Problem 73\# 3.9 Solution

Problem 9. The key idea is to prove $\cos x \leq \exp \left(\frac{-x^{2}}{2}\right)$ for x on the interval $[0, \pi / 2]$, then replace \cos in the integral by $\exp \left(\frac{-x^{2}}{2}\right)$, and moreover extend the integration over $(0, \infty)$ to get the indicated upper bound. So, the crucial verification is that

$$
F(x):=(\cos x)\left(\exp \left(x^{2} 2\right)\right) \text { is } \leq 1 \text { for } x \text { in }\left[0, \frac{\pi}{2}\right]
$$

Now, $F(0)=1$, and $F^{\prime}(x)=\exp \left(\frac{x^{2}}{2}\right)[-\sin x+x \cos x]$, so if we establish that $x \cos x<\sin x$ on $\left(0, \frac{\pi}{2}\right)$ we'll know F is decreasing on this interval, and we're done. The rest is easy calculus. Here is one variant: we want to show $x<\tan x$ or $\arctan x<x$, that is $\int_{0}^{x} \frac{d t}{\left(1+t^{2}\right)}<x$ for $x>0$, which is obvious.

