = α. As α(i) = i + 1 (mod n), we get that

β(i) = j ⇒ β(i + 1) = β(α(i)) = β(α(β−1(j))) = βαβ−1(j) = α(j) = j + 1 .

From the implication above follows recursively that the value of β(i) is deter-
mined by the value of β(1). There are at most n possible distinct values for
β(1) and thus there are not more than n distinct permutations that commute
with α.

We can thus conclude the following

ANSWER: The permutations that commute with α are the permutations αk,
for k = 1, 2, . . . , n.

10. We consider bipartite graphs with vertices in the sets X and Y with no edges
between vertices in X and no edges between vertices in Y .
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(a) (2p) Show that if |X| ≤ 10, if the vertices in the sets X have a degree at least
equal to 4, and if the vertices of Y have a degree less than or equal to 5, then
there always exists a matching of size 8 in the bipartite graph.

Solution: See below

(b) (3p) Give and prove a theorem that generalizes the above situation, and from
which the result in problem 10 (a) follows.

Solution: Let δ(v) denote the degree of the vertex v. Let G(X ∪Y,E) denote
a bipartite graph as described above, and with the set of edges E. Let, for
every real number r, brc denote the largest integer k such that k ≤ r.

Theorem 1 In every bipartite graph G(X ∪ Y,E) such that for every x ∈ X
and y ∈ Y

δ(y) ≤ M ≤ m ≤ δ(x)

where m and M are integers, there exists a matching M of size

|M| = bm

M
|X|c .

Proof. Let J(A) denote the joint in Y to the vertices in the subset A of X.
Due to a theorem in the textbook it is sufficient to prove that for every subset
A of X it is true that

|A| − |J(A)| ≤ ∆ ,

where
∆ = |X| − bm

M
|X|c .

Let N(A) denote the number of edges that are incident with a vertex in the
subset A of X. Then, by counting the number of edges that are incident with
a vertex in the subset J(A) of Y we get that

m|A| ≤ N(A) ≤ M |J(A)| ,

and so
|J(A)| ≥ m

M
|A| ,

It follows that, for every subset A of X,

|A| − |J(A)| ≤ |A| − m

M
|A| = |A|(1− m

M
) ≤ |X|(1− m

M
) ≤ |X| − bm

M
|X|c .

Example. Every bipartite graph G(X ∪ Y, E) such that |X| = 10, m = 4 and
M = 5 admits a matching M of size

|M| = b4
5
10c = 8 .

Note You can get 5p on problem 10 by first solving the (b)-problem and then
showing how the result in (a) follows from the solution of problem (b).


