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Matematiska Institutionen
KTH

Solutions to the exam to the course Discrete Mathematics, SF2736, June 8,
2012, 08.00–13.00.

Observe:

1. You are not allowed to use anything else than pencils, rubber, rulers and papers at
this exam.

2. To get the maximum number of points on a problem it is not sufficient to just give
an answer, you must also provide explanations.

3. Bonus points from the homeworks will be added to the sum of the points on part I.

4. Grade limits: 13-14 points will give an Fx; 15-17 points will give an E; 18-21 points
will give a D; 22-27 points will give a C; 28-31 points will give a B; 32-36 points will
give an A.

Part I

1. (3p) Find all graphs G with the property that both G and its complement graph Ḡ
are bipartite.

Solution: Let X and Y denote the two parts of vertices formed by the bipartition
of the set of vertices of G. The complete graphs on X and Y , respectively, are
subgraphs of Ḡ. Hence, it must be true that |X| ∈ {1, 2}, and |Y | ∈ {1, 2}. With
a paper and a pencil it is now easy to draw all possible bipartite graphs satisfying
these two conditions and judge which of those that have a bipartite complement.

2. (3p) Find 3513561(mod 562).

Solution: As 562 = 2 · 281 and 281 is a prime number we have that

ϕ(562) = 562(1− 1

2
)(1− 1

281
) = 280.

We find that
3513 ≡562 6 · 562 + 141.
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As 141 = 3 ·47 we get that 141 and 562 are coprime. We may hence use the theorem
of Euler:

3513561 ≡562 1412·280+1 ≡562 (141ϕ(562))2 · 141 ≡562 1 · 141.

ANSWER: 141.

3. (3p) A package shall contain seven items. You can choose among red balls in a box
and nine distinct books from a book shelf. How many distinct such packages can
you form if the package must contain at least one book and at least one red ball.

Solution: You shall pick b balls and 7− b distinct books, for b = 1, 2, ..., 6. There
is just one way to pick the balls, but

(
9

7−b

)
ways to pick books. Thus the number of

distinct packages will be(
9

1

)
+ · · ·+

(
9

6

)
=

9∑
b=0

(
9

b

)
− (

(
9

0

)
+

(
9

7

)
+

(
9

8

)
+

(
9

9

)
) = 29 − (1 +

9 · 8
1 · 2

+ 9 + 1)

ANSWER: 565.

4. (3p) Find the number of ways to form a necklace consisting of 7 beads in the colors
red, green and yellow.

Solution: We use the lemma of Burnside. The automorphism group G of the
necklace consist of 14 elements. The elements of G and the number of colorings
fixed by each such element are given in the table below. The beads are enumerated
1 2, ..., 7, the order in which they appear in the necklace.

g ∈ G |Fix(g)|
id. 37

(1)(2 7)(3 6)(4 5) 34

(2)(3 1)(4 7)(6 6) 34

...
...

(7)(1 6)(2 5)(3 4) 34

ψ = (1 2 3 4 5 6 7) 3
ψ2 3
ψ3 3
...

...
ψ6 3

ANSWER:
1

14
(37 + 7 · 34 + 6 · 3) = 198.

5. (3p) Does there exist an abelian (commutative) group G with two distinct subgroups
H and K with a pair of cosets that coincide, that is, there are two elements a and
b of G such that aH = bK?
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Solution: The answer is “no”. To prove this we note that

aH = bK =⇒ H = a−1bK.

The only coset to the subgroup K that is a subgroup is the trivial coset K. As H
is a subgroup we hence get from the relation above that a−1bK must be the trivial
coset K to K, that is a−1bK = K. Consequently H = K.

Part II

6. (3p) Show that every connected graph with more than two vertices, and containing
the same number of vertices of valency (degree) one as there are vertices of valency
three, must have at least one cycle.

Solution: We use the fact that the sum of the valencies is twice the number of
edges. As the graph is connected there are no vertices of valency 0. Let ni denote
the number of vertices of valency i, and let e denote the number of edges and v the
number of vertices. Since n1 = n3, we get that

2e = n1 +2n2 +3n3 +4n4 + · · · = 2n1 +2n2 +2n3 +4n4 + · · · ≥ 2(n1 +n2 + · · ·) = 2v.

So e ≥ v. A connected graph without a cycle is a tree. The number of edges of a
tree is always one less the number of vertices of the tree. The graph can thus not
be a tree and as being connected it must contain a cycle.

7. (a) (1p) Prove that if n and m are integers such that 310n+147m = 1 then n and
m must be coprime, that is, gcd(n,m) = 1.

Solution: One easy point. If d divides both n and m, then d divides any
linear combination an+ bm where a and b are integers. Hence, gcd(n,m) must
divide 310n+ 147m, that is gcd(n,m) must divide 1.

(b) (3p) Are there three non-zero, and pairwise coprime, integers n, m and k such
that

310n+ 217m+ 147k = 1?

Solution: The answer is “yes”. As a motivation for this answer we find
appropriate integers n, m and k.

First we find, by using the Euclidian algorithm, integers a and b such that
a147 + b310 = 2.

310 = 2 · 147 + 16
147 = 9 · 16 + 3
16 = 5 · 3 + 1

Hence

1 = 16−5 ·3 = 16−5(147−9 ·16) = 46 ·16−5 ·147 = 46(310−2 ·147)−5 ·147
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and thus
2 = 92 · 310− 194 · 147.

Next we find c and d such that c · 217 + d · 2 = 1, which is easy, take d = 109
and c = −1.

Now we have a preliminary solution to the given equation, which we get from
the equality below:

−217 + 109(92 · 310 + (−194) · 147) = 1,

that is, n′ = 109 · 92, m′ = −1 and k′ = −194 · 109 gives

310n′ + 217k′ + 147m′ = 1.

As trivially −310 · 147 + 147 · 310 = 0 we get that with n = n′ − 147, m = −1
and k = k′ + 310 we still have

310n+ 217m+ 147k = 1.

It remains to prove that n and k are coprime. From the equality above we get,
as m = −1

310n+ 147k = 218.

If d divides both n and k then d divides 218, an integer with the prime factor-
ization

218 = 2 · 109.

As none of the prime numbers 2 and 109 divides both n and k we may conclude
that n and k are coprime. Finally and trivially, −1 is coprime with every
integer.

8. (4p) Eight boys and seven girls shall form three queues, that are labeled as queue
no. 1, queue no. 2 and queue no 3. How many such distinct queues can you form if
it is required that every queue must contain at least one boy and one girl, and the
boys are placed either in the front or the rear of each queue?

Solution: We first find out how many boys and girls, respectively, there are in
each queue. We can then assume that the objects are distinguishable by just their
gender b, boy, and g, girl. Put one indistinguishable girl in each queue, remains
4 indistinguishable girls, and they can be distributed in

(
4+2
2

)
= 15 distinct ways.

Similarly for the boys we get
(

5+2
2

)
= 21 distinct distributions of the boys. Next we

decide whether the boys shall be placed at the front or the rear. Two choices for
each queue makes in total 23 = 8 possible ways.

Now it remains to distribute the individuals. Do that in some fixed order and place
girls and boys in position after position. In total this gives 7! · 8! ways.

The principle of multiplication now gives

ANSWER: 15 · 21 · 8 · 7! · 8!
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Part III

9. Let Sn denote the group that consists of all permutations of the elements in the set
{1, 2, . . . , n}.

(a) (2p) Show that S4 has exactly four subgroups of size 6.

Solution: The elements in a group of size six has either order 1, 2, 3 or 6. As
2 and 3 are prime numbers, a group element of order 2 or 3 must be a cycle.
An element of order six can either be a 6-cycle or a product of a 2-cycle and a
3-cycle that are disjoint.

For a product of a 2-cycle and a 3-cycle there are three possibilities:

Case 1: The 2-cycle and 3-cycle are disjoint and the product (a b)(c d e)
will have order 6. This case cannot occur in S4 as five distinct elements are
involved.

Case 2: The 2-cycle and the 3-cycle share an element. The product will then
be (a b)(b c d) = (a b c d) which is an element of order 4. This case cannot
occur in a subgroup with six elements.

Case 3: The 2-cycle and the 3-cycle share two elements. In this case we get
(a b)(a b c) = (b c)

The conclusion is that in S4 just the Case 3 will appear and just three of the
elements {1, 2, 3, 4}, elements in a set {a, b, c} will be involved. The set of
permutations of the elements in this set is a group with six elements.

As there are four subsets containing exactly three elements, we get exactly four
subgroups with six elements.

(b) (2p) Find the number of subgroups of S5 of size 6.

Solution: From the solution above we adopt that every subset of size 3 to
{1, 2, 3, 4, 5} defines a group with six elements, that is all permutations on this

set with three elements. There are
(

5
3

)
= 10 subsets with three elements.

The group S5 does not contain any 6-cycle. However Case 1 above gives ele-
ments of order six, and each such element generate a subgroup of order 6. In
a cyclic group of order 6:

< ϕ >= {ϕ, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 = id.}

there are two elements of order six, the elements ϕ and ϕ5.

To every choice of a 2-subset A = {a, b} and a disjoint 3-subset C = {c, d, e}
to {1, 2, 3, 4, 5} (with A ∩ C = ∅), there are two permutations of order six

ψ = (a b)(c d e), and ψ5 = (a b)(c e d).

Hence, the number of cyclic subgroups of order six to S5 is equal to the number
of 2-subsets to {1, 2, 3, 4, 5}, that is, the number of cyclic subgroups of order

six is
(

5
2

)
= 10.

ANSWER: 20.
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10. Suppose that G is a finite abelian group and that G1, G2, ..., Gn are subgroups of
G satisfying

G =
n⋃

i=1

Gi and i 6= j ⇒ Gi ∩Gj = {0}, (1)

where 0 denotes the identity in G. Let C be the kernel of the map ϕ from S =
G1 ×G2 × · · · ×Gn to G defined by

ϕ((g1, g2, . . . , gn)) = g1 + g2 + · · ·+ gn.

(a) (2p) Show that we can define a distance function between the elements in S
and an error-correcting procedure, in such a way that C is an 1-error-correcting
code.

Solution: We define the distance between the words as the number of positions
in which the words differ. To show that C is 1-error-correcting it then suffices
to show that the minimum distance between any two words of C is at least 3.
Note that

d(x̄, ȳ) = d(x̄− ȳ, 0̄).

As the map ϕ is “linear” we get that

ϕ(x̄) = 0 = ϕ(ȳ) =⇒ ϕ(x̄− ȳ) = 0.

It hence suffices to check, which we do below, that the minimum weight of C
is 3.

A word of weight one, e.g. the word (g1, 0, . . . , 0), where g1 ∈ G1 \ {0} can
never belong to C as

g1 + 0 + · · ·+ 0 = g1 6= 0.

Similarly a word of weight 2, e.g the word (g1, g2, 0, . . . , 0), where g1 ∈ G1 \{0}
and g2 ∈ G2 \ {0}, can never belong to C as

g1 + g2 + 0 + · · ·+ 0 = 0 =⇒ g2 = −g1 ∈ G1,

which is an impossibility as G1 ∩G2 = {0}.
(b) (2p) Does C have any further error-correcting properties?

Solution: The answer is “yes”. Every possible word in S is within distance
one from a code word. Namely, let h̄ = (h1, . . . , hn) be any word of S and
assume that

ϕ(h̄) = h1 + · · ·+ hn = h′
i ∈ Gi.

Then
ϕ(h1, h2, . . . , hi − h′

i, . . . , hn) = h′
i − h′

i = 0,

and hence
(h1, h2, . . . , hi−1, hi − h′

i, hi+1 . . . , hn) ∈ C.

The word (h1, . . . , hn) are within distance one from the code word above.
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(c) (2p) Find an abelian group G of size 27 and a family of subgroups of G having
the property in Equation (1) above.

Solution: Let G = Z3
3 . The following enumeration of subgroups solves the

problem

G1 = < (1, 0, 0) > = {(0, 0, 0), (1, 0, 0), (2, 0, 0)}
G2 = < (0, 1, 0) > = {(0, 0, 0), (0, 1, 0), (0, 2, 0)}
G3 = < (1, 1, 0) > = {(0, 0, 0), (1, 1, 0), (2, 2, 0)}
G4 = < (1, 2, 0) > = {(0, 0, 0), (2, 1, 0), (1, 2, 0)}
G5 = < (0, 0, 1) > = {(0, 0, 0), (0, 0, 1), (0, 0, 2)}
G6 = < (1, 0, 1) >
G7 = < (2, 0, 1) >
G8 = < (0, 1, 1) >
G9 = < (1, 1, 1) >
G10 = < (2, 1, 1) >
G11 = < (0, 2, 1) >
G12 = < (1, 2, 1) >
G13 = < (2, 2, 1) >


