Selected Problems, Set # 6 (Measure theory, etc.)

- (1) Let $E \subset \mathbb{R}$ have positive measure. Prove the set of $x \in \mathbb{R}$ representable in the form x-y with $x, y \in E$ contains an interval about 0.
- (2) Let $E \subset \mathbb{R}$ have positive measure, n any positive integer. *Prove* E contains n points in arithmetic progression (i.e. points x_1, \ldots, x_n with $x_{i+1} - x_i$ all equal and positive, $i = 1, \ldots, n-1$).
- (3) Let $E \subset \mathbb{R}^2$ have positive (planar) measure. *Prove* there exists an equilateral triangle with its vertices all in E. (Can you give a common generalization of # 2 and # 3?)
- (4) Let $E \subset \mathbb{R}$ have positive measure, and $0 < \alpha < 1$. Prove there is an interval I such that the ratio of the measure of $E \cap I$ to that of I equals α .
- (5) Let f be a real-valued function on \mathbb{R} whose derivative f' exists everywhere. Suppose $f'(x_1) = \alpha < f'(x_2) = \beta$. Prove for every $\lambda, \alpha < \lambda < \beta \exists x_3 : f'(x_1) = \lambda$.
- (6) Suppose pairwise disjoint open circular discs are removed from a square, of radii $\{r_n\}_{n=1}^{\infty}$, such that the residual set has planar measure 0. Prove $\sum_{n=1}^{\infty} r_n = \infty$.
- (7) Let f(x) be a real-valued function on [0, 1] of bounded variation, and continuous. Let n(t), where $t \in \mathbb{R}$, denote the number of points where f(x) = t (possibly $n(t) = +\infty$). Prove $\int_{-\infty}^{\infty} n(t)dt$ is finite, and equals the total variation of f.
- (8) Let Γ be a rectifiable Jordan arc in the plane; the set of real numbers c such that the line x = c has infinitely many points of intersection with Γ , has measure zero.
- (9) Let E be the set of real numbers in (0, 1) with non-terminating decimal expansions. Let S be a measurable subset of E such that, if $x \in S$, all numbers whose decimal expansion agrees with that of x from some point onwards also belong to S. Prove the measure of S is either 0 or 1.

- (10) (Continuation) For almost all numbers in E, the block 2 3 1 7 8 0 0 5 occurs infinitely often in its decimal expansion.
- (11) Let $1 \le n_1 < n_2 < n_3 < \ldots$ be integers. For almost every positive number x, the fractional part of the numbers n_1x, n_2x, n_3x, \ldots are everywhere dense in (0, 1).
- (12) Let f(t) be a continuous function on [0, 1], complex valued, whose range is the whole closed unit disc (= $\{z : |z| \leq 1\}$ ("Peano curve"). Prove f satisfies no Hölder condition of order > 1/2; that is $\nexists C > 0$, $\alpha > 1/2$ such that $|f(t_2) - f(t_1)| \leq C|t_2 - t_1|^{\alpha}$. (* Show that there does exist a "Peano" f which satisifies a Hölder condition of order 1/2).
- (13) Prove the f in # 12 is not of bounded variation.
- (14) Let $\{I_n\}_{n=1}^{\infty}$ be any intervals whose union covers the Cantor set, and $\alpha = \frac{\log 2}{\log 3}$. Prove $\sum_{n=1}^{\infty} |I_n|^{\alpha} \ge 1$ (here |I| denotes the length of I).
- (15) Given $n^2 + 1$ distinct positive integers, written in a row. *Prove* there are n+1 of them which, in the order they are written, are a monotone sequence. (Not measure theory, just a cute little elementary problem to fill up the page.)