Problem73\# 1.1 Solution C

Since f is continuous on $[0,1]$ it is Riemann integrable and we can therefore use Riemann sums to solve this problem.

Set $R_{n}=\frac{1}{n} \sum_{j=1}^{n} \log f(j / n)$ and note that
$G_{n}=\exp \left(R_{n}\right)=\left(\prod_{j=1}^{n} f(j / n)\right)^{1 / n}$ is the geometric mean of the numbers $\{f(j / n)\}_{j=1}^{n}$.
The corresponding arithmetic mean is $A_{n}=\frac{1}{n} \sum_{j=1}^{n} f(j / n)$ and we have $G_{n} \leq A_{n}$ with equality only when all $f(j / n)$ are equal.

Hence,

$$
\begin{equation*}
\exp \left(\frac{1}{n} \sum_{j=1}^{n} \log f(j / n)\right) \leq \frac{1}{n} \sum_{j=1}^{n} f(j / n) . \tag{1}
\end{equation*}
$$

Letting $n \rightarrow \infty$ the Riemann sums converge to their corresponding integrals and we get:

$$
\begin{equation*}
\exp \left(\int_{0}^{1} \log f(x) d x\right) \leq \int_{0}^{1} f(x) d x \quad \text { as required. } \tag{2}
\end{equation*}
$$

It can also be shown that equality in (2) implies that $f=$ constant. We refer to Solution 2 where essentially the same fact (f is constant a.e.) is proved from the weaker condition that f is measurable.

With the same arguments as in S 2 it can be shown that if equality holds in (2) then $\int_{\Delta_{i}} f d x=\int_{\Delta_{j}} f d x$ where Δ_{i} and Δ_{j} are any couple of dyadic intervals (see S2) of the same length $1 / 2^{n}$. Since this holds for any n, f must be constant in view of the continuity.

