Problem73\# 3.2 Solution

Problem 2. Prove, for positive x, y

$$
\begin{equation*}
[x y(x+y)]^{2} \leq\left(\frac{4}{27}\right)\left(x^{2}+x y+y^{2}\right)^{3} \tag{1}
\end{equation*}
$$

Proof. Since both left and right hand expressions are homogeneous of degree 6 , we may assume without loss of generality that

$$
\begin{equation*}
x^{2}+x y+y^{2}=3 \tag{2}
\end{equation*}
$$

and have to deduce (3) $x y(x+y) \leq 2$.
By the inequality of the means, the geometric mean of the three summands in the left member of (2), which is $\left[\left(x^{2}\right)(x y)\left(y^{2}\right)\right]^{(1 / 3)}=x y$ does not exceed 1. Denote $t:=x y$. Then (3) follows if we show $(x y)^{2}\left(x^{2}+2 x y+y^{2}\right) \leq 4$, i.e. $t(t+3) \leq 4$. But $t \leq 1$, so the last inequality is clearly true since $t(t+3)$ increases with t for positive t, QED.

The other clause in the problem, about roots of a cubic, is obvious and I won't include the proof here.

