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Matematiska Institutionen
KTH

Solutions to the exam to the course Discrete Mathematics, SF2736, December
19, 2011.

Observe:

1. You are not allowed to use anything else than pencils, rubber, rulers and papers at
this exam.

2. To get the maximum number of points on a problem it is not sufficient to just give
an answer, you must also provide explanations.

3. Bonus points from the homeworks will be added to the sum of the points on part I.

4. Grade limits: 13-14 points will give an Fx; 15-17 points will give an E; 18-21 points
will give a D; 22-27 points will give a C; 28-31 points will give a B; 32-36 points will
give an A.

Part I

1. (3p) Draw a bipartite graph with 8 vertices and 12 edges that has an Euler circuit
but no Hamiltonian cycle and draw another bipartite graph, also with 8 vertices
and 12 edges, that has an Hamiltonian cycle but no Euler circuit.

Solution: The complete bipartite graph K2,6 has no Hamilton cycle, but as all
vertices have an even degree, this graph has an Euler circuit.

Consider the complete bipartite graph K4,4. The graph has a complete matching,
the set of edges

{(x1, y1), (x2, y2), (x3, y3), (x4, y4)},

(where the vertices in the different parts of the bipartite graph have the evident
notation). Delete the edges in the complete matching above and consider the re-
sulting graph that has 12 edges. Now, as there are vertices of odd degree (in fact all
vertices) there is no Euler circuit. The following cycle will be a Hamiltonian cycle

x1y2x3y4x2y1x4y3x1
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2. (3p) Use the technique with generating functions to find all sequences a0, a1, a2, . . .
that satisfy the recursion

an+2 = 7an+1 − 10an for n = 0, 1, 2, . . . .

Solution: Let
A(t) = a0 + a1t+ a2t

2 + . . .

We multiply the given equality with tn+2, for n = 0, 1, 2, . . ., and sum. We then get
the equality

A(t)− a1t− a0 = 7t(A(t)− a0)− 10A(t).

Simplifying we get

A(t) =
(a1 − 7a0)t+ a0

1− 7t+ 10t2

We factorize the denominator, make partial fractions and sum a geometric series

A(t) =
(a1 − 7a0)t− a0
(1− 2t)(1− 5t)

=
A

1− 2t
+

B

1− 5t
= A ·

∞∑
n=0

(2t)n +B ·
∞∑
n=0

(5t)n

for some real numbers A and B. So

ANSWER: an = A · 2n +B · 5n for n = 0, 1, 2, . . ..

3. (3p) John will, as a Christmas present, get a package with ten bolls. They are
colored either green, red, yellow or blue. How many possible distinct packages are
there, if a package must contain at least one ball of each color? The solution shall,
besides explanations, also contain an answer, to the question, given as an integer.

Solution: An equivalent problem is to place 10 identical balls into 4 paint pots
with the four given colors, in such a way that each pot will contain at least one ball.
The formula for the number of ways this can be done is(

10− 4 + 3

3

)
=

9 · 8 · 7
1 · 2 · 3

= 84.

4. (3p) Find the least positive remainder when 37121 is divided by 42.

Solution: As 42 has the prime factorization

42 = 2 · 3 · 7

we get that for the Euler ϕ-function

ϕ(42) = 42(1− 1

2
)(1− 1

3
)(1− 1

7
) = 12.

As
37ϕ(42) ≡ 1 (mod 42),

we may then conclude that

37121 ≡42 (3712)10 · 37 ≡42 110 · 37 = 37.
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5. (3p) Find the smallest subgroup H of the group G = (Z30,+) with the property
that both 3 and 8 belongs to the same coset of H in G.

Solution: There are elements a in G, and h and h′ in H such that

3 = a+ h and 8 = a+ h′.

Subtraction gives that

5 = 8− 3 = (a+ h′)− (a+ h) = h′ − h

which thus has to be an element in H, as h′ − h ∈ H. The smallest subgroup that
contains the element 5 is the cyclic subgroup of G generated by 5. The answer is
thus given by

H = 〈5〉 = {5, 10, 15, 20, 25, 0}.

Part II

6. (3p) A tree is a connected graph without any cycles. A forest is a graph that consists
of trees. Find the least number of trees, as well as the largest number of trees, in a
forest with 100 vertices if at least 27 of the vertices has degree 3.

Solution: The forest can contain just one tree. Put together 27 vertices of degree
3 as shown below:

⊥⊥⊥ . . . ⊥
This subgraph will contain 82 vertices. So remains 18 vertices. Just make a path of
these vertices and attach to the subgraph above and you get a tree with 100 vertices.

Assume the number of trees in a forest is t, and the trees are T1, T2, ..., Tt, each
with vi vertices, and thus with ei = vi − 1 edges. As given is that

v1 + v2 + . . .+ vt = 100

we get, using the fact that ei = vi − 1, that

t+ e1 + e2 + . . .+ et = 100,

that is, the number of trees is
t = 100− |E|,

where |E| is the number of edges in the forest. So we try to find the minimum
number of edges in an acyclic graph where at least 27 of the vertices have degree 3.

As the sum of all degrees is twice the number of edges∑
v∈V

δ(v) = 2|E| (1)

we immediately get the fewest number of edges, (or the largest number of trees),
when we have as few vertices as possible of degree one and two. So now some
reasoning.
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Every tree has leaves. A tree with four vertices of which one has degree 3 has three
leaves. If we add two brances to one of the leaves, we get a tree with two vertices
of degree 3 and four leaves. So the number of leaves add by one, every time we let
a tree grow in this way. This gives a contribution of 1 to the sum in the Equation
(1), except for the addition of 3 from the vertex of degree 3. If we just add one
new branch to a leaf, we have the same number of leaves but we get a vertex of
degree 2, which add 2 to the sum in the Equation (1). So for each tree, the most
“economical” procedure, economical in the sense of using as few edges as possible, is
to add two branches to every leaf when growing. In this way, a tree with k vertices
of degree 3 will get 2 + k leaves.

The conclusion is that the optimal situation appears when we let one tree be con-
structed as described above and containing all 27 vertices of degree 3 and containing
29 leaves. The number of vertices in this tree will be 27 + 29 = 56. It remains 44
vertices. So the answer will be

Answer: There can be one tree, and not more than 45 trees in the forest.

7. (4p) Find the number of equivalence relations on the set A = {1, 2, 3, 4, 5, 6, 7}
such that 1 and 2 are not equivalent, 2 and 3 are not equivalent, 3 and 4 are not
equivalent. The solution shall, besides explanations, also contain an answer, to the
question, given as an integer.

Solution: There is a one to one correspondence between the set of equivalence
relations on a setM and the family of all partitions ofM , the corresponding partition
is the set of equivalence classes associated to the equivalence relation.

The number of ways to partition a set with n elements into k non empty subsets
is given by the Stirling number S(n, k), which can recursively be derived by the
formula

S(n, k) = S(n− 1, k − 1) + k · S(n− 1, k).

The total number N of equivalence relations on a set with 7 elements will thus be

S(7, 1) + S(7, 2) + S(7, 3) + . . .+ S(7, 7).

We will use the principle of inclusion exclusion to solve the actual problem. Let A
denote the set of equivalence relations where 1 and 2 are equivalent, B the equiva-
lence relations where 2 and 3 are equivalent and C the equivalence relations where
3 and 4 are equivalent.

When two elements are equivalent, they will belong to the same equivalence class,
and thus in this context they can be regarded as the same element. Hence,

|A| = S(6, 1) + S(6, 2) + S(6, 3) + . . .+ S(6, 6) = |B| = |C|.

If 1 and 2 are equivalent and 2 and 3 are equivalent then, by the transitivity property
of equivalence relations, also 1 and 3 are equivalent, and similarly for 3 and 4. We
thus get

|A ∩B| = S(5, 1) + S(5, 2) + S(5, 3) + S(5, 4) + S(5, 5) = |B ∩ C|,
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and
|A ∩B ∩ C| = S(4, 1) + S(4, 2) + S(4, 3) + S(4, 4).

Similarly
|A ∩ C| = S(5, 1) + S(5, 2) + S(5, 3) + S(5, 4) + S(5, 5).

We need a lot of Stirling numbers, so lets do the recursively derivation of them,
using the formula above.

S(n, 1) = 1 and S(n, n) = 1

so
S(3, 2) = 3, S(4, 2) = 7, S(4, 3) = 6.

And further on:

S(5, 2) = 15, S(5, 3) = 25, S(5, 4) = 10,

S(6, 2) = 31, S(6, 3) = 90, S(6, 4) = 65, S(6, 5) = 15

S(7, 2) = 63, S(7, 3) = 301, S(7, 4) = 350, S(7, 5) = 140, S(7, 6) = 21.

So summing these numbers we get

N = 877, |A| = |B| = |C| = 203, |A∩B| = |A∩C| = |B∩C| = 52, |A∩B∩C| = 15.

The principle of inclusion exclusion finally gives the following answer

ANSWER: 877− 3 · 203 + 3 · 52− 15 = 409.

8. Let Sn denote the group that consists of all permutations of the elements in the set
{1, 2, 3, . . . , n}.

(a) (1p) Find all cyclic subgroups of order 4 in S4.

Solution: A cyclic group of order 4 must be generated by a 4-cycle. There
are six 4-cycles in S4:

(1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2).

We let these elements generate subgroups. In fact we get three different cyclic
subgroups of order 4:

〈(1 2 3 4)〉 = {(1 2 3 4), (1 3)(2 4), (1 4 3 2), id}

〈(1 2 4 3)〉 = {(1 2 4 3), (1 4)(2 3), (1 3 4 2), id}

〈(1 3 2 4)〉 = {(1 3 2 4), (1 2)(3 4), (1 4 2 3), id}

(b) (1p) Find the number of cyclic subgroups of order 4 in Sn, for n ≥ 4.

Solution: A cyclic subgroup of order 4 is generated by a permutation that
consists of at least one 4-cycle together with a number of 2-cycles. We first
derive a formula for the number of permutations that consists of i ≥ 1 4-cycles
and j 2-cycles. Then we sum over all such possible cases.
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The number of ways to find elements to the 4-cycles and 2-cycles is

Pi,j =

(
n

4, 4, . . . , 4, 2, 2, . . . , 2, n− 4i− 2j

)
=

1

i!
· 1

j!
· n!

(4!)i(2!)j(n− 4i− 2j)!

as the cycles in the permutation are not labeled.

Given any four elements, you can form 3! = 6 distinct 4-cycles from them. So
the number of permutations of order 4 will be

(3!)i · Pij.

As every cyclic subgroup

H = 〈ϕ〉 = {ϕ, ϕ2, ϕ3, id.}

of order four contains exactly two elements of order four, the elements ϕ and
ϕ3, and every element of order four is in a unique cyclic subgroup of order four,
we must divide the total number of elements of order four by two to get the
number of cyclic subgroups of order four. Hence

ANSWER:
1

2

∑
4i+2j≤n,i≥1,j≥0

1

i!j!
· n!

4i2j(n− 4i− 2j)!

(c) (2p) Give a formula for the number of cyclic subgroups of order p in Sn, for
every prime number p ≤ n.

Solution: The order of an element in a group G always divides the size |G|
of G. Hence, every element ϕ 6= id. in a cyclic group of order p, where p is
a prime, must have oder p and, again as p is a prime, must be a p-cycle or a
product of p-cycles. Furthermore, we may conclude every cyclic subgroup of
order p will contain p− 1 distinct elements of order p. We also note that

ψ ∈ 〈ϕ〉 =⇒ 〈ψ〉 = 〈ϕ〉 (2)

for any two elements ϕ and ψ of the same cyclic subgroup of order p.

The number of distinct p-cycles you can form by using the elements in the set
{x1, x2, . . . , xp} is (p− 1)!. Hence the number of elements of order p in Sn will
be

bn/pc∑
i=1

1

i!
·
(

n

p, p, . . . , p, 1, 1, . . . , 1

)
((p− 1)!)i =

bn/pc∑
i=1

1

i!
· n!

pi

And these are, by the equation above, to be distributed among the subgroups
of order p, each containing p− 1 distinct elements of order p.

Hence,

ANSWER:
1

p− 1
·
bn/pc∑
i=1

1

i!
· n!

pi
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Part III

9. For an 1-error correcting code C of length n we will below denote the set of words
that C cannot correct by D(C), i.e., D(C) denotes the set of words at distance at
least two from each of the words in C.

(a) (1p) The 1-error correcting code C is linear and the matrix H below is a parity
check matrix for C:

H =

 0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 0 0 1


Show that the set of words D(C) is a 1-error correcting code that is not linear.

Solution: Let x̄ = (x1, x2, . . . , x6). If Hx̄T = 0̄T then x̄ ∈ C. If Hx̄T is equal
to one of the six columns in H then x̄ is a word that can be corrected. There
is exactly one further outcome of the multiplication of H with a word, as there
in total are just seven nonzero columns of “height” 3, namely

Hx̄T = c̄T (3)

where c̄ = (0, 0, 1), which is the only word of length 3 that does not appear as
a column in H.

Let x̄p be a solution to the Equation (3), for example x̄p = (1, 0, 0, 1, 0, 0).
Then, form the theory of elementary linear algebra, we know that every other
solution x̄ is given by

x̄ = x̄p + x̄h

where x̄h is a solution to the corresponding homogenious system, that is, x̄h ∈
C, and furthermore, any word on this form will be a solution.

We now show that the minimum distance in this set is three. Take any two
words x̄ = x̄p + x̄h and x̄′ = x̄p + x̄′h in this set. The distance is equal to the
number of ones in the word x̄− x̄′. As

x̄− x̄′ = (x̄p + x̄h)− (x̄p − x̄′h) = x̄h − x̄′h ∈ C

as C is a linear code, and no words of C, except the all zero word, contain
fewer that 3 ones, the distance between x̄ and x̄′ must be at least 3.

We have thus proved that the minimum distance in the set of words that C
cannot correct is three. This fact means that this set will constitute a 1-error
correcting code.

(b) (2p) Show that, for every linear 1-error correcting code C of length n and size
|C| = 2n−m with a parity check matrix H with m rows and n = 2m−2 columns,
the set of words D(C) is a 1-error correcting code that is not linear.

Solution: There are in total 2m distinct columns of “height” m, of which
one is the zero columns, and 2m − 2 appear in the matrix H. Let c̄T be the
remaining column. So the words that C cannot correct are those that satisfy
an equation similar to the Equation (3). The rest of the motivation is the same
as above.
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(c) (2p) Can the statement above be true if the matrix H has m rows and n =
2m − 3 columns? Always, under certain conditions, or never?

Solution: Never is the answer. Let c̄T and c̄′T be the two nonzero columns
that do not appear as columns in H. Then a word x̄ cannot be corrected if
and only if

Hx̄T ∈ {c̄T , c̄′T}.

Let k̄T = c̄T + c̄′T , which must be a column of H, as it is nonzero and distinct
from both c̄T and c̄′T .

Let the ith column of H be k̄Ti . Assume that k̄Ti0 is distinct from k̄T and

k̄Tj = k̄Ti0 + c̄T and k̄Tj′ = k̄Ti0 + c̄′T ,

or equivalently

k̄Tj + k̄Ti0 = c̄T and k̄Tj′ + k̄Ti0 = c̄′T .

So there are two words, each with just two ones, the ones in the positions j
and i0 and the ones in the positions j′ and i0, that belong to the set of words
that cannot be corrected. The distance between these words is just two. They
differ in the positions j and j′. The minimum distance is thus 2, and the code
is not 1-error correcting.

10. Let G be a finite group and a and b two elements in G such that ab = ba. Let σ(g)
denote the order of an element g in G.

(a) (2p) Show that if gcd(σ(a), σ(b)) = 1 then σ(ab) = lcm(σ(a), σ(b)).

Solution: We first show that the cyclic groups generated by a and b have a
trivial intersection. It is well known that the intersection of any two subgroups
of a group G is a subgroup of G. Let

H = 〈a〉 ∩ 〈b〉.

Then by the theorem of Langrange |H| divides |〈a〉| = σ(a), and similarly |H|
divides σ(b). As gcd(σ(a), σ(b)) = 1 the only possibility is that |H| = 1.

Let n = σ(ab), then, as ab = ba, we get that anbn = e. If an 6= e then
an = (bn)−1 which is an element in both 〈a〉 and 〈b〉 and hence an ∈ H. This
means that an = e. Similarly bn = e.

We now show that this implies that σ(a) divides n, and similarly for b.

If n = k · σ(a) + r, where 0 ≤ r < σ(a), then

e = an = (aσ(a))k · ar = ek · ar = ar,

which contradicts the fact that σ(a) is the smallest integer t such that at = e,
unless r = 0. Thus, σ(a) divides n.

We now know that both σ(a) and σ(b) divides n. By definition, this means
that lcm(σ(a), σ(b)) divides n.
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As the orders of a and b are relatively prime, the least common multiple of the
orders of a and b is the product of the orders. Hence,

(ab)lcm(σ(a),σ(b)) = (ab)σ(a)σ(b) = (aσ(a))σ(b) · (bσ(b))σ(a) = e.

To summarize: We have proved that lcm(σ(a), σ(b)) divides the order of ab,
and that (ab)lcm(σ(a),σ(b)) = e. This means that the order of ab is as stated in
the problem.

(b) (3p) Can σ(ab) = lcm(σ(a), σ(b)) if gcd(σ(a), σ(b)) 6= 1? Always, under certain
conditions, or never? (A correct guess will give 1p.)

Solution: The correct answer is “under certain conditions”. We give two
examples.

Let G1 = (Z2,+)× (Z4,+). If a = (1, 0) and b = (0, 1) then a+ b = (1, 1). We
get

(1, 1) 6= (0, 0), 2 · (1, 1) = (0, 2) 6= (0, 0), 3 · (1, 1) = (1, 3) 6= (0, 0),

and as further 4 · (1, 1) = (0, 0), we get that

σ(a+ b) = 4 = lcm(σ(a), σ(b)).

Let G2 = (Z2,+) and let a = b = 1. Then a+ b = 0 and

σ(a+ b) = 1 6= 2 = lcm(σ(a), σ(b)).


