Problem73\# 3.4 Solution

With notation according to figure we get:
Cone height, $h=a+x$.
Cone base radius $r=\sqrt{a^{2}-x^{2}}$.
Lateral area of cone, $\mathrm{L}=\pi r \sqrt{r^{2}+h^{2}}=$ $\pi \sqrt{a^{2}-x^{2}} \cdot \sqrt{a^{2}-x^{2}+(a+x)^{2}}=$ $\pi \sqrt{2 a} \sqrt{(a-x)(a+x)^{2}}$.
The straight AG-inequality (case $\left.n=3:\left(a_{1}+a_{2}+a_{3}\right) / 3 \geq \sqrt[3]{a_{1} a_{2} a_{3}}\right)$ gives:
$\frac{2 a}{3}=\frac{1}{3}(a-x+(a+x) / 2+(a+x) / 2) \geq \sqrt[3]{\frac{1}{4}(a-x)(a+x)^{2}}=k L^{2 / 3}$.
(Note that x may be negative, but $|x| \leq a$.)
The maximum value of L corresponds to the case of equality in the AG inequality.
Hence $a-x=(a+x) / 2 \quad$ i.e. $\quad x=a / 3$.
The inscribed cone with maximal lateral area has height $h=4 a / 3$.
BE/GJ

