Problem73\# 1.6 Solution A

To simplify notations, let us present the solution when there are only two denominations of stamps, of values a pence and b pence, where a and b are distinct positive integers with $a<b$.

Consider first the case where ORDER MATTERS. Let $p(m, s)$ denote the number of ways in which we can build up the postage m using s stamps, each of which has denomination a or b. We will encapsulate these numbers by means of the formal power series

$$
f_{s}(x):=\sum_{m=0}^{\infty} p(m, s) x^{m}
$$

Clearly $f_{0}(x)$ is identically 1 , and $f_{1}(x)=x^{a}+x^{b}$.
Now, $f_{2}(x)=\left(x^{a}+x^{b}\right)\left(x^{a}+x^{b}\right)$, since expansion of the product gives x raised to the exponents $a+a, a+b, b+a, b+b$ which signifies that postages achievable with two stamps are $2 a$ (in one way), $a+b$ (in two ways), and $2 b$ (in one way).
Similarly, $f_{3}(x)=\left(x^{a}+x^{b}\right)\left(x^{a}+x^{b}\right)\left(x^{a}+x^{b}\right)$, and so forth.

Therefore, the number $p(m)$ of ways to build up the postage m with SOME assemblage of stamps (order being taken into account) is the coefficient of x^{m} in the formal power series
$f_{0}(x)+f_{1}(x)+f_{2}(x)+\ldots=1+\left(x^{a}+x^{b}\right)+\left(x^{a}+x^{b}\right)^{2}+\ldots=1 /\left(1-x^{a}-x^{b}\right)$. (Note that the series converges for x of sufficiently small absolute value.)

Consider now the case when order is not taken into account. Clearly, the number of ways to assemble the postage " m pence" is the number $q(m)$ of distinct solutions in non-negative integers t, u to the equation $t a+u b=m$. Then

$$
\sum_{m=0}^{\infty} q(m) x^{m}=\sum_{t=0}^{\infty} x^{a t} \cdot \sum_{u=0}^{\infty} x^{b u}=\frac{1}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

So, we conclude that:
$q(m)$ equals the coefficient of x^{m} in the Taylor expansion of $\frac{1}{\left(1-x^{a}\right)\left(1-x^{b}\right)}$.
Remarks.
One can obtain good asymptotics for $p(m), q(m)$ by developing the respective rational generating functions $\frac{1}{\left(1-x^{a}-x^{b}\right)}$ and $\frac{1}{\left(1-x^{a}\right)\left(1-x^{b}\right)}$ in partial fractions. Notice that the first has a pole at the point x_{0} which is the positive root of the equation $x^{a}+x^{b}=1$, and $0<x_{0}<1$, whereas the second has no poles in the open unit disk, but has poles on the unit circle. This reflects the fact that $p(m)$ is more rapidly growing as $m \rightarrow \infty$ than $q(m)$, indeed the former grow exponentially while the latter do not.Notice how this reflects our intuition that there are a great many more ways to achieve the postage m when order is taken into account, than when it is not.

Finally, to return to the original problem (with 4 kinds of stamps) the respective generating functions are
$\frac{1}{\left(1-x-x^{2}-x^{3}-x^{4}\right)} \quad$ with order taken into account, and
$\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)\left(1-x^{4}\right)} \quad$ with order not taken into account.

