Problem 73\# 1.2 Solution

Suppose the sets $A\left(a_{i}, d_{i}\right)$ are pairwise disjoint , and their union comprises all sufficiently large integers. We associate to the set $A(a, d)$ the power series $\sum z^{j}$, where j ranges over $A(a, d)$, that is, the function

$$
\sum_{k=0}^{\infty} z^{a+k d}=z^{a} /\left(1-z^{d}\right)
$$

Then our hypotheses imply that
$\sum_{i=1}^{m} z^{a_{i}} /\left(1-z^{d_{i}}\right),($ where m denotes the number of arithmetic progressions)
is equal to

$$
\frac{1}{1-z} \text { plus a polynomial in z. }
$$

If we assume d_{m} is larger than all of the d_{i} with $i<m$, then we deduce from this identity a contradiction by letting z tend to a point of the unit circle which is a primitive root of unity of order d_{m}.
Indeed, the term $z^{a_{m}} /\left(1-z^{d_{m}}\right)$ is then unbounded, while all the other terms tend to finite limits.

