Selected Problems, Set \# 4
(Functional Equations and Functional Inequalities)
(1) Prove the inequality of arithmetic and geometric means along the following lines. Define, for $a \geq 0$ and $n=1,2, \ldots$

$$
f_{n}(a)=\max x_{1} x_{2} \ldots x_{n} ; \quad x_{1} \geq 0, \ldots, x_{n} \geq 0, \quad \sum_{1}^{n} x_{i}=a .
$$

Show that (i) $f_{n}(a)=a^{n} \lambda_{n}$ depends only on n, and (ii) $f_{n}(a)=$ $\max _{0 \leq t \leq a} t f_{n-1}(a-t)$. Use these relations to determine $f_{n}(a)$.
(2) Let $f(x)$ be a non-negative function defined for $x \in \mathbb{R}^{+}=\{x$: $0 \leq x<\infty\}$ such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}^{+}$. Prove $f(x)=c x$, where $c \geq 0$ is a constant. (Note: f is not a priori asumed to be continuous!). (*) Prove the same conclusion holds if f is Lebesgue measurable.
(3) If $f(x, y)$ denotes the area of a rectangle with sides x, y (where x, y are ≥ 0) then, from natural axioms about areas we should have
$f\left(x_{1}+x_{2}, y\right)=f\left(x_{1}, y\right)+f\left(x_{2}, y\right) \quad$ (all variables are $\left.\geq 0\right)$
$f\left(x, y_{1}+y_{2}\right)=f\left(x, y_{1}\right)+f\left(x, y_{2}\right)$
Prove. the only non-negative functions f on $\mathbb{R}^{+} \times \mathbb{R}^{+}$which satisfy these equations (identically in $x, y, x_{1}, x_{2}, y_{1}, y_{2}$) are $f(x, y)=c x y$ (where $c \geq 0$ is a constant).
(4) Let p be a fixed number, $0<p<1$ and consider the "weighted mean" function $f(x, y)=(1-p) x+p y$. Clearly f satisfies the functional equations

$$
\begin{aligned}
f(x+t, y+t) & =f(x, y)+t \quad \forall x, y, t, \lambda \in \mathbb{R} \\
f(\lambda x, \lambda y) & =\lambda f(x, y) .
\end{aligned}
$$

Prove that, conversely, the weighted mean is the only solution of these equations. (Can you give a generalization with n variables in place of x, y ?)
(5) In the axiomatic theory of statics, one is led to the functional equation $f(x+y)+f(x-y)=2 f(x) f(y)$.

Prove that the only continuous solutions of this equation (here x, y are any points in \mathbb{R}) are $f(x) \equiv 0, f(x)=\cos c x$, $f(x)=\cosh c x$.
(6) Find all triples of continuous functions f, g, h on \mathbb{R} such that $f(x+y)=g(x)+h(y)$ for all $x, y \in \mathbb{R}$.
(7) Find the most general continuous solution of

$$
f(x)+f(y)=f\left(\sqrt{x^{2}+y^{2}+1}\right) \quad, \quad \forall x, y \in \mathbb{R}
$$

(8) Prove: a polynomial $P(x)$ such that

$$
(x-1) P\left(x^{2}-1\right)=x P(x)^{2}+2 P(x) \quad(\forall x \in \mathbb{R})
$$

vanishes identically.
(9) Let $f(x)$ be a real-valued function on \mathbb{R} such that

$$
\begin{equation*}
|f(x+a)-2 f(x)+f(x-a)| \leq a \quad \forall x \in \mathbb{R}, \quad a>0 \tag{}
\end{equation*}
$$

If moreover f is integrable over each finite interval, prove that f is continuous.
(10) With same set-up as in $\# 9$, but $a^{3 / 2}$ replacing a on the right side of $(*)$, prove f has a continuous derivative.
(11) Let f be real-valued and continuous on $[0,1]$ and suppose for every $x \in(0,1)$ there exists $a=a(x)$ such that $0 \leq x-a$, $x+a \leq 1$ and $f(x)=\frac{1}{2 a} \int_{x-a}^{x+a} f(t) d t$. Prove f is a linear function.
(12) Prove: If f is real-valued and continuous on $[a, b]$ and there is at least one point of every chord of the curve $y=f(x)$, besides the end-points of the curve, which lies above or on the curve, then every point of every chord lies above or on the curve (so that f is a convex function).
(13) Let f be real-valued on \mathbb{R} with two continuous derivatives, moreover $|f(x)| \leq A,\left|f^{\prime \prime}(x)\right| \leq B, \forall x \in \mathbb{R}$. Prove sup $\left|f^{\prime}(x)\right| \leq$ $2 A+\frac{B}{4}$ and $\sup _{x}\left|f^{\prime}(x)\right| \leq \sqrt{2 A B}$.

