Selected Problems, Set \# 6
(Measure theory, etc.)
(1) Let $E \subset \mathbb{R}$ have positive measure. Prove the set of $x \in \mathbb{R}$ representable in the form $x-y$ with $x, y \in E$ contains an interval about 0 .
(2) Let $E \subset \mathbb{R}$ have positive measure, n any positive integer. Prove E contains n points in arithmetic progression (i.e. points x_{1}, \ldots, x_{n} with $x_{i+1}-x_{i}$ all equal and positive, $\left.i=1, \ldots, n-1\right)$.
(3) Let $E \subset \mathbb{R}^{2}$ have positive (planar) measure. Prove there exists an equilateral triangle with its vertices all in E. (Can you give a common generalization of $\# 2$ and $\# 3$?)
(4) Let $E \subset \mathbb{R}$ have positive measure, and $0<\alpha<1$. Prove there is an interval I such that the ratio of the measure of $E \cap I$ to that of I equals α.
(5) Let f be a real-valued function on \mathbb{R} whose derivative f^{\prime} exists everywhere. Suppose $f^{\prime}\left(x_{1}\right)=\alpha<f^{\prime}\left(x_{2}\right)=\beta$. Prove for every $\lambda, \alpha<\lambda<\beta \exists x_{3}: f^{\prime}\left(x_{1}\right)=\lambda$.
(6) Suppose pairwise disjoint open circular discs are removed from a square, of radii $\left\{r_{n}\right\}_{n=1}^{\infty}$, such that the residual set has planar measure 0. Prove $\sum_{1}^{\infty} r_{n}=\infty$.
(7) Let $f(x)$ be a real-valued function on $[0,1]$ of bounded variation, and continuous. Let $n(t)$, where $t \in \mathbb{R}$, denote the number of points where $f(x)=t$ (possibly $n(t)=+\infty$). Prove $\int_{-\infty}^{\infty} n(t) d t$ is finite, and equals the total variation of f.
(8) Let Γ be a rectifiable Jordan arc in the plane; the set of real numbers c such that the line $x=c$ has infinitely many points of intersection with Γ, has measure zero.
(9) Let E be the set of real numbers in $(0,1)$ with non-terminating decimal expansions. Let S be a measurable subset of E such that, if $x \in S$, all numbers whose decimal expansion agrees with that of x from some point onwards also belong to S. Prove the measure of S is either 0 or 1 .
(10) (Continuation) For almost all numbers in E, the block 2317 8005 occurs infinitely often in its decimal expansion.
(11) Let $1 \leq n_{1}<n_{2}<n_{3}<\ldots$ be integers. For almost every positive number x, the fractional part of the numbers $n_{1} x, n_{2} x, n_{3} x, \ldots$ are everywhere dense in $(0,1)$.
(12) Let $f(t)$ be a continuous function on $[0,1]$, complex valued, whose range is the whole closed unit disc $(=\{z:|z| \leq 1)$ ("Peano curve"). Prove f satisfies no Hölder condition of order $>1 / 2$; that is $\nexists C>0, \alpha>1 / 2$ such that $\left|f\left(t_{2}\right)-f\left(t_{1}\right)\right| \leq$ $C\left|t_{2}-t_{1}\right|^{\alpha}$. (* Show that there does exist a "Peano" f which satisifes a Hölder condition of order $1 / 2$).
(13) Prove the f in $\# 12$ is not of bounded variation.
(14) Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be any intervals whose union covers the Cantor set, and $\alpha=\frac{\log 2}{\log 3}$. Prove $\sum_{n=1}^{\infty}\left|I_{n}\right|^{\alpha} \geq 1$ (here $|I|$ denotes the length of I).
(15) Given $n^{2}+1$ distinct positive integers, written in a row. Prove there are $n+1$ of them which, in the order they are written, are a monotone sequence. (Not measure theory, just a cute little elementary problem to fill up the page.)

