Problem73\# 1.1 Solution A

We first recall the general inequality

$$
\begin{equation*}
\log y \leq y-1 \quad \text { for } \quad y>0 \tag{1}
\end{equation*}
$$

Indeed, $g(y):=y-1-\log y$ tends to $+\infty$ as y tends to either 0 or ∞, and its derivative vanishes only at one point of $(0, \infty)$, namely at $y=1$, so g attains its minimum value 0 at $y=1$, and nowhere else. Substituting $f(x)$ for y in (1) and integrating over $I:=[0,1]$ gives

$$
\int \log f(x) d x \leq \int f(x) d x-1
$$

We may replace here f by $t f$ where t is a positive parameter at our disposal:

$$
\log t+\int \log f(x) d x \leq t \int f(x) d x-1
$$

or regrouping terms

$$
\int \log f(x) d x \leq t \int f(x) d x-\log t-1
$$

The right hand member can be denoted $h(t):=A t-\log t-1$ where $A:=\int f(x) d x$. By an almost identical argument to that used in proving (1), $h(t)$ attains a minimum value equal to $\log A$ on $(0, \infty)$, at $t=1 / A$, and only there. Hence

$$
\int \log f(x) d x \leq \log A=\log \int f(x) d x
$$

and exponentiating gives the required inequality. Equality holds if, and only if f is constant. Indeed, " if " is obvious. And, if f is not constant, then at the first step when we wrote $\log f(x) \leq f(x)-1$ strict inequality would hold on a set of positive measure, and so between the integrals, etc.

Remark. This proof generalizes to the case where I is replaced by any measure space (X, m) with m a probability measure and f integrable with respect to m.

