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1) (3p) We want the n ∈ Z+, n ≥ 2, such that x−1 = x for all invertible x ∈ Zn.

Solution:
With n =

∏r
i=1 p

ki
i (pi distinct primes and all ki ∈ Z+), the Chinese remainder theorem

shows that (Zn,+, ·) ≈ . . .× (Z
p
ki
i

,+, ·)× . . .
That means that x2 = 1 in Zn iff x2 = 1 in Z

p
ki
i

for all i = 1, . . . , r.

x ∈ Zn is invertible iff gcd(x, n) = 1 iff pi - x iff x ∈ Z
p
ki
i

is invertible for all i = 1, . . . , r.

So, n has the desired property iff each pkii has it.
If pi is odd, 2 ∈ Z

p
ki
i

is invertible and 22 = 1 only in the case pi = 3, ki = 1.

3 ∈ Z2k is invertible and 32 = 1 iff k = 1, 2, 3. Inspection shows that the condition is fullfilled
for all x in these cases (12, 32, 52, 72 ≡2,4,8 1).
All wanted n are thus the products of one of 1, 2, 4, 8 and one of 1 and 3, except 1 · 1.

Answer: All such values are n = 2, 3, 4, 6, 8, 12, 24.

2) (3p) We know that 1234503 ≡6767 4083 and want a k ∈ Z+ with 4083k ≡6767 1234.

Solution:
We recognize an RSA-system with n = 6767 and e = 503 and want d, here called k.
6767 = 67 · 101, both primes, so m = 66 · 100 = 6600 and d works if it satisfies e · d ≡6600 1.
The Euclidean
algorithm:

6600 = 503 · 13 + 61
503 = 61 · 8 + 15
61 = 15 · 4 + 1

so 1 = 61− 4(503− 8 · 61) =
= −4 · 503 + 33(6600− 13 · 503) =
= 33 · 6600− 433 · 503 =
= (33− 503) · 6600 + (6600− 433) · 503 =
= −470 · 6600 + 6167 · 503

Thus, we can take d = 6167(= k).

Answer: One such k is 6167. (Another is 2867 (it is enough that e · d ≡lcm(66,100) 1).)

3) (3p) Disa wants to spend 14 of 21 days of vacation on discrete maths and 7 in the pool.
We want to find the number of ways to do that, when the first and the last day are to
be spent on discrete maths, she doesn’t want two consecutive days in the pool, she has 14
different (one-day-)chapters discrete maths which can be studied in any order and the pool
days are all the same.

Solution:
The math days may be ordered among them in 14! ways. For each such ordering, the pool
days can be inserted in

(
13
7

)
= 13!

7!·6! ways (13 available slots between math days, at most one pool day in

each slot). The multiplication principle gives the wanted number of ways: 14! · 13!
7!·6! .

Answer: Disa can plan her vacation in 14!·13!
7!·6! (= 149 597 947 699 200) ways.

4) (3p) We want all possible values among 1, 2, . . . , 10 för |G|, when the group G has a
g ∈ G with g6 = (g−1)6 and g 6= 1 (the identity element of G).

Solution:
g6 = (g−1)6 ⇔ g12 = 1, so o(g) = 2, 3, 4, 6 or 12 (since o(g) | 12 and g 6= 1). Since o(g) | |G|,
|G| = 1, 5, 7 are not possible. The other values are possible, easily seen with G cyclic.

Answer: The values 1, 5, 7 are impossible, 2, 3, 4, 6, 8, 9, 10 are possible.

5) (3p) A plane, connected graph divides the plane into regions. 1 of them has 10 edges, 3
have 5 edges, 4 have 4 edges and 7 have 3 edges. We want the number of vertices.

Solution:
There are r = 1 + 3 + 4 + 7 = 15 regions and e = 1

2 (10 + 3 · 5 + 4 · 4 + 7 · 3) = 31 edges
(summing the numbers of edges means counting each edge twice). Euler’s polyhedron formula (for a plane

connected graph) gives 2 = v − e+ r = v − 31 + 15, so there are v = 2 + 31− 15 = 18 vertices.

Answer: The graph has 18 vertices.



6) α(1) = 5, α(2) = 3, α(3) = 2, α(4) = 4, α(5) = 1, β(1) = 5, β(2) = 1, β(3) = 3,
β(4) = 2, β(5) = 4 and we shall (a, 1p) give α and αβ in cycle notation, (b, 1p) decide if
α6βα−11β6 is even or odd and (c, 2p) find a π ∈ S5 such that βπ, (βπ)2, . . . , (βπ)6 are all
distinct.

Solution:
a. We find α = (1 5)(2 3)(4) = (1 5)(2 3) (since α(1) = 5, α(5) = 1, α(2) = 3 etc.). αβ
means ”first β, then α” and so αβ = (1)(2 5 4 3) = (2 5 4 3) (since β(1) = 5, α(5) =
1, β(2) = 1, α(1) = 5 etc.).
b. α is an even permutation, since it contains an even number (2) of cycles of even length,
so α−1 is also even. β = (1 5 4 2)(3) is odd (only one cycle of even length). Since α6βα−11β6

is a product containing in all an odd number of β, it is odd (α being even).
c. All βπ, (βπ)2, . . . , (βπ)6 are distinct iff the order o(βπ) ≥ 6 (σ = τ iff στ−1 = id). One
solution (of several) is obtained by choosing βπ = (1 2)(3 4 5) (of order lcm(2, 3) = 6). That
gives π = β−1(βπ) = (1 2 4 5)(1 2)(3 4 5) = (1 4)(3 5).

Answer a: α = (1 5)(2 3), αβ = (2 5 4 3), b: α6βα−11β6 is odd,
c: For example π = (1 4)(3 5).

7) (4p) α1, α2, . . . are infinite sequences of 0’s and 1’s. We shall show that there are
ni ∈ Z+, i = 1, 2, . . . with n1 < n2 < . . . , such that all αni

, αni+1
, . . . are the same in

the first i positions.

Solution:
We first pick an infinite set of indices such that all corresponding α’s start with the same
symbol, 0 or 1 (always possible) and let n1 be the least element in that set. Then we can pro-
ceed with that set of indices in the same way considering the symbol in the second position,
giving n2 etc. More formally:
Let A0 = N, n0 = 0 and recursively choose Ai+1 ⊂ Ai for i = 0, 1, 2, . . . as one of the two
sets {n ∈ Ai | n > ni, αn has k in the ith position}, k = 0, 1, such that Ai+1 is infinite (the

sets can’t both be finite, since their union is Ai r {ni}, which is (by recursion) infinite) and let ni+1 be the
least element of Ai+1. Then all αni

, αni+1
, . . . will have the same sequence of digits in the

first i positions (since ni, ni+1, · · · ∈ Ai ⊂ Ai−1 ⊂ . . . ). We are done.

8) (4p) m =
∏
i p
ki
i 6= 1, pi distinct primes and ki ∈ Z+. We want the number of orbits

when G = Um (the group of invertible elements of Zm) acts on Zm by multiplication.

Solution: (Replacing the solution first given here. Using the CRT should make it more clear.)

Let mi = pkii and (xi) denote (x1, x2, . . . ) (where xi ∈ Zmi
). Then (by the isomorphism of the Chinese

remainder theorem) we can identify (Zm, ·) with the set of all such (xi), with (xi) ·(yi) = (xi ·yi).
(gi) ∈ G = Um iff (gi)

−1 exists (in Zm) iff g−1
i exists (in Zmi

) (for all i) iff gi ∈ Gi = Umi
(all i).

(xi) and (yi) are in the same G-orbit iff yi = gixi (all i) for some (gi) ∈ G, i.e. iff xi and yi are
in the same Gi-orbit (all i). So, the G-orbits are described bijectively by their corresponding
Gi-orbits and the number of G-orbits is the product of the numbers of Gi-orbits.
We first restrict ourselves to the case m = pk and then multiply the results for all i involved.
Let x = a · pr and y = b · ps, p - a, b (so a, b ∈ G), and r, s ∈ {0, 1, . . . , k} (r, s = k means

x, y = 0). Then x and y are in the same G-orbit iff r = s (if r = s, y = (ba−1)x (ba−1 ∈ G) and
gx = (ga)pr (ga ∈ G)), so the number of G-orbits is k + 1.

So, for the given m =
∏
i p
ki
i , there are

∏
i(ki + 1) orbits (the number of positive divisors of m; for

each d | m, all x with gcd(x,m) = d form an orbit).

Answer: The number of orbits is
∏

i(ki + 1)

(Using Burnside’s lemma: The number of G-orbits is 1
|G|

∑
g∈G |F (g)|, where |G| = φ(m) (with Euler’s φ-function).

F (g) = {x ∈ Zm | gx = x} = {x ∈ Zm | (g − 1)x = 0} = {multiples in Zm of m
gcd(g−1,m)

}, |F (g)| = gcd(g − 1,m).

As above, we first take m = pk. Then we find the numbers of g ∈ G with given gcd(g − 1,m):

r 0 1, 2, . . . , k − 1 k

how many g ∈ G have
gcd(g − 1,m) = pr?

pk − 2pk−1 pk−r − pk−r−1 1
,

which give
∑

g∈G |F (g)| = pk−1(p−2)·p0+
∑k−1

r=1 p
k−r−1(p−1)·pr+1·pk = pk−1(p−2)+(k−1)pk−1(p−1)+pk =

= pk−1(p− 2 + (k − 1)(p− 1) + p) = pk−1(p− 1)(k + 1) = φ(pk)(k + 1).

The number of orbits for m = pk is therefore k + 1 and the answer as above.)



9) (5p) We want the number of ways to place 10 white (identical), 10 black (identical) and 10
(distinct) coloured marbles in three (distinct) boxes, when no box may be empty.

Solution:
The (distinguishable) coloured marbles can be placed in the three boxes in 310 ways.
For the (non-distinguishable) white and black marbles the corresponding numbers of ways
are

(
12
2

)
= 66 for each colour (unordered choice with repetition allowed of 10 elements (the

marbles) among the three boxes). The total number of distributions of the marbles (including

cases where one or two boxes are empty) is thus 310 · 662
(by the multiplication principle).

Let Ai be the set of distributions where box i is empty. By the inclusion-exclusion principle
the number of distributions to be subtracted is: |A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − (|A1 ∩
A2|+ |A1 ∩A3|+ |A2 ∩A3|) + |A1 ∩A2 ∩A3| = 3 · 210 · 112 − 3 · 1 + 0.

Answer: There are 310 · 662 − 3 · 210 · 112 + 3 (= 256 845 735) ways.

10) We want (a, 1p) the order |G| of the full symmetry group of a cube, (b, 1p) the number
of odd permutations in S8 given by G’s action on the vertices of the cube and (c, 3p) the
number of chiral (i.e. distinct from their mirror images) colourings of the edges of a regular tetra-
hedron, using at most k colours.

Solution:
a. For a vertex x of the cube, the orbit consists of all the vertices, so |Gx| = 8. The stabilizer
consists of all permutations of the neighbours of x (three rotations (including id) and three reflections),
so |Gx| = |S3| = 6. That gives |G| = |Gx| · |Gx| = 48.
b. G contains 24 rotations. Their types as elements of S8 are [18] (id), [1232] (axis through
vertices), [42], [24] (axis through centers of surfaces, π2 or π), [24] (axis through midpoints of
edges), all with an even number of cycles of even length, so they are all even permutations.
Reflection in a plane parallel to two surfaces gives type [24], also an even permutation. This
reflection times the rotations give all non-rotations of G (they are distinct and exactly 24 in
number), so they are also all even. No permutation given by an element of G is odd.
c. Call the group of symmetry rotations of the tetrahedron Gr and its full symmetry group
Gf . Chiral colourings are then exactly those whose orbits under Gf are the union of two
orbits under Gr. The number of chiral colourings is thus 2·(the difference in numbers of
orbits for Gr and Gf ).
We use Burnside’s lemma (Thm 21.4 in Biggs) and need |F (g)| for all g ∈ Gr, Gf .
|Gr| = 12 (for a vertex x, |Grx| = 4 (Grx = {the vertices}) and |(Gr)x| = 3 ((Gr)x rotations, axis through x)).

type of rotation g number
type for the
permutation
of the edges

|F (g)| = knumber of cycles

id 1 [16] k6

axis edge-edge 3 [1222] k4

axis vertex-side 8 [32] k2

For Gf there are also the same number (12) of non-rotations (as in b.). |Gf | = 24, corre-
sponding to all permutations of the four vertices. For the ”extra” elements (those in Gf rGr)

we find:
type for the

permutation of
the vertices

number
type for the
permutation
of the edges

|F (g)| = knumber of cycles

[122] 6 1222 k4

[4] 6 [24] k2

By the lemma, the number of orbits for Gr:
1
12 (k6 + 3k4 + 8k2) and

the number of orbits for Gf : 1
24 (k6 + 3k4 + 8k2 + 6k4 + 6k2) = 1

24 (k6 + 9k4 + 14k2).

So, the number of chiral colourings: 2 · ( 1
12 (k6 + 3k4 + 8k2)− 1

24 (k6 + 9k4 + 14k2)) =

= 2 · 1
24 (k6 − 3k4 + 2k2) = 1

12k
2(k2 − 1)(k2 − 2).

Answer a: |G| = 48, b: None of the permutations are odd,
c: The number of chiral colourings is 1

12
k2(k2 − 1)(k2 − 2).


