Problem73\# 3.8 Solution

Set $s_{n}(x)=1+x+\ldots \frac{x^{n}}{n!}$.
We want to prove that $M_{n}=\max _{0<x}\left|\Delta_{n}(x)\right|=\max _{0<x}\left|\frac{1}{s_{n}(x)}-e^{-x}\right|$
satisfies $\quad M_{n} \leq 2^{-n}$

Let ξ_{n} be the point where $\Delta_{n}(x)$ attains its maximum, $\Delta_{n}\left(\xi_{n}\right)=M_{n}$.
(note that $\Delta_{n}(0)=\Delta_{n}(\infty)=0$ and $\Delta_{n}(x)>0$ in the interior.)
Then $\Delta_{n}^{\prime}\left(\xi_{n}\right)=0$,
and $-\frac{s_{n}^{\prime}}{s_{n}^{2}}+e^{-x}=0$ at $x=\xi_{n}$, \quad i.e. $\left(\right.$ since $\left.s_{n}^{\prime}=s_{n-1}\right)$
(1) $\frac{s_{n-1}\left(\xi_{n}\right)}{s_{n}\left(\xi_{n}\right)^{2}}=e^{-\xi_{n}}$,

Hence $M_{n}=\frac{1}{s_{n}\left(\xi_{n}\right)}-e^{-\xi_{n}}=\frac{1}{s_{n}\left(\xi_{n}\right)}-\frac{s_{n-1}\left(\xi_{n}\right)}{s_{n}\left(\xi_{n}\right)^{2}}=\frac{s_{n}\left(\xi_{n}\right)-s_{n-1}\left(\xi_{n}\right)}{s_{n}\left(\xi_{n}\right)^{2}}=$ $\frac{\xi_{n}^{n} / n!}{s_{n}\left(\xi_{n}\right)^{2}}$
But $s_{n}\left(\xi_{n}\right)^{2}$ must be greater than its ξ_{n}^{n}-term which must coincide with the ξ_{n}^{n}-term of the Taylor expansion of $e^{\xi_{n}^{n}} \cdot e^{\xi_{n}^{n}}=e^{2 \xi_{n}}$, i.e. $\frac{2^{n} \xi_{n}^{n}}{n!}$.
And so $M_{n}=\frac{\xi_{n}^{n} / n!}{s_{n}\left(\xi_{n}\right)^{2}} \leq \frac{\xi_{n}^{n} / n!}{2^{n} \xi_{n}^{n} / n!}=\frac{1}{2^{n}}$. QED

