Problem 73 \# 3.7 Solution

Problem 7: Prove

$\left.{ }^{*}\right) \quad 2^{-x}+2^{-1 / x} \leq 1$ for $x>0$.
Set $f(x)=2^{-x}+2^{-1 / x}$. Since $f(x)=f(1 / x)$ it is sufficient to prove $\left(^{*}\right)$ for $0<x \leq 1$.
Observe $f(1)=\lim _{x \rightarrow 0+} f(x)=0$.
Let $M=\max f(x), \quad 0 \leq x \leq 1$
(f assumed continously extended to $x=0$).
If $M>1$ then M is attained at a point in $(0,1)$ where $f^{\prime}(x)$ vanishes.
Now $f^{\prime}(x)=2^{-x}(-\log 2)+2^{-1 / x} \cdot \log 2 / x^{2}$.
So $f^{\prime}(\xi)=0 \Rightarrow 2^{-\xi}=2^{-1 / \xi} \cdot \frac{1}{\xi^{2}}$
and at such a point, $f(\xi)=2^{-\xi}+2^{-\xi} \cdot \xi^{2}$.
Thus it is sufficient to prove $2^{-\xi}\left(1+\xi^{2}\right) \leq 1$ for $0<\xi<1$.
i.e. $\varphi(\xi)=2^{\xi}-\xi^{2}-1 \geq 0$ on $(0,1)$,

But $\varphi^{\prime \prime}(\xi)=2^{\xi}(\log 2)^{2}-2 \leq 2\left((\log 2)^{2}-1\right)<0$.
Hence φ is concave so, since $\varphi(0)=\varphi(1)=0$, we get $\varphi(\xi) \geq 0$ on $(0,1)$. QED.

