Set \# 3

Problem 73\# 3.6 Solution

Problem 6. For each pair of distinct integers i, j from $\{1,2, \ldots, n\}$ we have $\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right) \geq 0$. Expanding, we get

$$
\begin{equation*}
a_{i} b_{j}+a_{j} b_{i} \leq a_{i} b_{i}+a_{j} b_{j} . \tag{*}
\end{equation*}
$$

Let A denote the sum of the a_{i}, and B the sum of the b_{i}. Summing (*) over i,

$$
A b_{j}+a_{j} B \leq \sum\left[a_{i} b_{i}\right]+n a_{j} b_{j} .
$$

Now sum over j :

$$
\begin{aligned}
A B+A B & \leq n \sum\left[a_{i} b_{i}\right]+n \sum\left[a_{j} b_{j}\right], \quad \text { or } \\
A B & \leq n \sum\left[a_{i} b_{i}\right]
\end{aligned}
$$

which is the desired inequality, after multiplying each member by $1 / n^{2}$.
Remark. This is a standard inequality, due to Chebyshev.

