Problem73\# 3.1 Solution

Here the generalized arithmetic-geometric inequality (see also the solution to $73 \# 1.1)$ becomes useful:

$$
\prod_{j=1}^{n}\left(x_{j}\right)^{p_{j}} \leq \sum_{j=1}^{n} p_{j} x_{j}
$$

(where $x_{j}>0$ and $\sum p_{j}=1$).
Careful choices of the parameters p_{j} will do the job $(x, y, z>0)$:
$3=x y+y z+x z=9\left(\frac{1}{9} x y+\frac{3}{9}(x z / 3)+\frac{5}{9}(y z / 5)\right) \geq$
$\geq 9(x y)^{1 / 9} \cdot(x z / 3)^{1 / 3} \cdot(y z / 5)^{5 / 9}=\frac{9}{\left(3^{3} 5^{5}\right)^{1 / 9}} \cdot\left(x^{2} y^{3} z^{4}\right)^{2 / 9}$.
Obviously maximum is attained where equality occurs i.e. when
(*) $\quad x y=x z / 3=y z / 5 \quad$ and $\quad(* *) \quad x y+y z+z x=3$.
From $(*): z=5 x, y=5 x / 3$ and $(* *):(5 / 3+25 / 3+5) x^{2}=3$ which yields
$x^{2}=1 / 5$
and $x=\frac{1}{\sqrt{5}}, y=\frac{\sqrt{5}}{3}, z=\sqrt{5}$.

