Problem73# 3.8 Solution

Set $s_n(x) = 1 + x + \dots \frac{x^n}{n!}$. We want to prove that $M_n = \max_{0 < x} |\Delta_n(x)| = \max_{0 < x} \left| \frac{1}{s_n(x)} - e^{-x} \right|$ satisfies $M_n \le 2^{-n}$

Let ξ_n be the point where $\Delta_n(x)$ attains its maximum, $\Delta_n(\xi_n) = M_n$. (note that $\Delta_n(0) = \Delta_n(\infty) = 0$ and $\Delta_n(x) > 0$ in the interior.) Then $\Delta'_n(\xi_n) = 0$, and $-\frac{s'_n}{s_n^2} + e^{-x} = 0$ at $x = \xi_n$, i.e. (since $s'_n = s_{n-1}$) (1) $\frac{s_{n-1}(\xi_n)}{s_n(\xi_n)^2} = e^{-\xi_n}$,

Hence $M_n = \frac{1}{s_n(\xi_n)} - e^{-\xi_n} = \frac{1}{s_n(\xi_n)} - \frac{s_{n-1}(\xi_n)}{s_n(\xi_n)^2} = \frac{s_n(\xi_n) - s_{n-1}(\xi_n)}{s_n(\xi_n)^2} = \frac{\frac{\xi_n^n}{n!}}{s_n(\xi_n)^2}$

But $s_n(\xi_n)^2$ must be greater than its ξ_n^n -term which must coincide with the ξ_n^n -term of the Taylor expansion of $e^{\xi_n^n} \cdot e^{\xi_n^n} = e^{2\xi_n}$, i.e. $\frac{2^n \xi_n^n}{n!}$.

And so
$$M_n = \frac{\xi_n^n/n!}{s_n(\xi_n)^2} \le \frac{\xi_n^n/n!}{2^n \xi_n^n/n!} = \frac{1}{2^n}$$
. QED
MB/HSS/TJ