Problems \# 1 1973. MISCELLANEOUS

1. Let f be a positive continuous function on $[0,1]$.

Prove:

$$
\exp \left(\int_{0}^{1} \log f(x) d x\right) \leq \int_{0}^{1} f(x) d x
$$

$($ Can $=$ occur ? $)$
2. Let a be an integer ≥ 0 and $0<d$. Then $A(a, d)$ is the set (arithmetic progression) of integers $\{a, a+d, a+2 d, \ldots\}$.
Prove, if $2 \leq d_{1}<d_{2}<\ldots d_{r}$ and a_{1}, \ldots, a_{r} are arbitrary, that no disjoint union of the sets $A\left(a_{i}, d_{i}\right)(i=1,2, \ldots, r)$ can include all the positive integers (or even all sufficiently large integers).
3. Prove that the following geometric configuration exists:

Two planes Π_{1} and Π_{2} in 3 -space, a point O not lying on either plane, and circles $C_{1} \subset \Pi_{1}, \quad C_{2} \subset \Pi_{2}$ such that, under central projection from $O, \quad C_{1}$ and C_{2} are mapped on one another. Their centers however do not correspond.
4. Prove it is impossible, using only a ruler (in the "orthodox way"), to locate the center of a given circle.
5. Let $P(x, y)$ be a polynomial with real coefficients, which vanishes on the circle $x^{2}+y^{2}=1$. Prove there exists a polynomial $Q(x, y)$ such that $P(x, y)=\left(x^{2}+y^{2}-1\right) Q(x, y)$.
6. Let a_{n} denote the number of ways of placing n-pence postage on an envelope, using $1-, 2-, 3-$ and $4-$ penny stamps pasted in a row. (The order between stamps of different values are taken into account).
What is $f(x)=\sum_{0}^{\infty} a_{n} x^{n}$?

