Matematiska Institutionen KTH

Exam to the course Discrete Mathematics, SF2736, 08.00 to 13.00 on June 7, 2011.

Observe:

- 1. Nothing else than pencils, rubber, rulers and papers may be used.
- 2. Bonus points from the homeworks will be added to the sum of points on part I.
- 3. Grade limits: 13-14 points will give Fx; 15-17 points will give E; 18-21 points will give D; 22-27 points will give C; 28-31 points will give B; 32-36 points will give A.

Part I

- 1. (3p) Find the least positive remainder when 7^{1024} is divided by 31.
- 2. (3p) Draw three graphs G_1 , G_2 and G_3 , each with 12 vertices and 18 edges, with the following properties:
 - (i) G_1 have an Euler circuit but no Hamiltonian cycle.
 - (ii) G_2 have an Hamiltonian cycle but no Euler circuit
 - (iii) G_3 have neither an Eulerian circuit nor an Hamiltonian cycle.
- 3. (3p) In how many ways can the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ be partitioned into three subsets such that the elements 1, 2 and 3 will be placed in different sets?
- 4. (3p) Let G denote the group $(Z_{24}, +)$. Find cosets S_1 and S_2 of two distinct non trivial subgroups H_1 and H_2 , respectively, of G, with the property that S_1 and S_2 have exactly two elements in common of which one is the element 7.
- 5. (a) (1p) Let A denote a set of positive integers. Give a suitable definition of the concept greatest common divisor, below denoted gcd(A), of the numbers in the set A.
 - (b) (2p) Show that for every non empty subset B of A it is true that gcd(A) divides gcd(B).

Part II

- 6. (3p) Find the number of integers n in the interval $1 \le n \le 1320$ such that n is not divisible by 10, 11 or 12.
- 7. (3p) Find an 1-error correcting linear code C with as many words as possible and such that
 - (i) the word 10101011 belongs to C.
 - (ii) the word 00111100 cannot be corrected.
 - (iii) the word 11000011 can be corrected.
- 8. (a) (2p) Find a non abelian (non commutative) group G with identity e with subgroups $H_1, H_2, ..., H_k$, where k > 1, of G such that $H_i \cap H_j = \{e\}$ for $i \neq j$, and such that

$$H_1 \cup H_2 \cup \ldots \cup H_k = G$$
.

- (b) (2p) Assume that G is a group with the property that every element, except the identity, has the same order p, where p is a prime number. Show that G has subgroups $H_1, H_2, ..., H_k, k > 1$, that partition the set of non identity elements of the group G, in the same way as the subgroups in problem 8 (a) do.
- (c) (1p) Let p = 5. Give an explicit example that demonstrates the facts in subproblem 8 (b).

Part III

- 9. Let S_n denote the set of all permutations of the elements in the set $\{1, 2, ..., n\}$. Two permutations α and β are said to commute if $\alpha\beta = \beta\alpha$. Below permutations are described by their cycle notation.
 - (a) (1p) Find all elements in S_3 that commute with the permutation $\alpha = (1 \ 2 \ 3)$.
 - (b) (1p) Find five elements in \mathcal{S}_5 that commute with the permutation $\alpha = (1\ 2\ 3\ 4\ 5)$.
 - (c) (3p) For every positive integer n, find all elements in S_n that commute with the permutation $\alpha = (1 \ 2 \ \dots \ n)$.
- 10. We consider bipartite graphs with vertices in the sets X and Y with no edges between vertices in X and no edges between vertices in Y.
 - (a) (2p) Show that if $|X| \leq 10$, if the vertices in the sets X have a degree at least equal to 4, and if the vertices of Y have a degree less than or equal to 5, then there always exists a matching of size 8 in the bipartite graph.
 - (b) (3p) Give and prove a theorem that generalizes the above situation, and from which the result in problem 10 (a) follows.

Note You can get 5p on problem 10 by first solving the (b)-problem and then showing how the result in (a) follows from the solution of problem (b).