LECTURES ON BALAYAGE

BJORN GUSTAFSSON

ABSTRACT. We give an exposé over some recent developments in po-
tential theory centred around the notion of partial balayage.

Partial balayage means balayage (sweeping of measures) to a pre-
scribed density, which then is attained on a set which is not known in
advance. This gives a free boundary problem of obstacle type. Per-
formed continuously in time partial balayage is equivalent to moving
boundary problems for Hele-Shaw flows, and in the backward direction
(inverse balayage) it leads in the limit to notions of potential theoretic
skeletons (sometimes called mother bodies).

1. INTRODUCTION

We shall discuss questions of balayage in Newtonian potential theory. The
Newton kernel in R (n > 2) is

g log ﬁ (n=2),

ufjﬁ (n>3),

U(z) =

the constant ¢, > 0 chosen so that —AU = ¢ (the Dirac measure at the
origin). If p is a positive measure with compact support its Newtonian
potential is the convolution

U =U * p.

The corresponding field is the gradient VU* and the energy is
iz = [[ vt~ pduto)duty) = [ v¥dp.
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Regarding this as a squared norm (when n > 3) there is a corresponding in-
ner product, namely the mutual energy between the two mass distributions:

(4, v)e :/U“dl/:/U”du.

The definition of U* makes sense also for signed measures (charges) and
for more general distributions (with compact support, e.g.). When n = 2,
the “norm” ||u||? can become negative, but it is positive for signed measures
with zero net mass. Indeed, for such a measure, as well as for any measure
in higher dimensions, the potential U* decays at infinity in such a way that
the Green formula can be applied to give

Iz = [ 1vU*Eam.

Here m denotes Lebesgue measure.

By a measure (or mass distribution) we shall generally mean a positive
Borel measure which is finite on compact sets. Thus, from another point
of view, a measure is the same thing as a positive distribution. A signed
measure is simply the difference between two (positive) measures.

Some general references in potential theory, suitable for these notes, are
[68] [57] [76] [24], [54], [6].

2. CLASSICAL BALAYAGE

If a measure p is changed in some way its potential U#* will also change,
at least somewhere, because y can be recovered from U* via

—AU* = p.

However, it is possible to redistribute g in such a way that U* remains
unchanged in part of the space, e.g. outside a given domain D. This is
where the notion of balayage (or sweeping) comes in.

Indeed, classical balayage of a measure p with respect to a bounded
domain D C R”" is the process of cleaning D from any mass of y in such
a way that the potential remains unchanged outside D. We shall use the
notation

v = Bal (u, D°)
for this process p — v and the requirements on v are thus that
v=0in D, (2.1)
U = U* outside D. (2.2)
By the maximum principle the inequality
U’ <U!inR" (2.3)

automatically holds. It is allowed that p has mass also outside D. That
part of p will simply be unchanged, while p|p will redistribute on @D. For
simplicity we assume in this section some mild regularity of D (that it is
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D

Figure 1: Classical balayage and the Dirichlet problem.

regular for the Dirichlet problem), otherwise one must allow for a small
exceptional set in (2.2).

The idea of balayage goes back at least to C.F. Gauss [34] (see [24],
p.799f, for historical accounts in general). The physically most intuitive
way of producing v from p is by minimizing the energy for the change:

Min ||y —v||2: v=0inD. (2.4)

In two dimensions one should add the side condition that [ dv = [ du.

The above approach was made rigorous by O. Frostman [32], E. Cartan
[17] and others: there exists a unique minimizer v and this has the properties
(2.1), (2.2). The fact that not all measures have finite energy does not cause
any problem because the energy norm may be decomposed as

i = VIIE = 1Ill — 20, v)e + [lv]12

and if y (or rather u|p) has infinite energy one simply drops the term |||
(or ||#|p||?) and minimizes the rest, which can always be given a meaning.
Another way of constructing the balayage measure is by solving a Dirichlet
problem: let V solve
—AV =0 inD
s (2.5)
V=U* on 0D
and extend V by V = U* outside D. Then V will be the potential of a
measure v, V = U”, and by construction that measure has the properties
(2.1), (2.2), so it is Bal (4, D€). See Figure 1.
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In terms of the difference u = U* — V = U* — UY we have Au = v — p,
hence
—Au=p inD,
u =0 outside D,

and we may write
Bal (4, D) = p + Au.
In case u is Dirac measure J, at a point a € D the above function u will
be the Green function of D with pole at a,

u=Gp(a).
In this case
wq = Bal (6,4, D)
is known as harmonic measure of 0D (with respect to a). Expressed
directly in terms of Gp(-,a) it is

aGVD ('7 (J,)
on

where % denotes outward normal derivative and ds is hypersurface measure
on 0D.

In the special case that D is a ball the solution of the Dirichlet problem
(2.5) is fully explicit (V|p is the Poisson integral of U#|5p) and V is referred
to as the Poisson modification of U#. For a general D, the solution of
(2.5) may be obtained as a limit of successive Poisson modifications in balls
contained in D, starting from any superharmonic (—AV > 0) function which
equals U* on 0D. For each Poisson modification in a ball B the function V'
decreases and becomes more harmonic. Indeed, the mass —AV|p is swept
to OB. The fact that the potential decreases is a guarantee that a definite
progress is made at each step. Thus the whole process converges, and in the
limit all mass is swept to @D and the function is harmonic in D.

The above method of solving the Dirichlet problem, by successive sweep-
ing operations, was invented by H. Poincaré [83], [84]. O. Perron [82] realized
that the final result simply is the infimum of all superharmonic functions in
D having the prescribed (or larger) boundary values on D, and the method
often bears his name, Perron’s method. See also [113].

In the context of balayage Perron’s observation shows that the potential
U¥ of v = Bal (, D°) is the smallest of all functions V satisfying

{V >U"  outside D,

dw, = — ds, (2.6)

—-AV >0 inR".

Hence U agrees with what is called the reduced function of U* over D¢
in D (cf. Figure 1). One standard notation for this is

U = RE..
The hat on R indicates that the function has been normalized to be lower
semicontinuous (as a superharmonic function should be). The reduction
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operation was much developed by M. Brelot [9], [10], and it is one of the
basic tools for balayage.

A way to rephrase the reduction idea is to say that that U" solves an
obstacle problem [72], [88]: U" is the smallest superharmonic function
passing above the obstacle 9 defined by v = U* on D¢ 9 = —o0 in D.
There is also another obstacle type problem which produces U”, this time
from below, and which is more appropriate for the generalizations we wish
to make in the next section. This is that U” is the largest of all functions V'
satisfying

—AV <0 inD. 27)
It is not hard to verify this statement, which also conforms with one of the
standard ways of introducing the Green function Gp(-,a), namely as U%
minus the largest subharmonic function V' in D satisfying V < U,

If one wants to extend classical balayage to signed measures there are two
possibilities. One is to keep the requirements (2.1), (2.2) as they are. This
leads to a linear map p +— v, which can be viewed as the adjoint of the
operator (the ”Dirichlet solver”) which extend continuous functions on 0D
to functions continuous on D, harmonic in D. See for example [89] (section
5.22 there) and [108] for elegant treatments. (In [108] this point of view is
developed further.) For this linear balayage (2.3) fails in general.

The other possibility is to relax (2.1) to v < 0 in D. With this as the side
condition in (2.4) one gets a map x4 — v which is an orthogonal projection
onto a convex cone. Then (2.3) remains valid. It is this approach to balayage
that we shall keep and develop in these notes.

{V <U*  inR,

A variant of classical balayage, with reversed geometry, is the equilib-
rium distribution. Here K = R" \ D is compact, and given a number
a > 0 one minimizes

Min ||v||? : uinnD,/du:a.

One may think of this as the balayage of a point mass of strength « placed
at infinity and denote the result

v = Bal (a0, K).- (2.8)

Here §o has only a symbolic meaning, at least in dimension n > 3.
The measure v has the equilibrium property that

U'=pon K

for some constant 3 which depends (linearly) on . The energy is ||v||2 = af.

In the electrostatic interpretation, K is a perfect conductor and « is the
charge on it, which distributes to have constant (= ) potential on K. The
capacity of K (with respect to infinity) then is

Cap (K) = % (2.9)
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at least in dimension n > 3.

In two dimensions there is the disadvantage that 8 may become zero or
negative and one usually considers the logarithmic capacity instead. In
terms of our notations this is

27

Logcap (K) = exp[— T]

In physics one really only considers the capacity between two conductors.
In dimension n > 3 there is a good limit if one of them is moved to infinity,
but not so in two dimensions.

3. PARTIAL BALAYAGE

The word “balayage” means sweeping, or clearing dust away (with e.g. a
brush or broom) in French. In classical balayage one “cleans” a domain D
completely from any mass sitting there. Partial balayage means that one
only makes some partial cleaning. The role of the domain D is then taken
over by a measure A which tells how much mass (or “dust”) is allowed to be
left. Partial balayage of u to A will be denoted Bal (i, A).

For classical balayage with respect to D, the “measure” (it is not a mea-
sure in our previous sense) A is

0 ifECD
ME) = ! 3.1
(E) {-I—oo otherwise. (3-1)

Thus, in the notation for classical balayage, D¢ = R™ \ D should be inter-
preted as the “measure” which is zero in D, plus infinity on D°€.

The emphasize of partial balayage as outlined in these notes will rather be
on measures A similar to Lebesgue measure. Indeed, A\ = m is a case of major
interest, and in general we shall assume that A is absolutely continuous with
respect to Lebesgue measure,

A= pm, (3.2)
where the density function p satisfies something like
0<cap<p<e<x (3.3)

(c1, co constants).

It takes some extra efforts to incorporate measures like (3.1) into the
picture, and we shall not take these efforts here (it is done in [46]). On the
other hand, the assumption (3.2), (3.3) can be considerably relaxed without
any additional labor. For example, the lower bound in (3.3) is really needed
only in a neighbourhood of infinity.

The definition of partial balayage is intuitive and simple. The fixed data
are only the measure ) satisfying (3.2), (3.3) (e.g.) and the balayage process
i — v may be defined by the requirement that p (a measure with compact
support) is to be replaced by a measure < A using as little work (energy) as
possible. Thus we have
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Definition 3.1. Partial balayage of u to X,
v = Bal (1, A),
is the unique solution of
Min|lp—v|2: v <A (3.4)

If . happens to have infinite energy one minimizes —2(u,v)e + ||v||? instead.
In two dimensions, one adds the side condition [dv = [dpu.

In (3.4) it is understood that v ranges over (positive) measures. How-
ever, it is actually more convenient to let v range over all signed measures
satisfying v < A, the minimizer still turns out to be positive (see (3.12)).

Allowing thus signed measures the side condition v < X defines a convex
cone which can be shown to be complete with respect to || - ||. It follows
that there exists a unique minimizer v and that this is characterized by the
variational condition

(u—v,v—0)e >0 forall o <.

(In two dimensions one only varies over o with [do = [du. As an alter-
native in two dimensions one may work in a large bounded domain and use
the Green potential for that instead of the Newton potential, in order to
avoid the inconveniences caused by the special properties of the logarithmic
kernel.)

We may write the above variational condition as

/(U“ —U")d(v—0)>0forall o < . (3.5)
Since v < A, any o < v is allowed in (3.5) showing that
Ut —-U0" >0.

Next, choosing ¢ = A (or rather o with compact support approximating
this) gives

/(U“ _ UMy — 2) > 0,
which combined with the previous inequality and v < A shows that
/(U" —U")d(v — ) =0.
In summary, v = Bal (u, \) satisfies
v <A, (3.6)
U’ <U¥, (3.7

/ (U — U")d(A - v) = 0. (3.9)
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These conditions in fact characterize v since, in the other direction, they
imply that for any o < A,

/(U" _ U — o) = /(U“ _ UM — A) + /(U“ ~ UM — o) >0,

i.e., that (3.5) holds.
Another way to define Bal (i, ) is the following, which generalizes (2.7).

Definition 3.2. Partial balayage of 1 to A is the measure
Bal (u, A) = —AVH,
where V# is the largest of all functions (or even distributions) V satisfying
V <U* in R,
AV <\ in R,

See Figure 2 below. It is not hard to show that such a largest function
exists. If for example A = m one may add %|ac|2 to V and the task becomes
that of finding the largest subharmonic function V(z) + 5-|z[> which is
< U*(z) + 5-|z|?. By standard results in potential theory [24], [6] such a
largest function exists. Alternatively, by turning the picture upside-down
we have an obstacle problem of standard form, which is known to have a
unique solution.

It is easy to see (for this the lower bound in (3.3) is needed, at least far
away) that V# = U* outside a compact set, hence V# has the behaviour of
a potential at infinity. Thus

vk =U",
where v = Bal (u, \) with the new definition.
Now we must of course show that the two definitions of Bal (i, A) are the
same. For this we adopt the second definition and show that it satisfies

(3.6), (3.7), (3.8). We first introduce the saturated set for v = Bal (u, A).
It is defined by

Q = Q(u) = (the largest open set in which v = \)
=R" \ supp (A — v).

A more complete notation would be Q(u, A).

If at some point z € R* we have V# < UH*, then this strict inequality
persists in a whole neighbourhood of  because U* is lower semicontinuous
and V* is upper semicontinuous. Therefore there is room to make a Poisson
type modification of V# in a small ball B around z: one replaces V* in B
by a function V satisfying —AV = X in B, V = V# on dB. This will make
V*# larger, unless it already satisfies —AV# = )\ in B.

Since V# was defined to be largest possible we conclude that

{VE <U"} C Q(u). (3.9)
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Q)

Figure 2: Partial balayage in terms of potentials.

In view of V# = U" and the definition of Q(x) this implies (3.8). Since (3.6),
(3.7) are clear by construction we have now shown that the two definitions
of Bal (i, A) are equivalent.
One may notice that (3.9) can be written
U” = U* outside Q(u)

and then says that the balayage measure v is graviequivalent to u outside
Q(p). In summary, partial balayage of y produces a measure v and an open
set 2 = Q(u) such that v has the prescribed density (v = ) inside €2 and
the prescribed potential (UY = U*) outside Q.

The simplest example of partial balayage is this.

ExXAMPLE. Take A = m, u = §, for some point a € R*. Then

Q(p) = B(a,r) ={z € R" : |z —a| < r},
with 7 chosen so that |B(a,r)| = [dp =1, and
Bal (6q,m) = m|p(a,)-
Figure 2 illustrates exactly this case.
In general, the structure of Bal (u, A) will be
Bal (4, A) = Alg(u) + remainder, (3.10)

where the remainder is usually undesired and in any case is a measure < A
with support outside Q(u). At least under some regularity assumptions, e.g.
that u has a density in L°, the formula is more precisely

Bal (11, A) = Mag + #lagwe (3.11)
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density

Y , \\\\#\\\ . Bal (1.1)
D b\L :

Q) R

Figure 3: Structure of partial balayage.

saying that p is left untouched outside Q(u). See Figure 3.

NOTATIONAL REMARK. When writing e.g. A|q, the restriction of the
measure A to the set €, it is understood that A|q is automatically extended
by zero outside ).

One way to prove (3.11) is to first prove the estimate
min (4, A) < Bal (1,3) < A, (3.12)

which always holds. It follows that if 4 € L° then also v € L°°, and
then standard results from Sobolev theory [72] show that almost everywhere
on the coincidence set {U” = U*}, in particular outside (i), we have
AUY = AU#, i.e. v = p. This gives (3.11).

Finally, we mention that it is always possible to perform balayage in
smaller steps. For example, if A\ < A9 + uo we have

Bal (/1,1 + ua, Al) = Bal (Bal (/1,1, Ag) + Ko, )\1) (313)

In the same vein, partial balayage can be performed as a continuous process,
say with p replaced by a monotone family p(t) where ¢ is a time parame-
ter, and then (3.13) give natural semigroup properties. Continuous partial
balayage will be discussed in Section 6.

HisTORICAL NOTE. The idea of partial balayage goes back at least to the
work of the Bulgarian geophysicist D. Zidarov who, probably together with
some of his colleagues (e.g. Z. Zhelev), introduced an intuitive and numer-
ical version of what he called ”gravi-equivalent mass scattering” or ”bub-
bling”. See [119] and references therein. The ideas were further developed
by O. Kounchev [73], [74] and others.

Later, and independently, M. Sakai developed an intricate and very pre-
cise method for constructing certain kinds of quadrature domains, and this



LECTURES ON BALAYAGE 11

exactly amounts to partial balayage [95]. Shortly afterwards and in par-
allel with developments in general free boundary theory more streamlined
methods, using e.g. variational inequalities, were found for constructions
equivalent to partial balayage [25], [96], [22], [98], [38], [39], [41]. See also
[26], [30]. Further developments and generalizations were made in [46], [106],
[58], [50], [66], [42] (survey), to mention just a few sources. The presentation
in this note follows essentially [46], which contains full details on many of
the topics slipped over here. For Section 7, [43] is the main reference.

One of the main inputs to the theory has all the time been extremal and
other problems in complex analysis giving rise to domains having graviequiv-
alence properties similar to those obtained with partial balayage. In [3], [4]
D. Aharonov and H.S. Shapiro introduced the name quadrature domain for
some classes of such domains, and they have been systematically studied
since that time. See e.g. [5], [90], [91], [92], [93], [21], [107], [85], [79], [52],
[18].

As will be indicated in next section there has also been an independent
and parallel development in abstract potential theory.

4. PARTIAL ORDERS AND MIXED ENVELOPES

In potential theory there are two parallel worlds, the world of mass dis-
tributions (measures) and the world of potentials (superharmonic functions
with the right behaviour at infinity). It is a matter of taste in which world
one prefers to work, because one can always go between them via the bijec-
tive maps u— U* = U * y and U* — u = —AU*.

However, each world has its own partial order < and these are not iden-
tical. Rather, one of them is stronger than the other:

p1 < po implies U# < UH2

by the maximum principle. (In two dimensions one has to assume that
J dp1 = [ dus.) In this section we shall work in the world of measures and
we shall transfer both partial orders to that side by defining

p1 < p2 to mean UF < U#? (in all R®).
Thus < is weaker than <:
p1 < pg implies p1 X po.

One may notice that the two partial orders (or rather the corresponding
positive cones) are polar to each other with respect to the energy inner
product. This means that (allowing signed measures)

u %= 0 if and only if (u,v)e > 0 for all v > 0,
v > 0 if and only if (u,v) > 0 for all y 3= 0.

These statements are immediate from (y,v), = [ Urdv.
Using the new partial order the definitions and simple properties of partial
balayage look even more natural than before. For example, Definition 3.2
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§§§§

=

Figure 4: Orthogonal decomposition with respect to a dual pair of cones.

says that Bal (u,A\) = v, where v is the largest, with respect to <, of all
measures satisfying

vsu, v<A
Such an object is called a mixed envelope in a terminology introduced by

M. Arsove and H. Leutwiler [7]. See also [28], for example. Following the
notation of [7] we can write

Bal(u,)\)z)\v\u:mjx{uzyg)\, v pl

The characterization (3.6), (3.7), (3.8) of Bal (i, A\) now takes the form

(b —v,A—1)e =0,

and this can be conceived as an instance of a Moreau decomposition [80],
i.e., an orthogonal decomposition with respect to a dual pair of convex cones.
In our case, p — A is decomposed with respect to the cones {0 : o > 0} and
{0:0<0}:

B A= (n—v) (v = ).

Here (3.6), (3.7), (3.8) say that the two terms are in the respective cones
and that the decomposition is orthogonal. This point of view of partial
balayage is emphasized in [98]. One may also move the vertex of the cones
to A and say that u is expressed in terms of its orthogonal projections onto
{o: 0% A} and {o: 0 < A}. See Figure 4.
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It is clear from the above that there must be also a dual minimization
problem for finding v. Indeed, instead of minimizing || — v||? among v with
v < ), as in Definition 3.1, one may minimize ||v — \||? among v with v < p.

As is immediate from the definition, the mixed envelope (or partial bal-
ayage) has the monotonicity property with respect to < that

p1 < po implies Bal (u1, A) < Bal (u2, A).
In addition, one easily infers from (3.12) that

p1 < po implies Bal (g1, A) < Bal (u2, A).
Finally, it is clear that there is a translational invariance:

Bal (g + o,A+ o) = Bal (u,\) + o,

for say 0 € L*° with compact support. Therefore there is no difficulty
in extending the definition of partial balayage to suitable classes of signed
measures.

5. GEOMETRY OF PARTIAL BALAYAGE

In this section we shall concentrate on the case A = m and we shall also,
from now on, make a slight change of notation: measures will be denoted as
distributions, which for example means that Lebesgue measure becomes the
function 1 (identically one). If D C R™ is a set, xp denotes its characteristic
function and the Newtonian potential of xp (i.e., of xpm) will be denoted
UP. Lebesgue measure (volume) of D will sometimes be denoted |D|.

We first discuss the question of when Bal (i, 1) takes the pure form

Bal (4,1) = xp (5.1)

for some open set D, i.e., when there is no remainder term in (3.10).
It is obvious from the definition of () that if (5.1) holds, then necessarily
D = Q(u) up to nullsets. More precisely, we get

[D] = (k)
where [D] denotes the saturation of D with respect to Lebesgue measure:

[D] ={z € R* : m(B(z,r) \ D) =0 for some r > 0}

=R* \supp (1 - xp)-
We notice that D C [D] C int D, |[[D]\D| = 0. If |8D| = 0, then [D] = int D.
The following little lemma, which will be needed in Section 6, gives a
direct characterization of (5.1) in terms of potentials.

Lemma 5.1. Equation (5.1) holds if and only if
UP <U* in R, (5.2)
UP = U* outside [D). (5.3)
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Proof. By (3.6), (3.7), (3.8) with v = xp, (5.1) is equivalent to
uP <ut,
xp <1,
/(U“ _UPYA = xp)dm = 0.

Here the second inequality contains no information at all and the third
equation is the same as (5.3). Thus the lemma follows. O

In particular it follows that D is uniquely determined (up to nullsets) by
p if (5.2), (5.3) hold. It is not true that D is uniquely determined by (5.3)
alone. As an example one may take a uniform measure p on the unit circle
S1 in R?. For suitable choices of total mass of u there will be both a disc
and an annulus satisfying (5.3) (only the annulus will satisfy (5.2) then).
See Example 1.2 in [95].

If merely (5.3) holds one can still say something in general. In the just
mentioned example we have 0(disc) C annulus, and this is the typical sit-
uation, see [95], Theorem 4.7 with corollaries, and also [41] (Cor. 3.1), [46]
(Prop. 2.4). Following [46] we state in this direction

Lemma 5.2. Let Q = Q(u) and let D be any saturated (D = [D]) open set
satisfying (5.3). Then

oD C Q. (5.4)
Morever U¥ < UP, where v = Bal (u, 1).

Proof. Set v = U” — UP. Since —AU" < 1, v is subharmonic in D and by
(5.3), (3.7), v =U" — U* < 0 outside D. It follows that v < 0 everywhere,
proving the last statement of the lemma.

Assume next that there exists z € 0D \ Q and choose a ball B = B(z, ),
r > 0, such that BNQ = @. Then U” = U* in B, hence v = 0 in B\ D.
From this (and using also the regularity of v derived from (3.12)) follows
Av = 0 a.e. in B\ D, whereas Av = 1 —v > 0in BN D. Thus v is
subharmonic in B.

Using v < 0 we conclude that 0 = v(z) < ﬁ Jgvdm < 0, hence that
v = 0 in B. On the other hand Av = xp — v, which is not identically zero
in BN D # @ since, by definition of @ = Q(u), » =1 in no nonempty open
subset of B C Q°.

This is a contradiction and the lemma, is proved. O

If (5.3) holds, then u, D and Bal (u,1) all have the same total mass. It
follows that |D| > |Q(u)| (equality if there is no remainder term in (3.10)).
Let us call a bounded domain 2 solid if 2 = int Q and (Q)¢ has only one
component (the unbounded one). If Q(u) is solid then (5.4) together with
the comparison between the volumes implies that D C Q(u), |2(x) \ D| = 0.

Thus, if Q(u) happens to be solid there is, up to nullsets, only one open
set D satisfying (5.3). This statement is quite useful for certain uniqueness
questions in potential theory. The simplest example is when y = d,, a point
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mass. Then Q(yu) is a ball, which is solid. Hence this ball is the unique body
with exterior potential equal to U%. More generally, Q(u) is solid if x has
support in a hyperplane or if y for example satisfies (4i7) in Theorem 5.3
below. For further results in this direction, see [95], [41], [46]. For a general
orientation on inverse problems in potential theory, see for example [118],
[62].

Next we give some sufficient conditions, in terms of y alone, for (5.1) to
hold. Basically what is required is that y is big enough on its support.

Theorem 5.3. Equation (5.1) holds if p satisfies any one of the following
conditions.

(i) p is singular with respect to Lebesque measure.
(ii) There exists an open set w such that p > 1 in w, p = 0 outside w.

(iii) p has support in a ball and the total mass of u is at least 2" times the
volume of the ball.

Proof. As for the proof we simply give references:
(4) is proved in [95] (see the end of section 3 there) and in [41], Theorem 2.4.

(4) is the basic assumption in Theorem 3.7 of [95] and is proved also in [96],
[41] (Theorem 2.4). The statement in fact follows from (3.11) (whenever
this holds) because w C (u) by definition of () and (3.12).

(731) See Theorem 2 in [101]. The statement can be easily understood from
its extremal (worst) case, which is when p is a point mass on the boundary
of the ball. Then Q(u) will also be a ball, and it has to have the double
radius in order to cover the original ball. O

A particular case of (i) in Theorem 5.3 is when y is a finite sum of point
masses. In the case of two dimensions the boundary of Q@ = Q(x) will then
be an algebraic curve, see [4], [37]. As an example, using complex variable
notations (z = = + 4y etc.) and taking

p=mr?(6 1+ 641) (5.5)
for some r > 1, gives the equation
(2 +°)? = 2r*(a® +9%) - 2(a® — y*) = 0
for 09. See Figure 5, which also illustrates Theorem 5.4 below. This Q can
be viewed as the two discs B(—1,7), B(1,r) potential theoretically glued
together. In fact, as an instance of (3.13), the same 2 is gotten from
M= XB(-1,7) T XB(1,r)-

Recall that Bal (7r2d,,1) = XB(a,r)-

For the above two point measure y the polynomial for 02 could be written
down explicitly, but in general, with y = Z;”Zl a;jd,; and m > 3, no effective
method is known for finding the polynomial for 02 from the data of u.
Special cases with many symmetries can however sometimes be handled, see
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Figure 5: Partial balayage of two point masses.

for example [19], [20]. In higher dimensions very little is known whatsoever
about algebraicity of 0€). See however [64], [114].

The above mentioned results about algebraic boundaries in two dimen-
sions hold more generally for domains D C C satisfying the weaker form of
graviequivalence

VUP = VU outside D, (5.6)

and then even with p allowed to be any complex-valued distribution with
support in a finite number of points. Apart from a complex conjugation and
a constant factor the field VU* is in two dimensions the same thing as the
Cauchy transform of u:

1 [ du(C) out
(z) = — =—-4 .
ilz) T / z—( 0z
Here % = %(3% - ia%). That p is a distribution with support in a finite

number of points means exactly that j is a rational function, and (5.6)
therefore expresses in this case that the Cauchy transform of D (i.e., of xp)
agrees with a rational function outside D.

Another way to express (5.6) is to say that

/D pdm = (u, p)

holds for every integrable analytic function ¢ in D, and D is then called a
quadrature domain for analytic functions [4], [95], [107]. The bracket (-, -)
denotes the action of a distribution on a test function. There are similar
notions of quadrature domains for harmonic and subharmonic functions,
corresponding to the graviequivalence statements (5.3) and (5.1) (i.e., (5.2)
plus (5.3)) respectively.
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Returning to the general case that y is a measure in R, set
K = conv supp u,

the convex hull of the (closed) support of . From what was said in connec-
tion with Theorem 5.3 it is not surprising that Bal (u, 1) will always be of
the form xp outside K, i.e., that the remainder term in (3.10), if there is
one, must be located inside K (in case A = m). This is part of

Theorem 5.4. Let v = Bal(u,1), Q = Q(u). Then
(1)

Bal (4, 1)|re\x = Xo\K-
(ii) 0Q \ K is smooth real analytic.

(iii) Everywhere in Q\ K the gradient V(U” — U*) is nonzero and directed
towards K.

(iv) For any x € 0N\ K the inward normal ray N, of 0Q at x intersects K.
In dimension n = 2 we have, in addition,

(v) The normal rays N, in (iv) do not intersect each other before they reach
K.

(vi) There exist radii 7 = r(xz) > 0 for x € K NQ such that
Q = UgernaB(z,7(1)).

One naturally conjectures that (v) and (vi) hold also in higher dimensions,
but there is no proof at present. In two dimensions we know of two proofs,
[48] and [49]. Statements (v) and (vi) are actually equivalent and they give
a natural upper bound on the curvature of 92\ K.

As to (i7), 0Q may very well have (analytic) singularities inside K. For
example, taking » = 1 in (5.5) gives a pair of touching discs, and the touching
point is a singular point of 02 belonging to K.

In two dimensions one knows exactly what type of singularities €2 may
have in K \ suppu see [99], [100]. In [45] a global real analytic defining
function of 9N \ supp p was produced using an exponential transform. Also
in higher dimension much is known, see [12], [13], [15].

Proof. Let us just outline the proof of (i)-(iv), which is based on a variant
of the “moving plane method” [105], [35]. Set

u=U"*—-U".
Then, by Definition 2, u is the smallest of all functions satisfying
u>0, Au<l—pu.

Moreover, by (3.9),
u =0 on QF,
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and since u can be shown to be continuously differentiable outside supp u
(this follows from (3.12)) and zero is the minimum value of u it follows that

Vu =0 on Q°\ supp p.
In particular this holds on 92 \ supp p.
The theorem only contains assertions of what happens outside K, i.e.,
about what happens at points which can be separated from suppu by a

hyperplane. Assume that this hyperplane is {z € R : 2, = 0}, that supp u
is contained in {z, < 0}, and then we shall say something about

Ot =Qn{z, > 0}.

Let u* be the reflection of u in {z, = 0}, i.e., u*(z',z,) = u(z', —zy,),

and set

v =u—inf(u,u”) = (u — u*) 4.
Since Au < 1 — p < 1 we have Au* < 1. Therefore Ainf(u,u*) < 1
everywhere. Since Au = 1 in Q7 it follows that Av > 0 in Q. Moreover
v=0on 9(QT).

Thus we conclude (maximum principle) that v < 0 in Q1, Thus u is
smaller (or at least not larger) at any point above the hyperplane {z, = 0}
than at the reflected point below it. On the hyperplane this gives

ou
oxy,

Since Vu = 0 on (02)* and Aaax—“n = %Au =0in QN {z, > 0} we can
apply the maximum principle again, now to du/dz,, to obtain

ou

Tn

<0 on {z, = 0}.

<0in Q7.

An easy argument shows that the inequality is everywhere strict.

From the above everything follows: w is strictly decreasing as a function
of z,, in Q1 and on 00 u vanishes. Thus (9Q)* is a graph of a function
when seen from {z, = 0}. To this graph general regularity results for
free boundaries [12], [13], [30], [15] apply, with the conclusion that it is real
analytic. Also, the vector —Vu = V(U” —U*) and the ray N, for z € (0Q2)*
are both directed towards {z, = 0}.

Applying the above arguments to all hyperplanes separating parts of Q\ K
from K easily gives the statements (i)-(iv) of the theorem.

O

6. CONTINUOUS BALAYAGE AND HELE-SHAW FLOW

By introducing a time parameter classical balayage can be used as the in-
finitesimal generator of a process which turns out to be an instance of partial
balayage performed continuously in time. In physics the same sort of pro-
cess appears in Hele-Shaw flow with a free boundary, various electrochemical
processes, problems of melting/freezing under simplified assumptions etc.
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injection

Figure 6: Hele-Shaw flow with injection.

Let us describe the standard version of the Hele-Shaw problem in this
context [33], [87], [26], [59], [115]. A Hele-Shaw flow [55], [56] is the flow
of a viscous incompressible fluid (e.g. oil) in the narrow gap between two
parallel plates. In the two-dimensional view, taking averages across the gap,
this turns out to be a potential flow with the fluid pressure as the potential
function.

In our case the fluid should only occupy a finite region at each instant
of time and the fluid boundary (in the two-dimensional view) should be
free, which means that the pressure there should be constant (say zero).
The driving force will be suitable sources, e.g. that more fluid is injected
through one or several holes in one of the plates. See Figure 6.

In the simplest case, injection at one point call it a, the mathematical
model becomes the following. An initial (bounded) domain Dy C R? is
given with a € Dgy. If D; denotes the region of fluid at time ¢, the fluid
pressure in Dy will be (up to normalization) the Green function Gp, (-, a)
of D; with pole at a. It follows that the fluid velocity will be proportional
(let us say equal) to the gradient —VGp,(-,a) and hence that 9D, has to
move with velocity —VGp,(-,a)|ap,. (Some smoothness of 0D; is needed
for this to make sense.) In other words, dD; is to move with normal velocity
—-0Gp,(-,a)/0n.

Now we recall (2.6) that —0Gp,(-,a)/dn is the same thing as the density
of harmonic measure w, of dD; with respect to a, which in turn is an instance
of classical balayage: w, = Bal (44, Df). On the other hand, as a general fact,
the normal velocity of a propagating boundary 0D, equals the density with
respect to arclength measure on dD; of the distributional derivative % XD,
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(just consider the differential quotients to realize this). Thus we arrive at
the Hele-Shaw law for the motion of dD; in a distributional form:

d
XD = Bal (8, Dy). (6.1)

One may call this “motion by harmonic measure”. Clearly (6.1) makes sense
in any number of dimensions, and we shall henceforth have no restriction on
the dimension.

The forward Hele-Shaw problem is that of finding the evolution {D; : 0 <
t < oo} (or at least 0 < t < €) governed by (6.1) when Dy is given. If
all the 0D, are smooth and depend smoothly on t there is no difficulty in
giving a precise pointwise meaning to (6.1), and we call such an evolution
a strong (or classical) solution of the Hele-Shaw problem. Clearly any
strong solution will be monotone increasing;:

D, C D; for s < t.

Theorem 6.1. Assume {D; : 0 <t < oo} is a strong solution of the Hele-
Shaw problem. Then

Bal (4 + XDo, 1) = XD,- (6.2)

Proof. Formally one may just integrate (6.1) with respect to time from ¢ = 0
to an arbitrary ¢ > 0 to obtain

XDy — XDo = Bal (t(sa,XDS)a

which becomes (6.2) after adding xp, to both members. However, the ap-
pearence of the density xps = 1 — xp, above is not that easy to motivate,
so let us indicate also a more genuine derivation of (6.2).

A useful way to express (6.1) is to say that for any test function ¢

d aGDt('aa’)
— pdm = p(—————=)ds. 6.3
il o) (6.3)
Choosing ¢ to be harmonic in D; this becomes
d
— dm = 6.4
i |, eim = e, (6:4)

and upon integrating from ¢ = 0 to an arbitrary ¢ > 0,
/ wdm — wdm = tp(a). (6.5)
Dy Do

Now, a good harmonic function in D; (and all Dy with 0 < s < t) is the
Newton kernel with pole outside Dy, namely ¢(z) = U(z — y) with y ¢ Dy.
Then (6.5) becomes

UPH(y) = U0 (y) = U (y).

Thus
UPt = yPotta gutside D;. (6.6)
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Similarly, taking ¢ to be just superharmonic in D; one gets (6.4) and (6.5)
with the equality replaced by <. Then it is allowed to take ¢(z) = U(z —y)
for any y € R", which gives

Ubr < yPottda in ™. (6.7)

But now we are done because Lemma 5.1 tells that (6.2) is equivalent to
(6.6), (6.7) taken together.
O

We may call any family {D; : 0 < ¢ < oo} of domains (or open sets)
satisfying (6.2) a weak solution of the Hele-Shaw problem. There are
several advantages with this concept of weak solution. First, it always exists,
for any (bounded) initial domain Dy. Indeed, (i) of Theorem 5.3 shows that
Bal (tdq + XDy, 1) always is of the form x p, for some D;. Second, it is unique
if one disregards differences of nullsets (or one may normalize D; to be
saturated: Dy = [Dy]). Third, it is global in time (0 <t < 00). Finally, any
Dy, t > 0, can be obtained directly from Dy (the intermediate domains need
not be computed).

As a corollary of Theorem 6.1 we see that on any interval 0 < ¢t < ¢ there
exists at most one strong solution of the Hele-Shaw problem. Existence of
strong solutions is a more delicate question. A local, in a short two-sided
time interval —¢ < t < g, strong solution exists if and only if 0Dg is smooth
real analytic [116], [86], [29], [111], [112].

Some further good properties of weak (and a fortiori strong) solutions of
the Hele-Shaw problem is that they regularize in time. Asymptotically, as
t — oo, they approach circular shape, although in the meantime they may
very well undergo topological changes. All this follows from Theorem 5.4:
denoting by K the closed convex hull of Dy we have that D, \ K is always
smooth analytic, the inward normals from points on dD; \ K intersect K
and (in the case of two dimensions) do not intersect each other before that.
If the initial domain Dy is starlike with respect to the injection point, then
D; remains starlike for all ¢ > 0 [22] (Theorem 4.1), [50] (Theorem 3.12),
[60]. See also [75]. Thus no topological changes can occur in this case, and
one can show that the weak solution is actually a strong solution on all
0 <t < oo [44], [51].

The easiest way to understand the good regularizing properties of the for-
ward Hele-Shaw problem is perhaps via its probabilistic formulation. Recall
that harmonic measure w, = Bal (é,, D¢), which is a (positive) measure of
total mass one on 9D, gives the probability distribution for the first place
of exit from D for a Brownian motion particle started at the point a € D (if
FE C 0D, the probability that the particle will reach dD for the first time at
some point of E' is wy(F)).

Therefore one can think of the Hele-Shaw problem in probabilistic terms
and, for simplicity, in discrete time and space as follows: at each unit of time
a Brownian motion particle is emitted at a € D. This moves around until
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it reaches 0D, and there it ”eats up” a unit piece (in terms of volume) of
D¢ and then dies. Then comes next random particle, which eats up another
piece of what remains of D¢, etc..

From this it is clear that dD; will become smoother and smoother and
approach circular shape, because if some piece of 0Dy is highly exposed (like
0D, having an inward cusp) or is very close to a, then this piece will have a
higher probability of being eaten up quickly. It is equally clear that driving
the Hele-Shaw problem backwards in time will result in an ill-posed and
unstable process. This will be discussed a little more in Section 7.

An extensive bibliography on Hele-Shaw type problems can be found at
[36]. For the Hele-Shaw problem related to potential theory, see also [78].

For the rest of this section we shall mention some variants of the Hele-
Shaw problem. First, Hele-Shaw flow with a more general source term than
dq has a corresponding description in terms of partial balayage. With the
sources represented by a measure y, (6.2) becomes

Bal (tpu + xpo, 1) = XD, (6.8)

(t > 0). It is convenient, but not absolutely necessary, to assume that the
sources are located in Dy because then (i7) of Theorem 5.3 ensures that
Bal (tp + xp,, 1) really is of the form x p, for some open set D;. In the case
p = §, we may however very well let the point a be outside Dy (for weak
solutions). Still more general forms of continuous balayage are obtained
by replacing tu, or even tu + xp,, by a more general increasing family of
measures u(t).

For continuous balayage the first of the two conditions in Lemma 5.1
is often automatically satisfied if the family D, is assumed a priori to be
monotone or continuous, see [95], Theorem 10.13 and Corollary 10.14. We
may state a result in this direction as follows.

Theorem 6.2. Let u(t), t > 0, be a monotone increasing family of measures
(i.e., p(s) < u(t) for s < t) with the total masses [du(t) continuously
increasing in t. Let {D; :t > 0} be a family of open sets such that

Bal (4(0)) = XD

UL = gr® outside D;.

Then, under some mild reqularity assumption on e.g. u(0) (see the proof),
we have

Bal (u(t)) = xp, (t>0)

provided any one of the following additional conditions hold:

(i) Dy is continuous in t in the sense that t — |Dy N B| is continuous for
every ball B.
(i) {D¢} is monotone:

D, C Dy for s < t.
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Proof. Tt is enough to prove that D; C €4, where @, = Q(u(t)) is the
saturated set for Bal(u(t)), because then necessarily D; = €; a.e. and
everything follows. By Lemma 5.2

0Dy C Q. (6.9)
From this we first conclude

as follows.

By assumption, (6.10) holds for ¢ = 0. If (6.10) fails for some ¢ > 0, pick
a small ball B C Dy \ Q. Since {Q;} is monotone increasing it follows that
BNQ, =@ forall0 < s <t Fors = 0 this gives BN Dy = @. But
BND; = B and by (6.9) we have BN9Ds; C BNQ, = @ for all s < ¢. Thus
s — |Ds N B| can not be continuous.

In summary, we have proved (6.10) in case (¢) holds. Using that |D;| =
J du(t) is continuous in ¢ one finds that (iz) implies (i), so (6.10) holds in
any case (7) or (7).

Now (6.10) implies Dy = Q4 (a.e.) if just |0 = 0 (zero volume). It is for
this that some mild extra assumption is needed. If e.g. u(t) = td + xp, it
is more than enough to assume that Dy has C! boundary. And it is always
true [14], [66] (Lemma 2.11) that |09 \ supp (u(?))| = @. O

For the one point injection at the origin in two dimensions we conclude
the following.

Corollary 6.3. Let {D; : t > 0} be simply connected domains with C*
boundaries in R2 = C such that

/zkdm: dm  (k=1,2,...),
Dy Do

| Ds| = [ Dol + 1.
Here z =z +1y. Then
Bal (¢ + XDO) = XDy
if {D} satisfies (i) or (ii) in Theorem 6.2.

The integrals of motion [ D, 2kdm (k = 1,2,...) for this Hele-Shaw prob-
lem were discovered by S. Richardson [87]. The corollary says that the
conservation of these complex moments characterizes a weak solution (un-
der the stated assumptions and up to scaling of time). The solution in the

corollary will actually be a strong solution for ¢ > 0 because the assumptions
are enough to guarantee the existence of such a solution.

Proof. The set of equations is equivalent to

/D ple)im = /D ol)im + 15(0)
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holding for all ¢(z) = 1,z,22,..., hence for all linear combinations of these
functions, hence for sufficiently many analytic and (taking real and imagi-
nary parts) harmonic functions so that any Newton kernel ¢(z) = U(z — ()
with ¢ ¢ Dy can be approximated. Thus UPt = UPo + U outside D;. Now
the theorem can be applied. [l

Next, one may study Hele-Shaw flow (and partial balayage in general)
with the density (weight) p = 1 replaced by other weights. In analytic
function theory (hence n = 2) one often runs into weights of the kind p = | f|?
where f is an analytic function (which may have zeros). See e.g. [95] (the
appendix), [52], [11], [63].

Let us just mention one recent result in this context. Note that the weight
p = |f|? (with f analytic) is logarithmically subharmonic: Alogp > 0. In
[52], [53] the authors prove that for any logarithmically subharmonic weight
p satisfying certain smoothness conditions, the solution family {D; : t > 0}
for the weighted Hele-Shaw problem, starting from empty space,

Bal (84, p) = pxD;

remains simply connected for all ¢ > 0, and is in fact a strong solution.

In [53] this result is applied to exhaust a hyperbolic manifold (in two
dimensions) by simply connected domains and providing it with a natural
system of polar coordinates. Other topological results for Hele-Shaw flow
on Riemannian manifolds (like surfaces embedded in R?) can be found in
[114].

Another variant of Hele-Shaw flow is "motion by equilibrium measure”.
This means that the fluid region D, contains a neighbourhood of infinity with
a source (or sink) there. In the notation of (2.8) the governing equation will
be

iXDt = Bal (@duo, Dy).

dt
Integrating this as before should give, in principle,
xp, = Bal (xp, + tadso, 1). (6.11)

However, the right member here does not make obvious sense because Dy is
too large. Also, o, has only a symbolic meaning. However everything can
be resolved, either by replacing the Newton kernel with a modification of it
which has better properties at infinity, see [65], [23], or by working in terms
of the complements K; = Df instead.

In view of Lemma 5.1, (6.11) should be equivalent (formally) to UP* <
UPottades holding everywhere with equality outside D;. Working with the
compacts K; instead of Dy, what one really comes up with, and which makes
good sense, is the system

UKt > UKo — 4, in R, (6.12)

UKt = UKo — 4, in K. (6.13)
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o= /@ds / e

where (; is the equ111br1um constant (the potentlal on Kj) for the mass «
on K, and Cap (K;) = 5 the capacity, see (2.9).

To actually derive (6.12), (6.13) one may use the Hele-Shaw law in a form
analogous to (6.3), namely

d / Opt
— pdm = p—ds,
dt Kt 8Ky on

where p; is the equilibrium potential for the mass o on K; and ¢ ranges over
suitably regular test functions (so that the equation makes sense). Taking
o(z) = U(x — y) with y on either side of 0K, gives (6.12), (6.13).

The interpretation (6.12), (6.13) of (6.11) is the weak formulation of the
motion by equilibrium measure problem forward in time. Taking the gradi-
ent of (6.13) we see that

Here

VUK = 0 in K,

i.e., that the difference region Kj \ K; is a null-cavity domain, cf. [97].
This is of course just the integrated version of the fact that the equilibrium
distribution on K; produces no gravitational (or electrostatic) field inside
K;. See also [103].

It also follows that K; will disappear in finite time and that the last
surviving point(s) will be points where UX0 attains its maximum. Hence
VUKo = ( at these extinction points. See [27], [114].

Let us say just a few words about the ill-posed problem obtained when
motion by equilibrium measure is driven backwards in time. It has been
shown in [61], [23] that the only cases in which a solution K}, even in a weak
sense, exists for all —oo < ¢ < 0 and exhausts all R” as t — —oo is when K
is an ellipsoid (or a degenerated version of a such). Indeed, K needs to be
what is called a null-quadrature domain, see [94], [31]. There however
exists an abundance of solutions which do not exhaust R™ but still exist for
all —oo <t <0, see [23].

The probabilistic version of the ill-posed version of motion by equilibrium
measure has been studied under the name DLA, diffusion-limited aggrega-
tion, at least in two dimensions. Here Brownian motion particles are emitted
at infinity, walk around at random and eventually (in case n = 2) reach the
7aggregate” K; and attach to it. One may think of K; as a growing crystal
of ice, for example. See [117], [69], [16].

7. INVERSE BALAYAGE AND POTENTIAL THEORETIC SKELETONS

Continuing the discussion of the Hele-Shaw problem (and now back to
bounded fluid regions), there is a version of it which is more canonical than
the others because there is no particular source term. This is the squeezing
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version: the dynamics of D, is produced by squeezing the two plates together
so that at time ¢ the distance between them is, say, e~*. Cf. [77], [112].

This turns out to be equivalent to having a uniform source on D; for each
t, and the infinitesimal law, replacing (6.1), will therefore be

d
EXDt = Bal (XDt?Dg)' (71)

We leave it as an exercise for the reader (or see [42]) to show that the
integrated version of this is

e 'xp, = Bal(e *xp,,e”")
for any s < t, or equivalently
xp, = Bal(e' *xp,,1). (7.2)
Perhaps (7.2) looks rather more plausible than (7.1), so one may equally
well believe in (7.2) directly.

In any case, (7.2) will be the starting point for the discussions in this
section. If Dy is given, then Dy for any ¢ > 0 can be produced (uniquely)
by taking s =0 in (7.2):

xp, = Bal (e"xp,, 1)-
If the chain {D;} also involves negative values of ¢ we see that these D; have
to satisfy

XD, = Bal (eitXDw 1)
(t < 0). However, this equation by no means determines D; uniquely from
Dy.

Now assume that Dy is such that there exists a global, in both time
directions, strong solution {D; : —oo < t < oo} of (7.1). This is a relatively
rare situation, but there are a number of interesting examples. The domains

D; will then be homeomorphic to balls because strong solutions are not
allowed to change topology. Consider the mass distributions

u(t) = e txp,.
By (7.2) they are all graviequivalent. Indeed, Lemma 5.1 tells us that (7.2)
is equivalent to

Ures) < ) in R",
UHs) = r® outside D,
(s < t). We also have
u(t) 20,
supp 4(t) = D,
|Dy| = €'|Do| — 0 as t — —oc.
It follows that, as ¢ — —oo, the measures u(t) converge weakly to some

limit measure p satisfying
p =0,

|supp p| = 0.
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1 D, Do D,

ta-00 t<0 t=0 0 >0

Figure 7: Squeezing version of Hele-Shaw problem, from skeleton to a round
blob.

(We are stating positivity of u explicitly because it will be useful at times
to be able to relax on this condition.) We also get, from (7.2),

xp, = Bal (e'y,1) (=00 < t < 00), (7.3)

in particular

X0o = Bal (1,1). (7.4)
In addition to the above, since all the D; had to be topological balls, the
topology of supp p will be such that it does not disconnect R™.

It is natural to think of the y obtained above as a potential theoretic
skeleton for Dy, and this is the point of view we shall take from now on.
We then relax on the smoothness assumptions to allow for weak solutions
of the squeezing Hele-Shaw problem. Given any bounded domain 2 C R”
(which is considered as a body of density one) we say that y is a potential
theoretic skeleton or mother body for  if it satisfies the following
conditions (”axioms”).

(M1) U? = U* outside Q,
(M2) U%<U*inR",
(M3)  p>0,

(M4)  [suppu| =0,

(M5) supp p does not disconnect any part of Q from (02)°.

The last axiom says more exactly that for any = € 2\ supp u there is an arc
in R \ supp x4 connecting x to some point in R? \ €.

Conditions (M1), (M4) and (M5) are quite demanding and express that
the potential of © has a harmonic continuation, given by U*, from ()¢ to all
of R" minus a closed nullset, namely supp p. Condition (M2) complements

(M1) so that they together say that
xq = Bal (p,1). (7.5)
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The term "mother body” (or ”maternal body”) comes from the Bulgarian
school of geophysics led by D. Zidarov [119] and probably is thought of as
indicating that it is something which generates the original body €2, as in
(7.5). However, the pictures we have of mother bodies rather remind of
skeletons than of healthy mothers.

If Q has a mother body p it is natural to consider the D; given (up to
nullsets) by

xp, = Bal (', 1)

(—oo0 < t < 00) as a weak solution of the squeezing Hele-Shaw problem with
initial domain Dy = ). However, it is relatively rare that a mother body
exists, and when it exists it need not be unique. Indeed, the problem of
finding a mother body, as well as any Hele-Shaw problem backward in time,
is severely ill-posed and unstable. Nevertheless, there do exist interesting
and general classes of domains for which mother bodies exist, classes which
are dense among all domains in terms of ordinary topologies (e.g. Hausdorff
distance between domains). These mother bodies are on the other hand
extremely sensitive to small perturbations of the domains (see Example 5
below).

One way to think of (7.5), even if u does not satisfy all of the axioms
for a mother body, is that u stores the information of €2 in a compact form.
This is useful not only for the backward Hele-Shaw problem but generally if
one wishes to make smooth variations of €. If for example y is of the form
= (14 p)x, for some subdomain w C © and some positive function p in
w, then one can by (7i) of Theorem 5.3 vary p freely among such functions
and all the time obtain a domain Q = Q, as in (7.5). When 0 is smooth
real analytic such a measure y, with @ C €, can always be found (see
[39]) and the smoothness of the domain variation follows from [104], [62]
(Corollary 5.1.4) (see also [14]). Domain variations of this kind have been
used in [95] (section 4), [40], [41] (Theorem 4.3) and they can in particular
be used to prove local existence of strong solutions of Hele-Shaw problems.

We now give some examples of mother bodies.

EXAMPLE 1. For Q2 = B, the unit ball in R”, ;4 = |B|d is the unique mother
body.

EXAMPLE 2. Let € be the ellipse in R? given in terms of the coordinates z
and y by
2 42
ﬁ + b—2 <1,
where a > b > 0. Then the measure p on the focal segment [—c,c] (¢ =

Va2 — b?) defined by
2ab
du:c%\/CQ—aﬂdx (—c<z<c)

is a mother body for Q, and it is unique [110]. See Figure 8. The inward
normals illustrate Theorem 5.4.
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Figure 8: The mother body of an ellipse.

Figure 9: The ridge of a convex polyhedron.

Similarly, for any ellipsoid in higher dimensions there is a mother body
sitting on the focal ellipsoid (an ellipsoid of codimension at least one) [70],

[71).

ExamPLE 3. Every convex polyhedron 2 C R" has a unique mother
body. It sits on the ridge of the polyhedron, i.e., the set of those points in
Q which have at least two closest neighbours on 0€2. See Figure 9.

It might be instructive to sketch the proof of the just mentioned fact (more
details can be found in [43]). Constructing the mother body, s, amounts to
the same thing as constructing the function

u=U"-U"
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This should satisfy, in particular,

u > 0,
u = 0 outside (2,
Au = xq — p.

Here the first two requirements correspond to conditions (M2) and (M1) in
the definition of a mother body while the third condition gives the relation-
ship between u and u.

Let d(z,€Q¢) denote the distance from a point z € R” to the complement
of Q. Defining u by

u(z) = %d(m, Q)2

the above three properties hold with

1

MZXQ—A(§

In a neighbourhood of any point in 2 which have only one closest neighbour
on 99, d(-,9°) equals the distance to a fixed hyperplane, hence is a linear
function with slope one. It follows that 4 = 0 in such a neighbourhood.
This shows that supp u C R, where R denotes the ridge.

It is easy to see that actually suppu = R. Therefore, if z € Q\ supp u
then z has exactly one closest point ¥y on 9. Clearly any point on the
segment from x to y also has y as the unique closest point on 02, hence all
this segment is in 2\ R = Q\ supp . From this (M5) follows, and the other
axioms are immediate to verify.

To show that the above constructed p is the unique mother body, only
axioms (M1), (M4) and (M5) are needed. So assume v is any measure
(even a signed measure) satisfying these conditions and we shall show that
v = . Set

d(-, Q).

v=U"-U"
Using the definition of U” and Fubini’s theorem one easily verifies that both
v itself and its gradient Vv are locally integrable in R™.

We can write ) = N Hj where the H; are open half-spaces and m is
minimal. By (M5) for v, each point z € Q \ supp v can be connected with
R® \ Q via a curve in R” \ suppv. In a neighbourhood of such a curve
Av = xq. If the curve enters Q through for example 0H; (only) it follows
that v = %d(-,Hj)2 holds in the beginning (when the curve enters ), and
then it automatically holds throughout the curve. In conclusion, for every
z € Q\ suppv,

v(z) = %d(x,Hj)Q for some j. (7.6)

Taking the gradient gives, with C = diam (Q2),
|[Vu(z)] < C < o0

for all z € Q \ suppv, hence a.e. in Q.
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Figure 10: Zidarov’s counterexample.

u<0 here

Figure 11: Axiom (M 3) violated.

Now, since Vv is locally integrable its almost everywhere derivative rep-
resents its distributional derivative. Hence Vv € L in the sense of distri-
butions, i.e., v is Lipschitz continuous. From this it follows that v in (7.6)
can change representation between two j only on R. This easily leads to the
conclusion that v = u and hence that v = y, as desired.

EXAMPLE 4. For nonconvex polyhedra in two dimensions mother bodies
still exist [47] but they are not unique. See Figure 10 for a counterexample
due to D. Zidarov [119].

The two mother bodies in Figure 10 are obtained by decomposing the
polyhedron into two convex polyhedra (a square and a rectangle) in two dif-
ferent ways and using the unique mother bodies for the convex polyhedra.
We see that the result does not respect the symmetry of the polyhedron
along the diagonal through the nonconvex corner. If we allow signed mea-
sures, violating (M3), we can however find a skeleton which respects this
symmetry, and which looks more natural in general, see Figure 11. In this
case 4 is negative inside the nonconvex corner.
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-

Figure 12: No convergence of mother bodies.

In general, a skeleton as the above one (violating (M 3), but respecting the
geometry better) can be constructed for any polyhedron in two dimensions
[109]. The situation for nonconvex polyhedra in higher dimensions is not
fully clear at present. One thing which is known is that there are at most
finitely many signed measures y satisfying (M1), (M4) and (M5), and that
all these also satisfy (M2), see [47].

Let us next give an example of instability of mother bodies.

EXAMPLE 5. For = B(0,1) C R?, the unit disc, 4 = 74 is the unique
mother body (Example 1). Approximate this by a regular polygon €,
with m corners on the unit circle. According to Example 3 its unique mother
body uy, sits on the ridge of €2,,, the ridge in this case consisting of the m
radii ("spokes”) from the center of €2, to the corners. See Figure 12.

Setting u,, = Utm — U d,, = d(-,QS,) we have u,, = £+d?, and

—2
Vi, = dnVdy,.

The density of u,, on each of the m spokes equals the jump of the normal
derivative of u,, across it, hence is proportional to d, (note that |Vd,| = 1).
The constant of proportionality is obtained from [ dpp, = || and one ends
up with
Ay, = 2sin — . (1 —r)dr
m
on each of the radii in the ridge, r denoting the distance from the center.
Now the point with this example is that

tm = 4 @S M — 00,

despite €2,, — 2 in many natural topologies. Indeed, since the ridge consists
of m radii distributed over an angular opening of 27 we have, in polar
coordinates and relating u,, to area measure,

i ~ 25in - (1= r)dr - "do — (X = 1)rdrdo
m 2 r
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as m — oo. The limit measure here differs quite a lot from y = 7é. For
example, one-quarter of its mass is outside the disc of radius one-half.

Returning to the general discussion of mother bodies, the following propo-
sition shows that the axioms (M1)-(M5) are strong enough to guarantee
several natural optimality properties (cf. [1], [2], [67], [74]).

Proposition 7.1. Let u be a mother body for Q). Then among measures v,
vj satisfying (M1) and (M3) we have that

(i) supp i is minimal as a set: if suppv C supp p then v = p.
(ii) p is maximal with respect to < (see Section 4): if p X v then v = p.

(iii) p is extremal as a point on the convex set defined by (M1), (M3): if
u= %(1/1 + v2) then pu = v = vs.

Proof. 1t is enough to prove that U¥ = U* (or U% = U¥, in case (4i7))
in R" \ suppy (hence a.e. in R"). Let D be a component of R" \ supp p,
set w = UY — U* and we shall show that w = 0 in D. We have w = 0 in
D\ Q # @ by (M1) and (M5).

In case (i) we get w = 0 in all D by harmonic continuation.

In case (i7) we have w > 0 and —Aw > 0 in D. Hence either w > 0 in all
D or w =0 in all D. But the first alternative has already been excluded, so
we again get w =0 in D.

In case (4i7) we have supp %(Vl + 1) = supp vy U supp vo. Hence
supp v; C supp u, and we are back to case (7). O

Although there is no strict uniqueness of mother bodies in general, the
axioms are at least sufficient to prevent continuous deformations. This is
(somewhat vaguely) expressed in the following proposition.

Proposition 7.2. Assume t — p(t) is a smoothly moving family of mother
bodies for Q. Then [i(t) = 0, i.e., u(t) = p(0) for allt (dot denotes derivative
with respect to t).

Proof. By ”smoothly moving” we mean that p(¢) moves in a smooth vector
field £ = &(z,t) in Q. Then

fu(t) +div (u(t)) =0
(continuity equation, or balance of mass), by which

£(t) is a distribution of order at most one, (7.7)

supp u(t) C supp u(t). (7.8)
We have UM = U? outside Q by (M1), hence

UMY = 0 outside Q.
Therefore, by harmonic continuation, using (7.8) and (M5),

U =0 in R \ supp u(t),
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hence a.e. in R*. It follows from (7.7) that UA® ¢ L} ., hence we conclude

that UA") = 0 as a distribution, so that () = —AUMY = 0. O

A way to ensure strict uniqueness of mother bodies is to impose something
which is stronger than (M5). One example is

(M6) supp 4 does not disconnect any open set.

This means that for any open set D, D \ supp y is connected whenever D
is. Clearly, (M6) implies (M5). We have

Proposition 7.3. If u and v are two mother bodies for Q and one of them
satisfies (M6), then v = p.

Proof. The proof follows that of Proposition 7.1: keeping the notations from
that proof, if v satisfies (M 6) then supp v does not disconnect D. Therefore
w = 0 in D \ supp v by harmonic continuation, hence w = 0 a.e. in D, which
is enough for the conclusion. O

One example in which (M6) holds is when g has support in a finite number
of points. In this case it is immediate from Theorem 5.3 and Proposition 7.3
that p is the unique mother body for the swept domain (or open set) Q =
Q(u). In the case of two dimensions the boundary of this € is an algebraic
curve, as was remarked in Section 5. The question naturally arises whether
every domain bounded by an algebraic curve has a mother body.

Assume to this end that we have a domain 2 C C such that 01 is given
by

P(z,z)=0 (z € 09),
where P(z,w) is a polynomial (satisfying P(z,w) = P(w,Z) to ensure that
P(z,7Z) is realvalued). Solving P(z,w) = 0 for w gives an algebraic function
which close to 92 has a single-valued branch w = S(z), called the Schwarz
function of 09 [21], [4], [107] and which is characterized by

S(z) =z on 0.

Using the Schwarz function it is easy to perform at least one major step in
the construction of a mother body, namely that of harmonic continuation
of U down to a small set. For simplicity, let us just consider VU instead,
which is essentially the same thing as the Cauchy transform ¥q. For this
we have, in the presence of an algebraic Schwarz function and for z ¢ Q,

. 1 fdm(¢) 1 d¢d¢
XQ(z)_;/Q z—( _%/gz—g

1 [T 1 S(Qde
21 Jga 2z —C 2w Joga z—C
A graviequivalence of the weak form (5.6), i.e. xo = ji outside € in present

notation, means that the above expression should be identified with

m@:1/@&)

w) z—C(
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Now S(z) being algebraic means that it has singularities in 2 only in form
of poles and/or branch points. Therefore the contour 92 of integration in
J 90 Sgg_)g( can be deformed down to single points and suitable cuts between
branch points, the cuts being chosen so that S(z) becomes single-valued
on the complement. The poles are uniquely determined, but the cuts are
subject to certain degrees of freedom. However, the requirement (M3) that
> 0, or just that y shall be real-valued, singles out just a few possibilities
for the cuts. Indeed, comparing the expressions for xo and ji we see that in
order to have u real-valued, the cuts v have to satisfy

Re ([S(2)],dz) = 0 along 7. (7.9)

Here [S(z)]y denotes the jump of S(z) across 7.

Clearly (7.9) permits only finitely many directions of 7 at each point
z € ). All candidates of mother bodies for €2 are obtained from the poles of
S(z) and by filling in the finitely-valued direction fields in 2 defined by (7.9),
to get the admissable cuts. It follows that {2 can have at most finitely many
mother bodies. See [102] for further discussions and results, for example,
analysis at the branch points of S(z).

It may very well happen that none of the candidates obtained above really
satisfies all of (M1)-(M5), so a domain bounded by an algebraic curve need
not have a mother body. The simplest example of this is the conformal
image of the unit disc under a univalent polynomial of degree two.

We have so far discussed the case that £ is a rational function and the
more general case that the Schwarz function S(z) is an algebraic function.
What about the still more general case that f is an algebraic function?

We shall just indicate one recent result on this question. Let

Qm(z)=(2—21)...(2 = 2zm)

be a monic polynomial of degree m. Then one branch of Q,,(z) /™ behaves
like 1/z at infinity, hence as the Cauchy transform of a measure. In [8] the
authors show, among many other things, that there exists a unique measure
p (with compact support) satisfying

coovm 1 .
f(z) —Wa,.e. inC

and that this measure in addition satisfies

(7) suppp is a finite union of smooth curves (which can be calculated ex-
plicitly),
(13) {#1,.--,2m} Csupppu C conv{z1,...,2m},
(#31) supp s and C \ supp p are both connected.
Although there is no domain 2 present here we see that whenever we

make partial balayage of u, it will be a mother body for the domain Q(u)
obtained.
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8. EXPERIMENT

In this section we show pictures of a real Hele-Shaw flow. The experiment
is performed by pouring a blob of hair schampoo on a glass plate and then
pressing slowly with another glass plate from above. Thus we consider the
squeezing version of the Hele-Shaw moving boundary problem. Figure 13
below shows the performance of the experiment.

The well-posedness and stability of the process shows up by the fluid blob
quickly becoming more regular and circular (this can be seen in pictures
two to five in Figure 13). Next the process is reversed by separating the
plates (the last pictures in Figure 13) while trying to keep them as parallel
as possible. One may need to use a knife or similar to bend the plates
apart. Then ”fingers” on the boundary immediately start to develop, and
eventually a skeleton pattern arises, which reminds quite a lot of the ridge
structure in mother bodies for polyhedra. The more detailed pictures in
Figures 14 and 15 show this clearly.

This experiment was first shown to me by Sam Howison at a conference
in Stockholm 1989. Pictures similar to those in Figures 13-15 can be found
in many papers and books. One example is the popular science book [81]
(p-194 there).
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