
Weighted Bergman spaces and the integral
means spectrum of conformal mappings

H̊akan Hedenmalm and Serguei Shimorin
at the Royal Institute of Technology, Stockholm

1 Introduction

The class S. The class of univalent functions ϕ from the open unit disk D into the
complex plane C, subject to the normalizations ϕ(0) = 0 and ϕ′(0) = 1, is denoted by S.
It is classical that for ϕ ∈ S, we have the distortion estimates

1− |z|
(1 + |z|)3

≤ |ϕ′(z)| ≤ 1 + |z|
(1− |z|)3

, z ∈ D. (1.1)

The above-mentioned estimates are sharp, as shows the example of a rotation of the Kœbe
function

κ(z) =
z

(1− z)2
, z ∈ D,

which is in S and maps the disk onto the plane minus the slit ] − ∞,− 1
4 ]. After all, a

simple calculation shows that

κ′(z) =
1 + z

(1− z)3
, z ∈ D.

It is of interest to better understand the sets in D where |ϕ′(z)| is either large or small.
For instance, |κ′(z)| is big near the boundary point z = 1, and small near z = −1, and
elsewhere, the size is quite modest. One way to measure the average growth or decrease is
to consider the integral means

Mt[ϕ′](r) =
1

2π

∫ π

−π

∣∣ϕ′(reiθ)∣∣t dθ, 0 < r < 1,

where t is a real parameter. It is clear from (1.1) that

Mt[ϕ′](r) = O

(
1

(1− r)β

)
as r → 1−, (1.2)

holds for some positive β that depends on t. The infimum of all values of β for which the
estimate (1.2) is valid is denoted by βϕ(t). This is known as the integral means spectral
function for ϕ, or simply the integral means spectrum of ϕ. The universal integral means
spectrum for the class S is then defined by

BS(t) = sup
ϕ∈S

βϕ(t).

Each βϕ(t) is a convex function of t, and therefore, BS(t) is a convex function of t as well.
It is a consequence of (1.1) plus testing with ϕ(z) = z that

0 ≤ BS(t) ≤ max
{

3t,−t
}
, t ∈ R. (1.3)

We call this the trivial bound.
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For certain t, the exact values of BS(t) are known. Namely, (see [6])

BS(t) = 3t− 1 for
2
5
≤ t < +∞,

and there exists a critical value RCM, 2 ≤ RCM < +∞ such that

BS(t) = −t− 1 for −∞ < t ≤ −RCM,

whereas −t − 1 < BS(t) for −RCM < t < +∞ (see [4]). The exact value of the universal
constant RCM is not known. The well-known Brennan conjecture is equivalent to the
statement that RCM = 2, which may also be expressed as BS(−2) = 1.

The class Σ. We should also mention the related class Σ of conformal maps ϕ which map
the external disk

De =
{
z ∈ C∞ : 1 < |z| ≤ +∞

}
into the Riemann sphere C∞ = C ∪ {∞} in such a way that

ϕ(z) = z +O(1), |z| → +∞.

It is classical that for ϕ ∈ Σ, we have the distortion estimates

|z|2 − 1
|z|2

≤ |ϕ′(z)| ≤ |z|2

|z|2 − 1
, z ∈ De. (1.4)

For ϕ ∈ Σ, we consider the integral means

Mt[ϕ′](r) =
1

2π

∫ π

−π

∣∣ϕ′(reiθ)∣∣t dθ, 1 < r < +∞,

and in this case, we are interested in the behavior of this quantity as r → 1+. The infimum
of all β such that

Mt[ϕ′](r) = O

(
1

(r − 1)β

)
as r → 1+

holds is denoted by βϕ(t). And BΣ(t) – the universal spectral function for the class Σ – is
defined as the supremum of all βϕ(t), where ϕ ranges over all elements of Σ. This function
BΣ(t) is a convex function of t, for essentially the same reasons that BS(t) is. The trivial
bound of BΣ(t) based on the pointwise estimate (1.4) is

0 ≤ BΣ(t) ≤ |t|, t ∈ R. (1.5)

It is known that
BΣ(t) = |t| − 1, t ∈]−∞,−RCM] ∪ [2,+∞[,

where the constant RCM is the same as before, so the remaining interval [−RCM, 2] is what
should be investigated.

Comparison of spectra. By analyzing the harmonic measure of the set of points where
the boundary of a simply connected set is close to the origin, Nikolai Makarov found in
[11] the following relation between the two spectral functions:

BS(t) = max
{

BΣ(t), 3t− 1
}
, t ∈ R. (1.6)

We should tell the reader that Makarov’s original statement deals with Sb, the class of
bounded conformal maps from D into C that preserve the origin, in place of the class Σ,
but that these classes are sufficiently similar for the argument to carry over.
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Here, we intend to study mainly the spectral function BS(t). We shall obtain estimates
that are considerably better than what has been known up to this point. However, we have
not been able to settle the part of the so-called Kraetzer conjecture [10] that applies to BS ;
this conjecture claims that

BΣ(t) =
t2

4
, −2 ≤ t ≤ 2.

Bergman space methods. We prefer to obtain a reformulation of the definition of βϕ(t)
for ϕ ∈ S. It is easy to see that, for −1 < α < +∞,∫ 1

0

Mt[ϕ′](r) (1− r)αdr < +∞ =⇒ Mt[ϕ′](r) = O

(
1

(1− r)α+1

)
as r → 1−,

Mt[ϕ′](r) = O

(
1

(1− r)α+1

)
as r → 1− =⇒

∫ 1

0

Mt[ϕ′](r) (1− r)α+εdr < +∞,

for each positive ε. For a given parameter α with −1 < α < +∞, we now introduce the
Bergman space Hα(D), consisting of those holomorphic functions f on D with

‖f‖2α =
∫
D

|f(z)|2 dAα(z) < +∞,

where we use the notation

dAα(z) = (α+ 1)
(
1− |z|2

)α dA(z), dA(z) =
dxdy
π

(z = x+ iy). (1.7)

The above expression defines a norm on Hα(D) which makes it a Hilbert space. In view of
the above relationships, we have the identity

βϕ(t) = inf
{
α+ 1 :

(
ϕ′
)t/2 ∈ Hα(D)

}
. (1.8)

We think of this as a kind of “Hilbertization” of the problem.
In this paper, we obtain estimates of the norms∥∥∥(ϕ′)t/2∥∥∥

α

which are uniform in ϕ ∈ S; in particular, this leads to estimates of the function BS(t).
Our methods are Bergman space techniques in combination with the classical tools of
Geometric Function Theory, such as Grönwall’s area theorem. To be more precise, we
exploit a generalization of the area theorem, due to Prawitz. The advantage of our method
is that it permits us to encode essentially the full strength of the area-based results, rather
than just a single aspect thereof, such as the classical estimate (ϕ ∈ S)∣∣∣∣ϕ′′(z)ϕ′(z)

− 2z̄
1− |z|2

∣∣∣∣ ≤ 4
1− |z|2

, z ∈ D, (1.9)

which is a consequence of Bieberbach’s inequality 1
2 |ϕ
′′(0)| = |ϕ̂(2)| ≤ 2.

Complex parameters in the spectral function. It is natural to consider the integral
means spectral functions also for complex arguments. For complex τ ∈ C, we define the
associated τ -integral means of ϕ′ by

Mt[ϕ′](r) =
1

2π

∫ π

−π

∣∣∣[ϕ′(reiθ)]τ ∣∣∣ dθ, 0 < r < 1,
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for ϕ ∈ S, and by the same formula with 1 < r < +∞ for ϕ ∈ Σ. The definition of the
power is more delicate this time, but we are saved by the fact that ϕ′(z) is zero-free in the
disk, and we choose – as a matter of convenience – the branch of [ϕ′(z)]τ which gives the
value 1 for z = 0. This allows us to define βϕ(τ) just as before, and taking the suprema over
the two classes S and Σ, we obtain the universal integral means spectral functions BS(τ)
and BΣ(τ) defined over τ ∈ C. A simple analysis of these two functions shows that each
is convex in the whole complex plane. Our method will supply estimates of the function
BS(τ) for complex τ , but we usually do not stress this fact.

Underlying ideas. We outline the underlying philosophy of the paper. As we began this
study of integral means spectral functions, we got increasingly convinced that the topic is
related to the smallness of certain operators associated to a given conformal mapping ϕ. For
instance, we should mention that in [7], it was observed that Brennan’s conjecture may be
phrased as the statement that the function |ϕ′|(2−p)/p is an area (Ap) Muckenhoupt weight
for 4/3 < p < 4. We would then like this to mean that the logarithm of |ϕ′|(2−p)/p is small
in a sense, like what is true for the arc length (Ap) Muckenhoupt weights, at least for p = 2;
this is the celebrated Helson-Szegö theorem [9]. The smallness is in that case measured in
terms of (part of) the BMO norm of the logarithm of the weight. What corresponds to
the subspace BMOA(D) of BMO(T) (consisting of all functions whose Poisson extensions
to the interior are holomorphic) in the case when arc length of replaced by area measure
is the Bloch space B(D) (see, for instance, [8]) of all holomorphic functions f in D with

‖f‖B = sup
{(

1− |z|2
)
|f ′(z)| : z ∈ D

}
< +∞;

the above expression is known as the Bloch norm. So, ideologically, we would hope to find
some estimates of the Bloch norm of logϕ′ which should imply all the desired integrability
properties of powers of ϕ′. We are of course groping in the dark here, as there is no known
theorem of Helson-Szegö type that would apply in the area measure case. However, it is
true that if a function f ∈ B(D) has sufficiently small Bloch norm, then ef belongs to any
fixed Bergman space Hα(D) with −1 < α < +∞. It is also true that logϕ′ ∈ B(D) for
ϕ ∈ S; this is an easy consequence of (1.9). The problem is that there is a genuine gap
between the constants for the necessary and the sufficient conditions, and the only way to
bridge that gap is to find an appropriate substitute for the Bloch norm as defined above.
In [7], it was suggested by the first-named author, Hedenmalm, that spectral properties of
a Volterra-type operator associated with logϕ′ should be relevant for the problem at hand;
inspiration for this came from conversations with Alexandru Aleman. Then the second-
named author, Shimorin, found that the multiplier norm of the Schwarzian derivative from
the space Hα(D) to Hα+4(D) could be estimated effectively by using the area methods
directly rather than going via the classical pointwise estimate∣∣∣∣∣ϕ′′′(z)ϕ′(z)

− 3
2

[
ϕ′′(z)
ϕ′(z)

]2
∣∣∣∣∣ ≤ 6

(1− |z|2)2
, z ∈ D, (1.10)

and that this led to a better estimate of BS(−1) and BS(−2) than what was previously
known. We should mention that (1.10) also expresses in a way that logϕ′ ∈ B(D), and that
the multiplier norm estimate implies an estimate of the spectral radius of a Volterra-type
operator associated with the Schwarzian derivative. Shimorin’s work suggests that the
multiplier norm of the derivative of logϕ′ from Hα(D) to Hα+2(D) is a more appropriate
way to measure the size of logϕ′ than applying the usual Bloch norm. Then, by dissecting a
theorem by Prawitz, which generalizes the Grönwall area theorem, we found a collection of
estimates of multiplier norm type, parametrized by a real parameter θ, 0 < θ ≤ 1. Generally
speaking, these estimates were the result of the application of the diagonal restriction
operator on the bidisk D2 and the use of sharp constants in norm estimates. By adding
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higher order terms corresponding to the multiplicity of the zero along the diagonal, we
found an estimate that was in fact an equality for all full mappings ϕ. Unfortunately, the
vast majority of these additional terms carry information of which it is, generally speaking,
hard to make effective use as regards the study of integral means spectra. The details of
the method are presented in Sections 2, 3, and 4.

2 Area theorem type estimates

The theorem of Prawitz. Our point of departure is a theorem of Prawitz, which gener-
alizes Grönwall’s famous area theorem.

THEOREM 2.1 Let ϕ ∈ S. Then, for 0 < θ ≤ 1, we have∫
D

∣∣∣∣∣ϕ′(z)
(

z

ϕ(z)

)θ+1

− 1

∣∣∣∣∣
2

dA(z)
|z|2θ+2

≤ 1
θ
,

with equality precisely for the full mappings ϕ.

Proof. The inequality follows from a classical inequality due to Prawitz, see [13, p.
13] (the inequality in [13] is formulated for functions of the class Σ, but a standard passage
from Σ to S leads to the above inequality). The fact that we have an equality precisely for
the full mappings is a part of Prawitz’ theorem.

An alternative proof of this theorem is presented at the end of this section.
In Theorem 2.1, (

z

ϕ(z)

)θ+1

= exp
(

(θ + 1) log
z

ϕ(z)

)
,

where the logarithm expression is determined uniquely by the requirements that it be
holomorphic in D and that it assume the value 0 at z = 0.

A two-variable version of Prawitz’ theorem. We shall try to move the special point
z = 0 about in the disk, by the following procedure. We start with a given ϕ ∈ S, and put

ψ(ζ) =
ϕ
(
ζ+w
1+w̄ζ

)
− ϕ(w)

(1− |w|2)ϕ′(w)
, ζ ∈ D,

for fixed w ∈ D, which then is another element of S. Now, we insert this ψ in place of ϕ in
Theorem 2.1,

∫
D

∣∣∣∣∣∣∣
1

ϕ′(w)
(1 + w̄ζ)−2 ϕ′

(
ζ + w

1 + w̄ζ

) (1− |w|2)ϕ′(w) ζ

ϕ
(
ζ+w
1+w̄ζ

)
− ϕ(w)

θ+1

− 1

∣∣∣∣∣∣∣
2

dA(ζ)
|ζ|2θ+2

≤ 1
θ
,

and we make the change of variables

z =
ζ + w

1 + w̄ζ
⇐⇒ ζ =

z − w
1− w̄z

in the integral. We obtain then after simplification∫
D

∣∣∣∣∣ ϕ′(z)ϕ′(w)

(
ϕ′(w) (z − w)
ϕ(z)− ϕ(w)

)θ+1

−
(

1− |w|2

1− w̄z

)1−θ
∣∣∣∣∣
2

dA(z)
|z − w|2θ+2

≤ 1
θ

(1− |w|2)−2θ, (2.1)
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valid for all θ in the interval 0 < θ ≤ 1. Let

Φθ(z, w) =
1

z − w

{
ϕ′(z)
ϕ′(w)

(
ϕ′(w) (z − w)
ϕ(z)− ϕ(w)

)θ+1

− 1

}
, (z, w) ∈ D2, z 6= w,

and

Lθ(z, w) =
1

z − w

{
1−

(
1− |w|2

1− w̄z

)1−θ}
, (z, w) ∈ D2, z 6= w.

We note that Φθ extends analytically to the whole bidisk D2, and that its diagonal restric-
tion is

Φθ(z, z) =
1− θ

2
ϕ′′(z)
ϕ′(z)

.

The function Lθ extends real analytically to D2. In view of (2.1), we have the following.

THEOREM 2.2 Fix θ, 0 < θ ≤ 1, and let ϕ ∈ S be arbitrary. Then, for all w ∈ D,∫
D

∣∣∣Φθ(z, w) + Lθ(z, w)
∣∣∣2 dA(z)
|z − w|2θ

≤ 1
θ

(1− |w|2)−2θ,

with equality if and only if ϕ is a full mapping.

There are (at least) two ways to generalize Theorem 2.2. First, let µ ∈ C \ϕ(D). Then
the function

ϕµ(z) =
µϕ(z)
µ− ϕ(z)

is again in S and replacing ϕ by ϕµ in (2.1) leads to

∫
D

∣∣∣∣∣ ϕ′(z)ϕ′(w)

(
µ− ϕ(w)
µ− ϕ(z)

)1−θ (
ϕ′(w) (z − w)
ϕ(z)− ϕ(w)

)θ+1

−
(

1− |w|2

1− w̄z

)1−θ
∣∣∣∣∣
2

dA(z)
|z − w|2θ+2

≤ 1
θ

(1− |w|2)−2θ. (2.2)

We introduce the notation

Φθ,µ(z, w) =
1

z − w

{
ϕ′(z)
ϕ′(w)

(
µ− ϕ(w)
µ− ϕ(z)

)1−θ (
ϕ′(w) (z − w)
ϕ(z)− ϕ(w)

)θ+1

− 1

}
,

so that

Φθ,µ(z, w) =
(
µ− ϕ(w)
µ− ϕ(z)

)1−θ

Φθ(z, w) +
1

z − w

{(
µ− ϕ(w)
µ− ϕ(z)

)1−θ

− 1

}
.

Note that as µ tends to ∞ from inside the complement of ϕ(D),

Φθ,µ(z, w)→ Φθ(z, w).

Also, Φ1,µ(z, w) ≡ Φ1(z, w). In terms of Φθ,µ, estimate (2.2) can be written as follows.

THEOREM 2.3 Fix θ, 0 < θ ≤ 1. Let ϕ ∈ S be arbitrary, and suppose µ ∈ C \ ϕ(D).
Then, for all w ∈ D,∫

D

∣∣∣Φθ,µ(z, w) + Lθ(z, w)
∣∣∣2 dA(z)
|z − w|2θ

≤ 1
θ

(1− |w|2)−2θ,

with equality if and only if ϕ is a full mapping.
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One way to spread out the effect of the point µ in Theorem 2.3 is to integrate both
sides of the inequality with respect to a probability measure in the variable µ, supported
on C \ ϕ(D). A particularly attractive choice of such a measure would be the harmonic
measure for the point at the origin.

The diagonal restriction of the function Φθ,µ equals

Φθ,µ(z, z) =
1− θ

2

(
ϕ′′(z)
ϕ′(z)

+
2ϕ′(z)
µ− ϕ(z)

)
Note that the µ-average of this function with respect to the harmonic measure for the
origin equals

1− θ
2

{
ϕ′′(z)
ϕ′(z)

+
2
z
− 2ϕ′(z)

ϕ(z)

}
=

1− θ
2

d

dz
log

z2 ϕ′(z)(
ϕ(z))2

.

The expression z2ϕ′(z)/(ϕ(z))2 is essentially the derivative of a function from Σ, if we use
the inversion map to go from D to De. So, averaging with respect to µ in this way may
lead to interesting properties for the class Σ.

Ways to extend the method. Another direction which offers a way to generalize Theo-
rem 2.2 is obtained by starting with other initial inequalities in place of Prawitz’ estimate
(see Theorem 2.1). A family of such inequalities can be derived from the following theorem
of de Branges (see [2]): if ψ is a conformal map of the unit disk into itself with ψ(0) = 0,
then the composition operator

Cψ : f 7→ f ◦ ψ

is contractive in the space Gν of formal Laurent-type series

f(z) =
+∞∑
n=0

cnz
n+ν

supplied with the indefinite norm

‖f‖2Gν =
+∞∑
n=0

(n+ ν)|cn|2.

Here, ν is an arbitrary real number.
To deduce the inequality of Theorem 2.1 from this theorem of de Branges, we take an

arbitrary bounded univalent function ϕ ∈ S. Then φ(z) = ϕ(z)/R is a conformal self-map
of D for sufficiently big values of the positive real parameter R. We pick ν = −θ with
0 < θ < 1, and apply de Branges’ theorem to the function f(z) = z−θ, while comparing φ
to the identity mapping. The result is

R2θ
+∞∑
n=0

(n− θ)
∣∣∣ψ̂(n)

∣∣∣2 ≤ −θ ≤ 0,

where the ψ̂(n) are the Taylor coefficients of the associated function ψ, defined by

ψ(z) =
(
ϕ(z)
z

)−θ
, z ∈ D.

This implies that
+∞∑
n=1

1
n− θ

∣∣∣(n− θ) ψ̂(n)
∣∣∣2 ≤ θ

[
1−R−2θ

]
≤ θ. (2.3)
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The estimate (2.3) can be found in a paper of Nehari [14], where it is shown that the first
inequality is an equality, provided φ maps D to a region whose complement in D has zero
area. The function

g(z) =
+∞∑
n=0

(n− θ) ψ̂(n) zn, z ∈ D,

may be written in the form

g(z) = −θ ϕ′(z)
(
ϕ(z)
z

)−1−θ

, z ∈ D,

and, moreover, we have that

+∞∑
n=1

|ĝ(n)|2

n− θ
=
∫
D

∣∣∣∣g(z)− ĝ(0)
z

∣∣∣∣2 dA(z)
|z|2θ

.

The estimate of Theorem 2.1 for bounded ϕ ∈ S now is an easy consequence of (2.3). The
general case follows by a standard approximation argument involving dilations.

A similar argument with θ in the interval 0 < θ ≤ 2 leads to the following inequality:∫
D

∣∣∣∣ϕ′(z)( z

ϕ(z)

)1+θ

− 1− (1− θ) ϕ̂(2) z
∣∣∣∣2 dA(z)
|z|2+2θ

≤ 1
θ

+ (θ − 1)
∣∣ϕ̂(2)

∣∣2. (2.4)

Here, ϕ̂(2) = 1
2ϕ
′′(0) is the second Taylor coefficient of ϕ at the origin. We expect that

equality occurs in (2.4) if and only if ϕ is a full mapping, like it was with Prawitz’ inequality
(see Theorem 2.1). One may now apply the same transformations as in the proof of
Theorem 2.2, and obtain another, more complicated, inequality in the spirit of (2.1). It is
of course also possible to obtain inequalities of the same type for bigger values of θ, at the
expense of the compactness of the expression.

3 Bergman spaces on the bidisk

For −∞ < α, β < +∞, we consider the Hilbert space Lα,β(D2) of all Lebesgue measurable
functions on the bidisk D2 (modulo null functions), subject to the norm boundedness
condition

‖f‖α,β =
(∫

D

∫
D

|f(z, w)|2|z − w|2βdA(z) dAα(w)
)1/2

< +∞,

where dAα is as in (1.7). We also need the closed subspace Hα,β(D2) of Lα,β(D2) that
consists of functions holomorphic in D2. The space Hα,β(D2) is trivial unless −1 < α <
+∞. The reproducing kernel for the space Hα,β(D2) will be denoted by

Pα,β
(
(z, w); (z′, w′)

)
, (z, w), (z′, w′) ∈ D2;

it is holomorphic in (z, w), and anti-holomorphic in (z′, w′). It is defined by the reproducing
property

f(z, w) =
∫
D

∫
D

Pα,β
(
(z, w); (z′, w′)

)
f(z′, w′) |z′ − w′|2βdA(z′) dAα(w′),

for all (z, w) ∈ D2 and f ∈ Hα,β(D2). In case β = 0, it is given by the explicit formula

Pα,0
(
(z, w); (z′, w′)

)
=

1
(1− zz̄′)2(1− ww̄′)α+2

, (z, w), (z′, w′) ∈ D2.
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Associated with a kernel T = Tα,β of the variables ((z, w); (z′, w′)) ∈ D2 × D2, we have an
operator on Lα,β(D2) defined by

Tα,βf(z, w) =
∫
D

∫
D

Tα,β
(
(z, w); (z′, w′)

)
f(z′, w′) |z′ − w′|2β dA(z′) dAα(w′),

for (z, w) ∈ D2, which is going to be bounded in all cases we shall consider. For instance,
associated with the kernel Pα,β is the operator Pα,β which effects the orthogonal projection
Lα,β(D2)→ Hα,β(D2).

Let N = 0, 1, 2, 3, . . . be a nonnegative integer, and consider the closed subspace
Hα,β;N (D2) of Hα,β(D2) consisting of functions with

f(z, w) = O
(
|z − w|N )

near the diagonal. These functions vanish up to degree N along the diagonal, and are
holomorphically divisible by (z − w)N . For N = 0, we have

Hα,β;0(D2) = Hα,β(D2);

more generally, for N = 1, 2, 3, . . .,

Hα,β;N (D2) = Hα,β(D2) if −∞ < β +N ≤ 0.

Being a closed subspace of the Hilbert space Hα,β(D2), the subspace Hα,β;N (D2) has a
reproducing kernel function, denoted

Pα,β;N

(
(z, w); (z′, w′)

)
, (z, w), (z′, w′) ∈ D2.

Associated to the kernel is the orthogonal projection

Pα,β;N : Lα,β(D2)→ Hα,β;N (D2).

The following is an important observation.

PROPOSITION 3.1 For −1 < α, β < +∞, we have

Pα,β;N

(
(z, w); (z′, w′)

)
= (z − w)N (z̄′ − w̄′)N Pα,β+N

(
(z, w); (z′, w′)

)
,

for (z, w), (z′, w′) ∈ D2.

Proof. We note that multiplication by (z − w)N is an isometric isomorphism

Hα,β+N (D2)→ Hα,β;N (D2);

from this, the conclusion is immediate.

For N = 0, 1, 2, 3, . . ., consider the Hilbert space

Iα,β;N (D2) = Hα,β;N (D2)	Hα,β;N+1(D2).

Its reproducing kernel has the form

Qα,β;N

(
(z, w); (z′, w′)

)
= Pα,β;N

(
(z, w); (z′, w′)

)
− Pα,β;N+1

(
(z, w); (z′, w′)

)
, (3.1)

and the associated operator projects orthogonally

Qα,β;N : Lα,β(D2)→ Iα,β;N (D2).
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We write Qα,β for the special kernel Qα,β;0. It then follows from Proposition 3.1 that

Qα,β;N

(
(z, w); (z′, w′)

)
= (z − w)N (z̄′ − w̄′)N Qα,β+N

(
(z, w); (z′, w′)

)
. (3.2)

The fact that the only function that vanishes to an infinite degree along the diagonal
is the zero function implies the orthogonal decomposition

Hα,β(D2) =
+∞⊕
N=0

Iα,β;N (D2).

As a consequence, we have the decomposition of the kernel

Pα,β
(
(z, w); (z′, w′)

)
=

+∞∑
N=0

Qα,β;N

(
(z, w); (z′, w′)

)
=

+∞∑
N=0

(z − w)N (z̄′ − w̄′)N Qα,β+N

(
(z, w); (z′, w′)

)
. (3.3)

and the norm decomposition

∥∥Pα,β f
∥∥2

α,β
=

+∞∑
N=0

∥∥Qα,β;N f
∥∥2

α,β
, f ∈ Lα,β(D2). (3.4)

There are some natural families of unitary operators acting in spaces Hα,β(D2). First,
we can perform simultaneous rotations of variables z and w:

Rθ[f ](z, w) = f(eiθz, eiθw); f ∈ Hα,β(D2); θ ∈ R.

The next family of unitary operators is given by the lemma below.

LEMMA 3.2 For each λ ∈ D, the operator

Uλ[f ](z, w) =
(1− |λ|2)α/2+β+2

(1− λ̄z)β+2(1− λ̄w)α+β+2
f

(
λ− z
1− λ̄z

,
λ− w
1− λ̄w

)
is unitary on Hα,β(D2), and its square is the identity: U2

λ[f ] = f for all f ∈ Hα,β(D2).

Proof. This amounts to an elementary change of variables calculation.

In fact, if both α and β are even integers then for each Möbius automorphism ψ of the
disk D one can define the operator Uψ:

Uψ[f ](z, w) = f
(
ψ(z), ψ(w)

)
·
(
ψ′(z)

)1+β/2 ·
(
ψ′(w)

)1+α/2+β/2
.

Then all operators Uψ are unitary in Hα,β(D2) and the map ψ 7→ Uψ is a unitary repre-
sentation of the group of Möbius automorphisms of D.

We proceed by analyzing the reproducing kernel Pα,β along the diagonal.

LEMMA 3.3 Fix −1 < α, β < +∞. We then have

Pα,β
(
(z, w); (z′, z′)

)
= Qα,β

(
(z, w); (z′, z′)

)
=

σ(α, β)
(1− zz̄′)β+2(1− wz̄′)α+β+2

,

where the constant σ(α, β) is given by

1
σ(α, β)

=
∫
D

∫
D

|z − w|2βdA(z) dAα(w).
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Proof. We note first that the fact that rotation operators Rθ are unitary in Hα,β(D2)
implies that

Pα,β
(
(eiθz, eiθw); (0, 0)

)
= Pα,β

(
(z, w); (0, 0)

)
.

Now, we observe that the only functions analytic in D2 and having this property are the
constant functions, which follows at once by considering double power series expansions.
Hence, Pα,β

(
(z, w); (0, 0)

)
is constant in (z, w), and we write

σ(α, β) = Pα,β
(
(z, w); (0, 0)

)
(3.5)

for this constant. The above integral formula for σ(α, β) follows from the reproducing
property of the kernel Pα,β

(
(·, ·); (0, 0)

)
applied to the constant function 1.

Now, let λ ∈ D. We pick f ∈ Hα,β(D2), and note that in view of (3.5) and Lemma 3.2,

(
1− |λ|2

)α/2+β+2
f(λ, λ) = Uλ[f ](0, 0) = σ(α, β)

〈
U2
λ[f ],Uλ[1]

〉
α,β

= σ(α, β)
〈
f,Uλ[1]

〉
α,β
.

This formula expresses the reproducing identity at the diagonal point (λ, λ), which shows
that

Pα,β
(
(z, w); (λ, λ)

)
= σ(α, β)(1− |λ|2)−α/2−β−2Uλ[1](z, w),

which after some simplification gives the desired expression.

In view of Lemma 3.3,

Pα,β
(
(z, z); (z′, z′)

)
=

σ(α, β)
(1− zz̄′)α+2β+4

,

which we identify as the reproducing kernel for the Hilbert space coinciding as a set with
the space Hα+2β+2(D) from the introduction and supplied with the norm

‖f‖2 =
1

σ(α, β)

∫
D

|f(z)|2dAα+2β+2(z) =
1

σ(α, β)
‖f‖2α+2β+2.

Let � denote the operation of taking the diagonal restriction:

(�f)(z) = f(z, z), z ∈ D.

In view of the general theory of reproducing kernels (see [1] and [16]), we have the sharp
estimate

1
σ(α, β)

‖� f‖2α+2β+2 ≤ ‖f‖2α,β , f ∈ Hα,β(D2). (3.6)

In fact, we can even determine the corresponding norm identity.

LEMMA 3.4 We have the equality of norms

1
σ(α, β)

∥∥� f∥∥2

α+2β+2
=
∥∥Qα,βf

∥∥2

α,β
, f ∈ Hα,β(D2).

Proof. The analysis of reproducing kernel functions that leads up to the estimate
(3.6) also shows that to each f ∈ Hα,β(D2) there exists a g ∈ Hα,β(D2) such that �g = �f
and

1
σ(α, β)

‖� f‖2α+2β+2 = ‖g‖2α,β , f ∈ Hα,β(D2).
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We decompose this g as follows:

g = Qα,βf +
(
g −Qα,βf

)
∈ Iα,β;0(D2) +Hα,β;1(D2).

As this decomposition is orthogonal, we get∥∥Qα,βf
∥∥2

α,β
≤
∥∥Qα,βf

∥∥2

α,β
+
∥∥g −Qα,βf

∥∥2

α,β
=
∥∥∥Qα,βf +

(
g −Qα,βf

)∥∥∥2

α,β
= ‖g‖2α,β .

The assertion now follows from the above estimates together with (3.6).

The constant σ(α, β) can be evaluated explicitly.

LEMMA 3.5 Fix −1 < α, β < +∞. Then

1
σ(α, β)

=
∫
D

∫
D

|z − w|2β dA(z) dAα(w) =
1

1 + β

Γ(α+ 2) Γ(α+ 2β + 3)
Γ(α+ β + 2) Γ(α+ β + 3)

.

Proof. We perform the change of variables

ζ =
w − z

1− w̄ z
, z =

w − ζ
1− w̄ ζ

,

and replace the pair (z, w) by (ζ, w). The result is, after simplification,

1
σ(α, β)

=
α+ 1

(1 + β)(α+ 2β + 3)

+∞∑
n=0

(β + 2)n(β + 1)n
n! (α+ 2β + 4)n

=
α+ 1

(1 + β)(α+ 2β + 3) 2F1

(
β + 2, β + 1;α+ 2β + 4; 1

)
,

where 2F1 denotes Gauss’ hypergeometric function. Here, we use the standard Pochhammer
notation

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1).

The assertion now follows from the well-known identity

2F1(a, b; c; 1) =
Γ(c) Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (3.7)

The proof is complete.

REMARK 3.6 It follows from Lemma 3.5 that

σ(α, β + n)
σ(α, β)

=
n+ 1 + β

1 + β

(α+ β + 2)n(α+ β + 3)n
(α+ 2β + 3)2n

, n = 1, 2, 3, . . . .

We obtain an integral representation of the kernel Qα,β .

LEMMA 3.7 Fix −1 < α, β < +∞. The kernel Qα,β is given by the integral formula

Qα,β
(
(z, w); (z′, w′)

)
= σ(α, β)

∫
D

dAα+2β+2(ξ)
(1− ξ̄z)β+2(1− ξ̄w)α+β+2(1− ξz̄′)β+2(1− ξw̄′)α+β+2

,

for (z, w), (z′, w′) ∈ D2.
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Proof. It is enough to establish that if Q̃α,β denotes the kernel defined by the
above integral formula, then it coincides with the reproducing kernel function for the space
Iα,β;0(D2) = Hα,β(D2) 	 Hα,β;1(D2). To this end, we first check that for each individual
point (z′, w′) ∈ D2, the function

(z, w) 7→ Q̃α,β
(
(z, w); (z′, w′)

)
= σ(α, β)

∫
D

dAα+2β+2(ξ)
(1− ξ̄z)β+2(1− ξ̄w)α+β+2(1− ξz̄′)β+2(1− ξw̄′)α+β+2

,

belongs to Hα,β(D2) 	 Hα,β;1(D2). As a first step, we see that if we use the methods
of Chapter 1 in [8], we can show that this function belongs to Lα,β(D2), and then, by
inspection, it is also analytic in D2, and hence an element of Hα,β(D2). To prove that it is
orthogonal to Hα,β;1(D2), we note that each “term”

(z, w) 7→ 1
(1− ξ̄z)β+2(1− ξ̄w)α+β+2(1− ξz̄′)β+2(1− ξw̄′)α+β+2

,

is a multiple of the element that achieves the point evaluation at the diagonal point (ξ, ξ),
and therefore it is orthogonal to the subspace Hα,β;1(D2), as these functions vanish at all
diagonal points.

Now, we see, by inspection, that

Q̃α,β
(
(z, z); (z′, w′)

)
=

σ(α, β)
(1− zz̄′)β+2(1− zw̄′)α+β+2

;

this follows from the reproducing property of the well-known kernel function in the space
Hα+2β+2(D). We note that this is the same as Qα,β

(
(z, z); (z′, w′)

)
, according to Lemma

3.3. And since functions from Iα,β;0 are uniquely determined by their diagonal restrictions,
we obtain Q̃α,β = Qα,β .

PROPOSITION 3.8 Fix −1 < α, β < +∞. Then, for N = 0, 1, 2, 3, . . ., we have

∥∥Qα,β;N f
∥∥2

α,β
=

1
σ(α, β +N)

∥∥∥∥� [Pα,β;N f(z, w)
(z − w)N

]∥∥∥∥2

α+2β+2N+2

, f ∈ Lα,β(D2).

Proof. This follows from a combination of Proposition 3.1 and Lemma 3.4.

In view of Lemma 3.3, we have, for z ∈ D,

�
[

Pα,β;N f(z, w)
(z − w)N

]
(z) = σ(α, β +N)

×
∫
D

∫
D

(z̄′ − w̄′)N

(1− zz̄′)β+N+2(1− zw̄′)α+β+N+2
f(z′, w′) |z′ − w′|2βdA(z′) dAα(w′). (3.8)

We want to express this in terms of derivatives of order N of f . To this end, we note
that the series expansion in (3.3) leads to

[
∂kz Pα,β

](
(z, z); (z′, w′)

)
=

k∑
n=0

n!
(
z̄′− w̄′

)n( k
n

) [
∂k−nz Qα,β+n

](
(z, z); (z′, w′)

)
, (3.9)
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where ∂z stands for the (partial) derivative with respect to z. Moreover, in view of Lemma
3.7,

∂k−nz Qα,β
(
(z, w); (z′, w′)

)
= σ(α, β) (β + 2)k−n

×
∫
D

ξ̄k−n dAα+2β+2(ξ)
(1− ξ̄z)β+k−n+2(1− ξ̄w)α+β+2(1− ξz̄′)β+2(1− ξw̄′)α+β+2

,

which, when restricted to the diagonal, becomes[
∂k−nz Qα,β

](
(z, z); (z′, w′)

)
= σ(α, β) (β + 2)k−n

×
∫
D

ξ̄k−n dAα+2β+2(ξ)
(1− ξ̄z)α+2β+k−n+4(1− ξz̄′)β+2(1− ξw̄′)α+β+2

=
(β + 2)k−n

(α+ 2β + 4)k−n
∂k−nz

σ(α, β)
(1− zz̄′)β+2(1− zw̄′)α+β+2

.

By changing β to β + n, we obtain, in view of Lemma 3.3, that[
∂k−nz Qα,β+n

](
(z, z); (z′, w′)

)
=

(β + n+ 2)k−n
(α+ 2β + 2n+ 4)k−n

∂k−nz

[
Pα,β+n

(
(z, z); (z′, w′)

)]
. (3.10)

Now, applying (3.9) to a function f ∈ Lα,β(D2), while taking (3.10) into account, we find
that

�
[
∂kzPα,βf

]
(z) =

k∑
n=0

n!
(
k
n

)
(β + n+ 2)k−n

(α+ 2β + 2n+ 4)k−n
∂k−nz �

[
Pα,β;n f(z, w)

(z − w)n

]
(z).

We differentiate the above relation N − k times with respect to z, and obtain

∂N−kz �
[
∂kzPα,βf

]
(z)

=
k∑

n=0

n!
(
k
n

)
(β + n+ 2)k−n

(α+ 2β + 2n+ 4)k−n
∂N−nz �

[
Pα,β;n f(z, w)

(z − w)n

]
(z). (3.11)

We now formulate the desired relation.

PROPOSITION 3.9 Fix −1 < α, β < +∞. For each N = 0, 1, 2, 3, . . ., we have

�
[

Pα,β;N f(z, w)
(z − w)N

]
=

N∑
k=0

ak,N ∂N−kz �
[
∂kzPα,βf

]
,

where

ak,N =
(−1)N−k

k!(N − k)!
(β + k + 2)N−k

(α+ 2β +N + k + 3)N−k
.

Proof. In view of (3.11), we should verify that

N∑
k=0

ak,N ∂N−kz �
[
∂kzPα,βf

]
(z)

=
N∑
k=0

k∑
n=0

ak,N n!
(
k
n

)
(β + n+ 2)k−n

(α+ 2β + 2n+ 4)k−n
∂N−nz �

[
Pα,β;n f(z, w)

(z − w)n

]
(z)

= �
[

Pα,β;N f(z, w)
(z − w)N

]
(z), (3.12)
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where ak,N is as above. We realize that it is enough to show that

N∑
k=n

ak,N n!
(
k
n

)
(β + n+ 2)k−n

(α+ 2β + 2n+ 4)k−n
= δn,N , n = 0, 1, 2, 3, . . . , N,

where the delta is the usual Kronecker symbol; as we implement the given values of the
constants ak,N , this amounts to

N∑
k=n

(−1)N−k

(k − n)! (N − k)!
(β + n+ 2)k−n(β + k + 2)N−k

(α+ 2β + 2n+ 4)k−n(α+ 2β +N + k + 3)N−k
= δn,N ,

for n = 0, 1, 2, 3, . . . , N . We quickly verify that this is correct for n = N . To deal with
smaller values of n, we first note that

(β + n+ 2)k−n(β + k + 2)N−k = (β + n+ 2)N−n,

which is independent of k, so that we may factor it out, and reduce the problem to showing
that

N∑
k=n

(−1)N−k

(k − n)! (N − k)!
1

(α+ 2β + 2n+ 4)k−n(α+ 2β +N + k + 3)N−k
= 0,

for n = 0, 1, 2, . . . , N − 1. We compute that

(α+ 2β + 2n+ 4)k−n(α+ 2β +N + k + 3)N−k =
(α+ 2β + 2n+ 4)2N−2n−1

(α+ 2β + n+ k + 4)N−n−1
,

which reduces our task further to showing that
N∑
k=n

(−1)N−k

(k − n)! (N − k)!
(α+ 2β + n+ k + 4)N−n−1 = 0,

for n = 0, 1, 2, . . . , N − 1. We introduce the variables j = k − n and N ′ = N − n, and
rewrite the above:

N ′∑
j=0

(−1)N
′−j

j! (N ′ − j)!
(α+ 2β + 2n+ j + 4)N ′−1 = 0,

for n = 0, 1, 2, . . . and N ′ = 1, 2, 3, . . .. Next, we consider the variable

λ = α+ 2β + 2n+ 4,

which we shall think of as an independent variable, and we once more rewrite the above
assertion:

N ′∑
j=0

(−1)j
(
N ′

j

)
(λ+ j)N ′−1 = 0,

for N ′ = 1, 2, 3, . . .. The expression q(λ) = (λ)N ′−1 is a polynomial of degree N ′ − 1 in λ,
and

N ′∑
j=0

(−1)j
(
N ′

j

)
q(λ+ j)

is an N ′-th order iterated difference, which automatically produces 0 on polynomials of
degree less than N ′. The assertion follows.

We finally obtain an expansion of the norm in Hα,β(D2) on the bidisk in terms of “one-
dimensional” norms, taken over the unit disk, analogous to the Taylor expansion along the
diagonal.
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COROLLARY 3.10 For f ∈ Hα,β(D2), we have the norm expansion

‖f‖2α,β =
+∞∑
N=0

1
σ(α, β +N)

∥∥∥∥ N∑
k=0

ak,N ∂N−kz �
[
∂kzf

]∥∥∥∥2

α+2β+2N+2

,

where the constants are as in Lemma 3.5 and Proposition 3.9.

Proof. This results from a combination of (3.4) and Propositions 3.8 and 3.9.

4 The main inequality

Integration with respect to the second variable. Fix θ, 0 < θ ≤ 1, and let ϕ ∈ S be
arbitrary. At times, the calculations below will be valid only for 0 < θ < 1, but the validity
for θ = 1 can usually be established easily by a simple limit argument. By Theorem 2.2,
we have ∫

D

∣∣∣Φθ(z, w) + Lθ(z, w)
∣∣∣2 dA(z)
|z − w|2θ

≤ 1
θ

(1− |w|2)−2θ, (4.1)

Let g be a function that is holomorphic in D. Then, in view of (4.1),∫
D

∫
D

∣∣∣Φθ(z, w) g(w) + Lθ(z, w) g(w)
∣∣∣2 |z − w|−2θ dA(z) dAα(w)

≤ 1
θ

∫
D

|g(w)|2 (1− |w|2)−2θ dAα(w) =
α+ 1

θ(α− 2θ + 1)
‖g‖2α−2θ (4.2)

(the last equality holds provided that −1 + 2θ < α < +∞).
In what follows, we assume that g ∈ Hα−2θ(D) and −1 < α− 2θ < +∞. The left hand

side of (4.2) expresses the square of the norm of the function Φθ(z, w) g(w) +Lθ(z, w) g(w)
in the space Lα,−θ(D2). It will be shown later that both terms of this sum belong to
Lα,−θ(D2) and hence one has the following decomposition:

Φθ(z, w) g(w) + Lθ(z, w) g(w)

=
{

Φθ(z, w) g(w) + Pα,−θ
[
Lθ(z, w) g(w)

]}
+ P⊥α,−θ

[
Lθ(z, w) g(w)

]
, (4.3)

with the corresponding decomposition of the norm∥∥Φθ(z, w) g(w) + Lθ(z, w) g(w)
∥∥2

α,−θ

=
∥∥Φθ(z, w) g(w) + Pα,−θ

[
Lθ(z, w) g(w)

]∥∥2

α,−θ +
∥∥P⊥α,−θ[Lθ(z, w) g(w)

]∥∥2

α,−θ. (4.4)

Here, P⊥α,−θ is the projection complementary to Pα,−θ:

P⊥α,−θ = I−Pα,−θ in Lα,−θ(D2),

where I stands for the identity operator. It follows that the inequality (4.2) assumes the
form∥∥Φθ(z, w) g(w) + Pα,−θ

[
Lθ(z, w) g(w)

]∥∥2

α,−θ

≤ α+ 1
θ(α− 2θ + 1)

‖g‖2α−2θ −
∥∥P⊥α,−θ[Lθ(z, w) g(w)

]∥∥2

α,−θ. (4.5)
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The norm of a projected term. We shall find an explicit expression for the squared
norm ∥∥P⊥α,−θ[Lθ(z, w) g(w)

]∥∥2

α,−θ.

We first note that∥∥P⊥α,−θ[Lθ(z, w) g(w)
]∥∥2

α,−θ =
∥∥Lθ(z, w) g(w)

∥∥2

α,−θ −
∥∥Pα,−θ

[
Lθ(z, w) g(w)

]∥∥2

α,−θ (4.6)

We recall the classical definition of the Gauss hypergeometric function:

2F1(a, b; c;x) = 1 +
+∞∑
n=1

(a)n(b)n
(c)n n!

xn,

where the series converges at least for complex x ∈ D, unless we accidentally divide by zero
in any of the terms.

LEMMA 4.1 For fixed w ∈ D, we have the identity∫
D

∣∣Lθ(z, w)
∣∣2 |z − w|−2θ dA(z) =

1
θ

[
1− 2F1

(
1− θ,−θ; 1; |w|2

)] (
1− |w|2

)−2θ
.

Proof. We make the change of variables

z =
w − ζ
1− w̄ζ

, ζ =
w − z
1− w̄z

,

which gives∫
D

∣∣Lθ(z, w)
∣∣2 |z − w|−2θ dA(z) =

(
1− |w|2

)−2θ
∫
D

∣∣∣∣1− (1− w̄ζ)θ−1

ζ

∣∣∣∣2 |ζ|−2θ dA(ζ).

We expand the power appearing in the integrand on the right hand side as a Taylor series,
and use that zj and zk are orthogonal in a radially weighted Bergman space whenever
j 6= k. The expression involving the Gauss hypergeometric function then results from this.

LEMMA 4.2 For w ∈ D, we have

2F1

(
1− θ,−θ; 1; |w|2

)
≥ 2F1

(
1− θ,−θ; 1; 1

)
=

Γ(2θ + 1)
2[Γ(θ + 1)]2

.

Proof. The inequality follows if we see that the coefficients of the Taylor se-
ries for 2F1(1 − θ,−θ; 1;x) are all negative except for the first one. The evaluation of
2F1(1− θ,−θ; 1; 1) is classical (see any book on special functions).

Combining these two lemmas, we obtain the following.

PROPOSITION 4.3 For g ∈ Hα−2θ(D), we have∫
D

∣∣Lθ(z, w) g(w)
∣∣2 |z − w|−2θ dA(z) dAα(w)

=
α+ 1

θ (α− 2θ + 1)

∫
D

[
1− 2F1

(
1− θ,−θ; 1; |w|2

)]
|g(w)|2 dAα−2θ(w)

≤ α+ 1
θ (α− 2θ + 1)

[
1− Γ(2θ + 1)

2[Γ(θ + 1)]2

]
‖g‖2α−2θ.
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In particular, we see that the function Lθ(z, w)g(w) is in the space Lα,−θ(D2). For later
use, we need the following representation of the square of its norm:

∥∥Lθ(z, w)g(w)
∥∥2

α,−θ =
α+ 1

θ(α− 2θ + 1)

(
1− Γ(2θ + 1)

2[Γ(θ + 1)]2

)
‖g‖2α−2θ +

α+ 1
θ(α− 2θ + 1)

×
∫
D

[
2F1(1− θ,−θ; 1; 1)− 2F1(1− θ,−θ; 1; |w|2)

]
|g(w)|2 dAα−2θ(w). (4.7)

Only the first term of this sum is essential for our purposes, and the second may be
considered as a contribution of “higher order terms”. This is made explicit in the following
lemma.

LEMMA 4.4 There exists a positive constant C1 = C1(α, θ) depending only on α and θ
such that

0 ≤
∫
D

[
2F1(1− θ,−θ; 1; |w|2)− 2F1(1− θ,−θ; 1; 1)

]
|g(w)|2 dAα−2θ(w) ≤ C1 ‖g‖2α−θ.

Proof. We use the inequality

1− xn ≤ nθ(1− x)θ, 0 ≤ x ≤ 1,

and the well-known asymptotics of the Pochhammer symbol

(1− θ)n
n!

∼ n−θ

Γ(1− θ)
as n→ +∞,

to obtain

0 ≤
∫
D

[
2F1(1− θ,−θ; 1; |w|2)− 2F1(1− θ,−θ; 1; 1)

]
|g(w)|2 dAα−2θ(w)

=
∫
D

+∞∑
n=1

|(−θ)n|(1− θ)n
(n!)2

(1− |w|2n) |g(w)|2 dAα−2θ(w)

≤ θ
∫
D

+∞∑
n=1

[
(1− θ)n

]2
(n− θ)(n!)2

nθ (1− |w|2)θ |g(w)|2 dAα−2θ(w)

≤ C2(α, θ)

(
+∞∑
n=1

n−θ

n− θ

)
‖g‖2α−θ,

for some appropriate positive constant C2(α, θ). By putting

C1(α, θ) = C2(α, θ)
+∞∑
n=1

n−θ

n− θ
,

the assertion follows, at least for 0 < θ < 1. The remaining case θ = 1 is trivial.

It follows from Lemma 4.4 that (4.7) can be written as

‖Lθ(z, w)g(w)‖2α,−θ =
α+ 1

θ(α− 2θ + 1)

[
1− Γ(2θ + 1)

2[Γ(θ + 1)]2

]
‖g‖2α−2θ +O

(
‖g‖2α−θ

)
, (4.8)

where the constant in the big “Oh” term only depends on α and θ. To proceed in our
calculation of the norm of ∥∥P⊥α,−θ[Lθ(z, w) g(w)

]∥∥2

α,−θ,
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we should like to know the norm of the analytic projection of the function Lθ(z, w) g(w).
We do this by calculating the norm of of each contribution in the expansion of the function
around the diagonal, in accordance with (3.4) and Proposition 3.8.

PROPOSITION 4.5 For g ∈ Hα−2θ(D), we have

�

[
Pα,−θ;N

[
Lθ(z, w) g(w)

]
(z − w)N

]
(z) =

(−1)N+1(1− θ)N+1

(N + 1)! (α+N + 2− 2θ)N+1
g(N+1)(z), z ∈ D.

Proof. In view of (3.8),

�

[
Pα,−θ;N

[
Lθ(z, w) g(w)

]
(z − w)N

]
(z) = σ(α,−θ +N)

×
∫
D

∫
D

(z̄′ − w̄′)N

(1− zz̄′)−θ+N+2(1− zw̄′)α−θ+N+2
Lθ(z′, w′) g(w′) |z′ − w′|−2θdA(z′) dAα(w′).

We first integrate with respect to z′, that is, we compute∫
D

(z̄′ − w̄′)N

(1− zz̄′)−θ+N+2(1− zw̄′)α−θ+N+2
Lθ(z′, w′) |z′ − w′|−2θdA(z′).

The change of variables

z′ =
w′ + ζ

1 + w̄′ζ
, ζ =

w′ − z′

1− w̄′z′
,

leads to∫
D

(z̄′ − w̄′)N

(1− zz̄′)−θ+N+2(1− zw̄′)α−θ+N+2
Lθ(z′, w′) |z′ − w′|−2θdA(z′)

= w̄′
(1− |w′|2)N+1−2θ

(1− zw̄′)α−2θ+2N+4

∫
D

1
w̄′ζ

[(
1 + w̄′ζ

)θ−1 − 1
](

1 + ζ̄
w′ − z
1− zw̄′

)θ−N−2

ζ̄N
dA(ζ)
|ζ|2θ

= w̄′
(1− |w′|2)N+1−2θ

(1− zw̄′)α−2θ+2N+4

+∞∑
n=0

(
θ − 1

N + n+ 1

)(
θ −N − 2

n

)
N + n+ 1− θ

(w̄′)N+n

(
w′ − z
1− zw̄′

)n
.

The integration with respect to w′ then gives∫
D

∫
D

(z̄′ − w̄′)N

(1− zz̄′)−θ+N+2(1− zw̄′)α−θ+N+2
Lθ(z′, w′) g(w′) |z′ − w′|−2θdA(z′) dAα(w′)

= (α+ 1)
+∞∑
n=0

(
θ − 1

N + n+ 1

)(
θ −N − 2

n

)
N + n+ 1− θ

×
∫
D

(w̄′)N+n+1 (w′ − z)n g(w′)
(1− |w′|2)N+1+α−2θ

(1− zw̄′)α−2θ+2N+n+4
dA(w′).

Next, we notice that by differentiating the reproducing identity for the weighted Bergman
kernel k times, we obtain∫

D

(w̄′)k

(1− z w̄′)γ+k+2
f(w′) dAγ(w′) =

1
(γ + 2)k

f (k)(z);
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as we implement this into the above identity, the result is

�

[
Pα,−θ;N

[
Lθ(z, w) g(w)

]
(z − w)N

]
(z)

= (−1)N+1 (α+ 1)
σ(α,−θ +N)

(N + 1)!
g(N+1)(z)

+∞∑
n=0

(1− θ)N+n+1(N + 1− θ)n
(N + 1− θ)n! (α+N − 2θ + 2)N+n+2

,

so that

�

[
Pα,−θ;N

[
Lθ(z, w) g(w)

]
(z − w)N

]
(z)

= (−1)N+1 (α+ 1)
σ(α,−θ +N)

(N + 1)!
g(N+1)(z)

(1− θ)N
(α+N − 2θ + 2)N+2

×
+∞∑
n=0

(N + 1− θ)n(N + 2− θ)n
n! (α+ 2N − 2θ + 4)n

= (−1)N+1 (α+ 1)
σ(α,−θ +N)

(N + 1)!
g(N+1)(z)

(1− θ)N
(α+N − 2θ + 2)N+2

× 2F1

(
N + 1− θ,N + 2− θ;α+ 2N − 2θ + 4; 1

)
.

If we use (3.7) as well as Lemma 3.5, the proof is completed.

COROLLARY 4.6 For g ∈ Hα−2θ(D), we have∥∥∥Pα,−θ
[
Lθ(z, w) g(w)

]∥∥∥2

α,−θ

=
+∞∑
N=0

1
σ(α,−θ +N)

[
(1− θ)N+1

(N + 1)! (α+N + 2− 2θ)N+1

]2 ∥∥g(N+1)
∥∥2

α−2θ+2N+2
, (4.9)

where the constant σ(α,−θ +N) is as in Lemma 3.5.

The next proposition is crucial for our further analysis.

PROPOSITION 4.7 (−1 < α < +∞) Fix the real parameter ν, with 0 < ν ≤ 1. Then
there exists a positive constant C3(α, ν) such that for each function g ∈ Hα(D) and every
integer n = 1, 2, 3, . . .,

0 ≤ (α+ 2)2n‖g‖2α −
∥∥g(n)

∥∥2

α+2n
≤ C3(α, ν)n2ν(α+ 2)2n‖g‖2α+ν .

Proof. The first step is to note that the norm in Hα(D) can be expressed as follows
in terms of the Taylor coefficients:

‖g‖2α =
+∞∑
k=0

k!
(α+ 2)k

|ĝ(k)|2.
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We then have

(α+ 2)2n‖g‖2α −
∥∥g(n)

∥∥2

α+2n

= (α+ 2)2n

+∞∑
k=0

k!
(α+ 2)k

|ĝ(k)|2 −
+∞∑
k=n

(k − n)!
(α+ 2 + 2n)k−n

[
(k − n+ 1)n

]2|ĝ(k)|2 =

= (α+ 2)2n

+∞∑
k=0

(
1− (k − n+ 1)n

(k + α+ 2)n

)
k!

(α+ 2)k
|ĝ(k)|2.

The assertion of the proposition follows from this identity together with the following
technical inequality:

0 ≤ 1− (k − n+ 1)n
(k + α+ 2)n

≤ C4(α)
n2ν

(k + 1)ν
, k = 0, 1, 2, 3, . . . , n = 1, 2, 3, . . . . (4.10)

The left hand side of this inequality is obvious. The right hand side is also more or less
obvious (with C4(α) = 1) for k ≤ n2 − 1 . So, we assume that k ≥ n2. Then we have, by
the standard properties of the logarithm function,

1− (k − n+ 1)n
(k + α+ 2)n

≤ log
[

(k + α+ 2)n
(k − n+ 1)n

]
=

=
n∑
l=1

[
log
(

1 +
α+ 1 + l

k

)
− log

(
1− n− l

k

)]
≤

n∑
l=1

[
α+ 1 + l

k
+ C5

n− l
k

]
≤

≤ C4(α)
n2

k + 1
≤ C4(α)

[
n2

k + 1

]ν
,

for appropriate values of the positive constants C4(α) and C5. We are done.

We are now allowed to replace ‖g(N+1)‖2α−2θ+2N+2 in each term of (4.9) by the expres-
sion

(α− 2θ + 2)2N+2 ‖g‖2α−2θ,

while estimating the remainder as prescribed by Proposition 4.7 with ν = θ. After some
algebraic manipulations, we then arrive at∥∥∥Pα,−θ

[
Lθ(z, w) g(w)

]∥∥∥2

α,−θ
= κ(α, θ)‖g‖2α−2θ +O

(
‖g‖2α−θ

)
, (4.11)

where

κ(α, θ) =
(1− θ)Γ(α+ 2)Γ(α+ 2− 2θ)

Γ(α+ 2− θ)Γ(α+ 3− θ)

×
+∞∑
N=0

(
α+ 3− 2θ + 2N

) (1− θ)N (2− θ)N
[
(α+ 2− 2θ)N

]2
(α+ 2− θ)N (α+ 3− θ)N

[
(N + 1)!

]2 . (4.12)

The series which comes from summing the estimates for the remainders converges, by the
standard asymptotics of the Pochhammer symbol.

The constant κ(α, θ) can be expressed in terms of the generalized hypergeometric func-
tion 4F3. We recall its definition:

4F3

(
a1 a2 a3 a4

b1 b2 b3

∣∣∣∣x) = 1 +
+∞∑
n=1

(a1)n(a2)n(a3)n(a4)n
(b1)n(b2)n(b3)n n!

xn,
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wherever the series converges. By splitting the last factor in the right hand side of (4.12)
as the sum α+ 3− 2θ + 2N = (α+ 2− 2θ +N) + (N + 1), we obtain

κ(α, θ) =
(1− θ)Γ(α+ 2)Γ(α+ 2− 2θ)

Γ(α+ 2− θ)Γ(α+ 3− θ)

{
(α+ 1− θ)(α+ 2− θ)
θ(1− θ)(α+ 1− 2θ)

−

− (α+ 1− θ)(α+ 2− θ)
θ(1− θ)(α+ 1− 2θ) 4F3

(
−θ 1− θ α− 2θ + 1 α− 2θ + 2

1 α− θ + 1 α− θ + 2

∣∣∣∣1)
+ 4F3

(
1− θ 2− θ α− 2θ + 2 α− 2θ + 2

2 α− θ + 2 α− θ + 3

∣∣∣∣1)} . (4.13)

We combine (4.6), (4.8), and (4.11), to obtain the following expression for the right hand
side of (4.5): {

(α+ 1)Γ(2θ + 1)

2θ (α− 2θ + 1)
[
Γ(θ + 1)

]2 + κ(α, θ)

}
‖g‖2α−2θ +O

(
‖g‖2α−θ

)
.

On the other hand, the left hand side of (4.5) may be likewise decomposed into a series
by the use of Corollary 3.10 and Proposition 4.5. For k = 0, 1, 2, 3, . . ., we introduce the
analytic functions Φk,θ by the formula

Φk,θ(z) = �
[
∂kzΦθ

]
(z), z ∈ D.

We arrive at the following statement.

PROPOSITION 4.8 (−1 + 2θ < α < +∞) For g ∈ Hα−2θ(D), we have∥∥∥Φθ(z, w) g(w) + Pα,−θ
[
Lθ(z, w) g(w)

]∥∥∥2

α,−θ

=
+∞∑
N=0

1
σ(α,−θ +N)

∥∥∥∥∥bN g(N+1)(z) +
N∑
k=0

ak,N ∂
N−k
z

[
Φk,θ(z) g(z)

]∥∥∥∥∥
2

α−2θ+2N+2

,

where the constant σ(α,−θ+N) is as in Lemma 3.5, and the other constants are given by

bN =
(−1)N+1(1− θ)N+1

(N + 1)! (α− 2θ +N + 2)N+1
(4.14)

and

ak,N =
(−1)N−k

k!(N − k)!
(−θ + k + 2)N−k

(α− 2θ +N + k + 3)N−k
. (4.15)

Finally, we express the main inequality (4.5) in the following guise.

THEOREM 4.9 (−1 + 2θ < α < +∞) There exists a constant C6(α, θ) depending only
on θ, α, with 0 < θ ≤ 1, such that for any g ∈ Hα(D),

+∞∑
N=0

1
σ(α,−θ +N)

∥∥∥∥∥bN g(N+1)(z) +
N∑
k=0

ak,N ∂
N−k
z

[
Φk,θ(z) g(z)

]∥∥∥∥∥
2

α−2θ+2N+2

≤

≤

[
(α+ 1)Γ(2θ + 1)

2θ(α− 2θ + 1)
[
Γ(θ + 1)

]2 + κ(α, θ)

]
‖g‖2α−2θ + C6(α, θ) ‖g‖2α−θ,

where the constants σ(α,N − θ), bN , ak,N , and κ(α, θ) are given by Lemma 3.5 and equa-
tions (4.14), (4.15), and (4.13), respectively.
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5 The algebra of ϕ-forms

In the classical theory of univalent functions, we frequently encounter expressions like

ϕ′′(z)
ϕ′(z)

and
ϕ′′′(z)
ϕ′(z)

− 3
2

[
ϕ′′(z)
ϕ′(z)

]2

,

where the first is known as the logarithmic derivative of the derivative (or the pre-Schwarz-
ian derivative), and the second is known as the Schwarzian derivative of the given univalent
function ϕ ∈ S. There are higher-order expressions of a similar nature, and it seems
reasonable to try to classify them.

An expression of the form
ϕ(n+1)(z)
ϕ′(z)

,

with n a positive integer, is said to be a monomial ϕ-form of degree n and bidegree 1. The
degree and bidegree are additive under multiplication, which means that, for instance,

ϕ′′′(z)ϕ′′(z)
[ϕ′(z)]2

is a monomial ϕ-form of degree 3 and bidegree 2. We form linear combinations of ϕ-forms
of the same degree n and the same bidegree k, and say that the resulting expression is a
monomial ϕ-form of degree n and bidegree k. We may also form linear combinations of
monomial ϕ-forms of the same degree n but of different bidegrees, and speak of the result
as a ϕ-form of degree n (without a bidegree). As we form sums of monomial ϕ-forms of
various degrees, the maximum of which is n, we get a ϕ-form with the degree n. This way,
we get an algebra of ϕ-forms. As far as we are concerned, only monomial ϕ-forms will be
of any interest.

Explicit calculation of the functions Φk,θ. We recall the formula

Φθ(z, w) =
1

z − w

{
ϕ′(z)
ϕ′(w)

(
ϕ(z)− ϕ(w)
ϕ′(w) (z − w)

)−θ−1

− 1

}
, (z, w) ∈ D2, z 6= w.

We expand ϕ(z) in a Taylor series about z = w:

ϕ(z) = ϕ(w) +
+∞∑
j=1

ϕ(j)(w)

j!
(z − w)j .

This means that

ϕ(z)− ϕ(w)
ϕ′(w) (z − w)

=
+∞∑
j=1

1
j!
ϕ(j)(w)ϕ′(w) (z − w)j−1 = 1 +

+∞∑
j=2

1
j!
ϕ(j)(w)
ϕ′(w)

(z − w)j−1,

which leads to(
ϕ(z)− ϕ(w)
ϕ′(w) (z − w)

)−θ−1

=
[
1 +

+∞∑
j=2

1
j!
ϕ(j)(w)
ϕ′(w)

(z − w)j−1

]−θ−1

=
+∞∑
n=0

(
−θ − 1
n

) +∞∑
j=2

1
j!
ϕ(j)(w)
ϕ′(w)

(z − w)j−1

n

= 1 +
+∞∑
n=1

(
−θ − 1
n

)
(z − w)n

+∞∑
j=2

1
j!
ϕ(j)(w)
ϕ′(w)

(z − w)j−2

n

.

23



We also have the Taylor series expansion for ϕ′, which leads to

ϕ′(z)
ϕ′(w)

= 1 +
+∞∑
k=2

1
(k − 1)!

ϕ(k)(w)
ϕ′(w)

(z − w)k−1.

As we multiply these expressions together, we obtain

ϕ′(z)
ϕ′(w)

(
ϕ(z)− ϕ(w)
ϕ′(w) (z − w)

)−θ−1

= 1 +
+∞∑
k=2

1
(k − 1)!

ϕ(k)(w)
ϕ′(w)

(z − w)k−1

+
+∞∑
k=1

1
(k − 1)!

ϕ(k)(w)
ϕ′(w)

(z − w)k−1

×
+∞∑
n=1

(
−θ − 1
n

)
(z − w)n

+∞∑
j=2

1
j!
ϕ(j)(w)
ϕ′(w)

(z − w)j−2

n

,

so that

Φθ(z, w) =
+∞∑
k=2

1
(k − 1)!

ϕ(k)(w)
ϕ′(w)

(z − w)k−2

+
+∞∑
k=1

1
(k − 1)!

ϕ(k)(w)
ϕ′(w)

(z − w)k−1

×
+∞∑
n=1

(
−θ − 1
n

)
(z − w)n−1

+∞∑
j=2

1
j!
ϕ(j)(w)
ϕ′(w)

(z − w)j−2

n

.

The next step is to note that+∞∑
j=2

1
j!
ϕ(j)(w)
ϕ′(w)

(z − w)j−2

n

=
+∞∑

j1,...,jn=1

ϕ(j1+1)(w) · · ·ϕ(jn+1)(w)
(j1 + 1)! · · · (jn + 1)! [ϕ′(w)]n

(z − w)j1+...+jn−n,

so that we get

Φθ(z, w) =
+∞∑
l=0

1
(l + 1)!

ϕ(l+2)(w)
ϕ′(w)

(z − w)l

+

{
1 +

+∞∑
l=1

1
l!
ϕ(l+1)(w)
ϕ′(w)

(z − w)l
}

×
+∞∑
n=1

(
−θ − 1
n

) +∞∑
j1,...,jn=1

ϕ(j1+1)(w) · · ·ϕ(jn+1)(w)
(j1 + 1)! · · · (jn + 1)! [ϕ′(w)]n

(z − w)j1+...+jn−1. (5.1)

For integers k, n, with 1 ≤ n ≤ k, we introduce the function

Ψk,n(z) =
∑

(j1,...,jn)∈I(k,n)

ϕ(j1+1)(z) · · ·ϕ(jn+1)(z)
(j1 + 1)! · · · (jn + 1)! [ϕ′(z)]n

,
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where I(k, n) is the set of all n-tuples (j1, . . . , jn) of positive integers with j1 + . . .+jn = k.
We realize that Ψk,n(z) is a monomial ϕ-form of degree k and bidegree n. We calculate
that, for instance,

Ψk,1(z) =
ϕ(k+1)(z)

(k + 1)!ϕ′(z)
, Ψk,2(z) =

k−1∑
l=1

ϕ(l+1)(z)ϕ(k−l+1)(z)
(l + 1)!(k − l + 1)! [ϕ′(z)]2

.

PROPOSITION 5.1 For k = 0, 1, 2, . . ., we have

Φk,θ(z) = �
[
∂kzΦθ

]
(z) = (k + 1− θ) k!

k+1∑
n=1

(−1)n−1(θ + 1)n−1

n!
Ψk+1,n(z).

Proof. We calculate that
+∞∑
l=1

1
l!
ϕ(l+1)(w)
ϕ′(w)

(z − w)l

×
+∞∑
n=1

(
−θ − 1
n

) +∞∑
j1,...,jn=1

ϕ(j1+1)(w) · · ·ϕ(jn+1)(w)
(j1 + 1)! · · · (jn + 1)! [ϕ′(w)]n

(z − w)j1+...+jn

=
+∞∑
n=1

(
−θ − 1
n

) +∞∑
j0,j1,...,jn=1

(j0 + 1)
ϕ(j0+1)(w) · · ·ϕ(jn+1)(w)

(j0 + 1)! · · · (jn + 1)! [ϕ′(w)]n
(z − w)j0+...+jn ,

and realize that the expression involving the sum over j0, . . . , jn is essentially of the same
type as the sum appearing on the previous line which was over j1, . . . , jn. By (5.1), then,
the k-th order Taylor coefficient is

1
k!

Φk,θ(w) =
1
k!
�
[
∂kzΦθ

]
(w) =

1
(k + 1)!

ϕ(k+2)(w)
ϕ′(w)

+
k+1∑
n=1

(
−θ − 1
n

) ∑
(j1,...,jn)∈I(k+1,n)

ϕ(j1+1)(w) · · ·ϕ(jn+1)(w)
(j1 + 1)! · · · (jn + 1)! [ϕ′(w)]n

+
k∑

n=1

(
−θ − 1
n

) ∑
(j0,...,jn)∈I(k+1,n+1)

(j0 + 1)
ϕ(j0+1)(w) · · ·ϕ(jn+1)(w)

(j0 + 1)! · · · (jn + 1)! [ϕ′(w)]n
.

We see that∑
(j0,...,jn)∈I(k+1,n+1)

(j0 + 1)
ϕ(j0+1)(w) · · ·ϕ(jn+1)(w)

(j0 + 1)! · · · (jn + 1)! [ϕ′(w)]n

=
n+ k + 2
n+ 1

∑
(j0,...,jn)∈I(k+1,n+1)

ϕ(j0+1)(w) · · ·ϕ(jn+1)(w)
(j0 + 1)! · · · (jn + 1)! [ϕ′(w)]n

=
n+ k + 2
n+ 1

Ψk+1,n+1(w),

which leads to the simplification

1
k!

Φk,θ(w) =
1

(k + 1)!
ϕ(k+2)(w)
ϕ′(w)

+
k+1∑
n=1

(
−θ − 1
n

)
Ψk+1,n(w)

+
k∑

n=1

(
−θ − 1
n

)
n+ k + 2
n+ 1

Ψk+1,n+1(w).
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As we change the order of summation a bit, and change variables from w to z, the assertion
of the proposition follows.

REMARK 5.2 It follows that the expression Φk,θ(z) is a monomial ϕ-form of degree
k + 1.

Derivatives of powers of ϕ′. Let λ be a complex parameter, and consider the function

gλ(z) = [ϕ′(z)]λ = exp
[
λ logϕ′(z)

]
, z ∈ D,

where logϕ′(z) takes the value 0 at z = 0, and is analytic throughout the disk D. We
compute that

g′λ(z) = λ
ϕ′′(z)
ϕ′(z)

gλ(z), (5.2)

and

g′′λ(z) = λ

(
ϕ′′′(z)
ϕ′(z)

+ (λ− 1)
[
ϕ′′(z)
ϕ′(z)

]2
)
gλ(z). (5.3)

Let Ωk,λ(z) be the function defined by

g
(k)
λ (z) = Ωk,λ(z) gλ(z), (5.4)

which means that

Ω1,λ(z) = λ
ϕ′′(z)
ϕ′(z)

, Ω2,λ(z) = λ
ϕ′′′(z)
ϕ′(z)

+ λ(λ− 1)
[
ϕ′′(z)
ϕ′(z)

]2

.

From the rules of differentiation, we have that

Ωk+1,λ(z) = Ω′k,λ(z) + λ
ϕ′′(z)
ϕ′(z)

Ωk,λ(z).

This allows us to successively calculate a few higher order factors Ωk,λ(z), such as Ω3,λ(z):

Ω3,λ(z) = λ
ϕ(4)(z)
ϕ′(z)

+ 3λ(λ− 1)
ϕ′′′(z)ϕ′′(z)

[ϕ′(z)]2
+ λ(λ− 1)(λ− 2)

[
ϕ′′(z)
ϕ′(z)

]3

, (5.5)

To obtain the formula for the general case, we use the tentative representation

Ωk,λ(z) =
k∑

n=1

(λ− n+ 1)n
∑

(j1,...,jn)∈I(k,n)

c(j1, . . . , jn)
ϕ(j1+1)(z) · · ·ϕ(jn+1)(z)

[ϕ′(z)]n
, (5.6)

where as before, I(k, n) is the set of all n-tuples (j1, . . . , jn) of positive integers with
j1 + . . .+ jn = k. Also, we assume that the as of yet undetermined coefficients c(j1, . . . , jn)
are invariant under permutations, so that, for instance, c(j1, . . . , jn) = c(jn, . . . , j1). Let
P(j1, . . . , jn) denote the collection of all (different) permutations of the given n-tuple
(j1, . . . , jn). We begin by setting c(1) = 1, and we define

c(j1, . . . , jn−1, 0) =
1
n
c(j1, . . . , jn−1),

for positive integers j1, . . . , jn−1. All the other values of the constants appearing in (5.6)
are obtained iteratively from the formula

c(j1, . . . , jn) =
n∣∣P(j1, . . . , jn)

∣∣ ∑
(J1,...,Jn)∈P(j1,...,jn)

c(J1, . . . , Jn−1, Jn − 1),

where the absolute value sign is used to denote the number of elements.

REMARK 5.3 For all k = 1, 2, 3, . . ., the expression Ωk,λ is a monomial ϕ-form of degree
k.
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6 Estimates of the integral means spectrum

An estimate based on the first diagonal term. In this section, we shall use the first
term on the left hand side of the inequality of Theorem 4.9 to obtain an estimate of the
universal integral means spectrum BS(τ), which is of interest mainly for τ ∈ C near the
origin.

Throughout this section, we assume that ϕ is a sufficiently smooth function of the class
S; to make this precise, we shall suppose that ϕ is analytic and univalent in slightly larger
disk than D. For appropriate values of the real parameter β (β is allowed to depend on τ),
we shall obtain estimates of the norms

∥∥(ϕ′)τ/2
∥∥
β−1

that are uniform in ϕ. By a standard
dilation argument, we then get the same uniform norm estimate for general ϕ ∈ S as well.
In view of (1.8), this leads to the estimate BS(τ) ≤ β.

The following proposition is based on Theorem 4.9, with only the first term on the left
hand side counted. It uses a fixed value for the parameter θ. For the formulation, we need
the expression

K(β, θ) =
(β + 2θ) Γ(2θ + 1)

2 θβ [Γ(θ + 1)]2
+ κ(β + 2θ − 1, θ), (6.1)

where the function κ is as in (4.12) or (4.13).

PROPOSITION 6.1 Fix τ ∈ C \ {0} and θ with 0 < θ < 1. Suppose that for some
positive real β, the following inequality holds:

K(β, θ) < (1− θ)(β + 1)(β + 2)
∣∣∣∣ 1
β + 1

− 1
τ

∣∣∣∣2 Γ(β + 1 + 2θ) Γ(β + 2)
Γ(β + 1 + θ) Γ(β + 2 + θ)

, (6.2)

where the function K is as above. Suppose, in addition, that∥∥(ϕ′)τ/2
∥∥
β−1+θ

= O(1)

holds uniformly in ϕ ∈ S. Then we also have∥∥(ϕ′)τ/2
∥∥
β−1

= O(1)

uniformly in ϕ ∈ S. In particular, BS(τ) ≤ β.

Proof. If we take into account only the first term of the sum on the left hand side of
the inequality in Theorem 4.9, and pick α = β + 2θ − 1, we obtain

1
σ(β + 2θ − 1,−θ)

∥∥∥∥− 1− θ
β + 1

g′ +
1− θ

2
ϕ′′

ϕ′
g

∥∥∥∥2

β+1

≤ K(β, θ) ‖g‖2β−1 +O
(
‖g‖2β−1+θ

)
, (6.3)

for an arbitrary g ∈ Hβ−1(D). Here, we used the fact that

Φ0,θ(z) = �Φθ(z) =
1− θ

2
ϕ′′(z)
ϕ′(z)

, z ∈ D,

which is an almost trivial case of Proposition 5.1.
The next step is to apply the estimate (6.3) to the functions

g(z) = gτ (z) =
[
ϕ′(z)

]τ/2
,
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and to make the observation that

ϕ′′(z)
ϕ′(z)

gτ (z) =
2
τ
g′τ (z), z ∈ D. (6.4)

By Proposition 4.7 (with ν = θ), we have∥∥g′∥∥2

β+1
= (β + 1)(β + 2) ‖g‖2β−1 +O

(
‖g‖2β−1+θ

)
holds generally, so that if we combine it with the above observation and recall the formula
of Lemma 3.5, we obtain from (6.3) that{

(1− θ) Γ(β + 1 + 2θ)Γ(β + 2)
Γ(β + 1 + θ)Γ(β + 2 + θ)

(β + 1)(β + 2)
∣∣∣∣ 1
β + 1

− 1
τ

∣∣∣∣2 −K(β, θ)

} ∥∥gτ∥∥2

β−1

= O
(
‖gτ‖2β−1+θ

)
,

which implies the assertion of the proposition.

REMARK 6.2 A part of the assertion of Proposition 6.1, namely BS(τ) ≤ β, remains
true under the weaker assumption of “≤” in (6.2). This is so because in the case of equality
in (6.2) for given θ, β, and τ , we may move τ slightly so as to achieve “<”. Using the
continuity of the function BS , the asserted inequality follows by taking the limit.

We may use the above proposition iteratively to obtain successively better bounds for
the function BS(τ) starting from some some trivial bound, like what follows from the
pointwise Kœbe-Bieberbach estimate (1.1). A more general estimate is∣∣∣[ϕ′(z)]τ ∣∣∣ ≤ (1 + |z|)2|τ |−Re τ

(1− |z|)2|τ |+ Re τ
, z ∈ D, (6.5)

which works for general τ ∈ C; it is obtained if we integrate (1.9), to get∣∣∣ logϕ′(z) + log
(
1− |z|2

)∣∣∣ ≤ 2 log
1 + |z|
1− |z|

, z ∈ D,

and perform the appropriate algebraic manipulations. It follows from (6.5) that for fixed
τ ∈ C, ∥∥∥[ϕ′]τ/2∥∥∥2

2|τ |+ Re τ−1+ε
= O(1) (6.6)

holds uniformly in ϕ ∈ S, for all positive values of ε.

A first estimate of the integral means spectrum near the origin. We apply
Proposition 6.1 to obtain asymptotic bounds for the function BS(t) for t near the origin.

PROPOSITION 6.3 Fix a θ with 0 < θ < 1. We then have

lim sup
C3τ→0

BS(τ)
|τ |2

≤ 1 + θ

2(1− θ)
. (6.7)

Proof. Pick a positive ε, and let

β = β(τ) =
[

1 + θ

2(1− θ)
+ ε

]
|τ |2.
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We plug this β into both sides of (6.2), and observe that the left hand side behaves like

2(1− θ)Γ(2θ + 1)
Γ(1 + θ)Γ(2 + θ)

1
|τ |2

+ o

(
1
|τ |2

)
as τ → 0,

while the right hand side behaves like[
1 + θ

2(1− θ)
+ ε

]−1 Γ(2θ + 1)
[Γ(θ + 1)]2

1
|τ |2

+ o

(
1
|τ |2

)
as τ → 0,

which shows that condition (6.2) is fulfilled for sufficiently small values of |τ |. As the trivial
estimate (6.6) show that ∥∥∥[ϕ′]τ/2∥∥∥2

β(τ)−1+θ
= O(1)

for sufficiently small |τ |, we may apply Proposition 6.1 to deduce that∥∥∥[ϕ′]τ/2∥∥∥2

β(τ)−1
= O(1)

holds uniformly in ϕ for sufficiently small |τ |. The desired assertion follows.

COROLLARY 6.4 We have

lim sup
C3τ→0

BS(τ)
|τ |2

≤ 1
2
.

Proof. Let θ → 0+ in (6.7).

The improved estimate of the integral means spectrum near the origin. Below,
we obtain a better constant instead of 1

2 in the estimate of Corollary 6.4.
Naturally, if we take into account more terms of the sum in the left hand side of

the inequality in Theorem 4.9, we obtain more precise information. We now analyze the
estimate obtained by considering the first two terms. As in the proof of Proposition 6.1,
we fix some θ with 0 < θ < 1 and some positive β, and we plug in α = β + 2θ − 1 and
g = gτ = [ϕ′]τ/2 into Theorem 4.9, throwing away all but the first two terms on the left
hand side. We use Proposition 5.1 to evaluate Φk,θ(z) for k = 0, 1, and the identity (6.4)
to obtain, for 0 < β < +∞,

(1− θ)(β + 1)(β + 2)
Γ(β + 1 + 2θ)Γ(β + 2)

Γ(β + 1 + θ)Γ(β + 2 + θ)

∣∣∣∣ 1
β + 1

− 1
τ

∣∣∣∣2 ∥∥∥[ϕ′]τ/2∥∥∥2

β−1

+ (2− θ) Γ(β + 2θ + 1)Γ(β + 4)
Γ(β + θ + 2)Γ(β + θ + 3)

×♣

≤ K(β, θ)
∥∥∥[ϕ′]τ/2∥∥∥2

β−1
+O

(∥∥∥[ϕ′]τ/2∥∥∥2

β+θ−1

)
, (6.8)

where

♣ =
∥∥∥∥ 1− θ

2(β + 2)(β + 3)
∂2
{[
ϕ′
]τ/2}− 1− θ

2(β + 3)
∂

{
ϕ′′

ϕ′
[
ϕ′
]τ/2}

+

{
1
6
ϕ′′′

ϕ′
− θ + 1

8

(
ϕ′′

ϕ′

)2
}[

ϕ′
]τ/2∥∥∥∥∥

2

β+3

, (6.9)
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and ∂ = d/dz stands for the operator of differentiation. As before, we first apply this
inequality to estimate BS(τ) near the origin. We consider β = β(τ) = B0 |τ |2, where B0 is
some fixed constant with 0 < B0 <

1
2 . We put θ = θ(τ) = 4|τ |, and plug these values into

(6.8). By the trivial estimate (6.6), we have∥∥∥[ϕ′]τ/2∥∥∥2

β(τ)+θ(τ)−1
= O(1),

uniformly in ϕ ∈ S for each fixed τ ∈ C. Then (6.8) takes the following form:

2 + ε1(τ)
|τ |2

∥∥∥[ϕ′]τ/2∥∥∥2

−1+β(τ)

+
(
6 + ε2(τ)

) ∥∥∥∥∥
{(

1
24

+ ε3(τ)
)[

ϕ′′

ϕ′

]2

+ ε4(τ)
ϕ′′′

ϕ′

}[
ϕ′
]τ/2∥∥∥∥∥

2

3+β(τ)

≤ 1 + ε5(τ)
B0 |τ |2

∥∥∥[ϕ′]τ/2∥∥∥2

−1+β(τ)
+O(1), (6.10)

where the last O(1) is uniform in ϕ ∈ S for each fixed τ . For k = 1, 2, 3, 4, 5, the functions
εk(τ) satisfy

lim
τ→0

εk(τ) = 0;

and for k = 1, 2, 5, the functions are in addition real-valued.

LEMMA 6.5 (−1 < α < +∞) There exists a positive constant C7(α) such that, for any
g ∈ Hα(D), ∥∥∥∥ϕ′′′ϕ′ g

∥∥∥∥2

α+4

≤ C7(α) ‖g‖2α.

Moreover,

C7(α) = O

(
1

α+ 1

)
as α→ −1+.

Proof. The assertion follows from the identity

ϕ′′′

ϕ′
g =

d
dz

(
ϕ′′

ϕ′
g

)
+
[
ϕ′′

ϕ′

]2

g − ϕ′′

ϕ′
g′

combined with the classical pointwise estimate (1.9) and Proposition 4.7.

As we apply the above lemma, we obtain from (6.10) that the inequality∥∥∥∥ [ϕ′′ϕ′
]2 [

ϕ′
]τ/2∥∥∥∥2

β(τ)+3

≤ 96
|τ |2

(
1
B0
− 2 + ε

)∥∥∥[ϕ′]τ/2∥∥∥2

β(τ)−1
+O(1) (6.11)

holds for each fixed positive ε, for sufficiently small values of |τ |.

LEMMA 6.6 (0 < β < +∞) For each g ∈ Hβ−1, we have∥∥∥∥ϕ′′ϕ′ g
∥∥∥∥2

β+1

≤ β + 2√
β(β + 4)

‖g‖β−1

∥∥∥∥ [ϕ′′ϕ′
]2

g

∥∥∥∥
β+3

. (6.12)
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Proof. This follows from a standard application of the Cauchy-Schwarz–Bunyakovskĭı
inequality.

By estimate (6.11) and Lemma 6.6, we have the following chain of inequalities (as
before, β(τ) = B0|τ |2):

∥∥∥[ϕ′]τ/2∥∥∥2

β(τ)−1
=

|τ |2

4 (β(τ) + 1)(β(τ) + 2)

∥∥∥∥ϕ′′ϕ′ [ϕ′]τ/2
∥∥∥∥2

1+β(τ)

+O(1)

≤ |τ |2

4 (β(τ) + 1)
√
β(τ)(β(τ) + 4)

∥∥∥∥ [ϕ′′ϕ′
]2 [

ϕ′
]τ/2∥∥∥∥

β+3

∥∥∥[ϕ′]τ/2∥∥∥
β(τ)−1

+O(1)

≤ 1 + ε6(τ)
8
√
B0

√
96
(

1
B0
− 2 + ε

)∥∥∥[ϕ′]τ/2∥∥∥2

β(τ)−1
+O

(∥∥∥[ϕ′]τ/2∥∥∥
β(τ)−1

)
+O(1),

where the function ε6(τ) is real-valued with limit ε6(τ) → 0 as τ → 0. This inequality
implies that ∥∥∥[ϕ′]τ/2∥∥∥

β(τ)−1
= O(1)

uniformly in ϕ ∈ S, provided that

1 + ε6(τ)
8
√
B0

√
96
(

1
B0
− 2 + ε

)
< 1.

We conclude that

lim sup
C3τ→0

BS(τ)
|τ |2

≤ B0

holds for each real constant B0, 0 < B0 <
1
2 , for which

96
(

1
B0
− 2
)
< 64B0.

By solving this last inequality for B0, we obtain the following estimate.

THEOREM 6.7 We have that

lim sup
C3τ→0

BS(τ)
|τ |2

≤
√

15− 3
2

= 0.43649 . . . (6.13)

REMARK 6.8 The best previous estimate of this type was BS(t) ≤ (3 + ε) t2 for real t
near the origin (see [15]).

An optimization method to estimate BS using two terms. Our next goal is to
estimate the function BS(τ) using the the inequality (6.8), which employs the first two
terms on the left hand side of the inequality in Theorem 4.9. This time we intend to take
into account somehow all possible values of θ at the same time, rather than considering a
single value at a time. This of course requires that the estimates we have obtained so far
are sufficiently uniform in θ, if θ is confined to some compact interval [θ0, 1], which is true
and possible to verify without too much effort. We fix τ ∈ C and β with 0 < β < +∞, and
rewrite (6.8) as follows, using (5.2):∥∥∥∥∥A1(θ)∂2

{[
ϕ′
]τ/2}+A2(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]τ/2∥∥∥∥∥

β+3

≤
∥∥∥[ϕ′]τ/2∥∥∥

−1+β
+O

(∥∥∥[ϕ′]τ/2∥∥∥
−1+β+θ

)
, (6.14)
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where

A1(θ) =
[

1− θ
2(β + 2)(β + 3)

− 1− θ
τ (β + 3)

+
1
3τ

]{
(2− θ) Γ(β + 2θ + 1) Γ(β + 4)

Γ(β + θ + 2) Γ(β + θ + 3)

} 1
2

×

{
K(β, θ)− (1− θ)(β + 1)(β + 2)

Γ(β + 2θ + 1) Γ(β + 2)
Γ(β + θ + 1) Γ(β + θ + 2)

∣∣∣∣ 1
β + 1

− 1
τ

∣∣∣∣2
}−1/2

,

(6.15)

and

A2(θ) =
[

1
6

(
1− τ

2

)
− θ + 1

8

]{
(2− θ) Γ(β + 2θ + 1)Γ(β + 4)

Γ(β + θ + 2)Γ(β + θ + 3)

} 1
2

×

{
K(β, θ)− (1− θ)(β + 1)(β + 2)

Γ(β + 2θ + 1)Γ(β + 2)
Γ(β + θ + 1)Γ(β + θ + 2)

∣∣∣∣ 1
β + 1

− 1
τ

∣∣∣∣2
}− 1

2

; (6.16)

we recall the definition of the function K(β, θ) in (6.1). Without loss of generality, we may
assume that

(1− θ)(β + 1)(β + 2)
Γ(β + 2θ + 1)Γ(β + 2)

Γ(β + θ + 1)Γ(β + θ + 2)

∣∣∣∣ 1
β + 1

− 1
τ

∣∣∣∣2 < K(β, θ) (6.17)

holds for all θ, 0 < θ ≤ 1; for otherwise, we may apply Proposition 6.1 in conjunction with
Remark 6.2 to get the desired inequality BS(τ) ≤ β. This means that the square roots
which are used to define the functions A1 and A2 produce real-valued functions on the
whole interval 0 < θ ≤ 1. For each θ, 0 < θ ≤ 1, we consider the disk

Dθ =
{
w ∈ C :

∣∣A1(θ)− wA2(θ)
∣∣ ≤ 1√

(β + 1)4

}
. (6.18)

Here, of course, (β + 1)4 = (β + 1)(β + 2)(β + 3)(β + 4).

We have the following result.

PROPOSITION 6.9 Suppose there exists a certain θ0, with 0 < θ0 ≤ 1, such that
(a) the intersection

⋂
θ0≤θ≤1Dθ is empty, and

(b) the estimate
∥∥[ϕ′]τ/2

∥∥
−1+β+θ0

= O(1) holds uniformly in ϕ ∈ S.

Then ∥∥[ϕ′]τ/2
∥∥
−1+β

= O(1)

holds uniformly in ϕ ∈ S, so that in particular, BS(τ) ≤ β.

Proof. A standard compactness argument shows that the assumption (a) remains
valid if we replace the disks Dθ by the slightly bigger disks

Dεθ =
{
w ∈ C :

∣∣A1(θ)− wA2(θ)
∣∣ ≤ 1 + ε√

(β + 1)4

}
,

for a small enough positive ε. This means that

inf
w∈C

∥∥A1 − wA2

∥∥
C[θ0,1]

≥ 1 + ε√
(β + 1)4
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holds, if, as is standard, C[θ0, 1] is the Banach space of complex-valued functions continuous
in [θ0, 1], supplied with the uniform norm. By standard duality, this entails that there exists
a complex Borel measure µ on the interval [θ0, 1] such that the total variation of µ is 1,
and, in addition,

1 + ε√
(β + 1)4

≤
∣∣∣∣∫ 1

θ0

A1(θ) dµ(θ)
∣∣∣∣ while

∫ 1

θ0

A2(θ) dµ(θ) = 0.

We find that an application of (6.14) leads to

1 + ε√
(β + 1)4

∥∥∥∂2
{[
ϕ′
]τ/2}∥∥∥

β+3
≤
∥∥∥∥{∫ 1

θ0

A1(θ) dµ(θ)
}
∂2
{[
ϕ′
]τ/2}∥∥∥∥

β+3

=

∥∥∥∥∥
∫ 1

θ0

{
A1(θ)∂2

{[
ϕ′
]τ/2}+A2(θ)

[
ϕ′′

ϕ′

]2

(ϕ′)t/2
}

dµ(θ)

∥∥∥∥∥
β+3

≤
∫ 1

θ0

∥∥∥∥∥A1(θ)∂2
{[
ϕ′
]τ/2}+A2(θ)

[
ϕ′′

ϕ′

]2

(ϕ′)τ/2
∥∥∥∥∥
β+3

|dµ(θ)|

≤
∥∥∥[ϕ′]τ/2∥∥∥

−1+β
+O

(∥∥∥[ϕ′]τ/2∥∥∥
−1+β+θ0

)
.

In view of Proposition 4.7 and the assumption (b), the desired conclusion follows.

REMARK 6.10 For τ = t real, it suffices to verify the assumption (a) of Proposition 6.9
along the real line only, as can be seen from the observation that the functions A1(θ) and
A2(θ) are real-valued then. This means that if we put

Iθ =
{
x ∈ R :

∣∣A1(θ)− xA2(θ)
∣∣ ≤ 1√

(β + 1)4

}
, (6.19)

which constitutes a closed interval, it is enough to check that⋂
θ0≤θ≤1

Iθ = ∅. (6.20)

This criterion can be easily checked by computer calculations. Indeed, if we denote the left
and right end points of Iθ by α1(θ) and α2(θ), so that

Iθ = [α1(θ), α2(θ)],

then the criterion (6.20) is equivalent to

inf
θ∈[θ0,1]

α2(θ) < sup
θ∈[θ0,1]

α1(θ),

which is easily treated numerically.

REMARK 6.11 It would be desirable to change the implementation of the optimization
method so that we may incorporate the information supplied by Lemma 6.6, so as to obtain
a more optimal estimate based on the first two terms. If we do this in a straightforward
manner, focussing on the term containing A2(θ) instead of A1(θ), we are to replace the
intervals Iθ = Dθ ∩ R by

Jθ =
{
x ∈ R :

∣∣A2(θ)− xA1(θ)
∣∣ ≤ t2

4(β + 1)
√
β(β + 4)

}
,

and the criterion
⋂
θ0≤θ≤1 Jθ = ∅ then permits us to conclude that BS(t) ≤ β. Numerical

simulation shows that this criterion is more powerful for (real) t near the origin than the
criterion (a) of Proposition 6.9.
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Numerical implementation. By successive application of Proposition 6.9 for real τ = t,
taking into account Remark 6.10, we obtain the estimate BS(t) ≤ B∗(t), where the function
B∗(t) is tabulated below. We use suitably small values of θ0. The function B∗(t) is also
graphed. For some values of t, the method outlined in Remark 6.11 is used in place of
Proposition 6.9; this is then indicated with an asterisk (*).

The tabulated bounds for BS(−1) and BS(−2) are to be compared with the bounds
that were found recently by the second-named author in [17]; there, it was shown that
BS(−1) ≤ 0.420 and BS(−2) ≤ 1.246. It should be noted that the inequality of Theorem 1
in [17] leading to these bounds is a particular case of our main inequality – the inequality
of Theorem 4.9 – if we put θ = 1 and, like in (6.14), take into account only the first two
terms in the sum on the left hand side. In this particular case, the first term vanishes and
the constant C6(α, θ) which appears in (4.9) vanishes as well, because Lθ = 0 for θ = 1.

t B∗(t) max{−t− 1, 0}
−20.000 19.028 19.000
−10.000 9.040 9.000
−8.000 7.049 7.000
−6.000 5.067 5.000
−5.000 4.082 4.000
−4.000 3.105 3.000
−3.000 2.144 2.000
−2.500 1.674 1.500
−2.400 1.582 1.400
−2.300 1.490 1.300
−2.200 1.398 1.200
−2.100 1.308 1.100
−2.000 1.218 1.000
−1.900 1.130 0.900
−1.800 1.042 0.800
−1.752 1.001 0.752
−1.700 0.956 0.700
−1.600 0.871 0.600
−1.500 0.787 0.500
−1.400 0.706 0.400
−1.300 0.626 0.300
−1.200 0.549 0.200
−1.100 0.474 0.100
−1.000 0.403 0.000
−0.900 0.336 0.000
−0.800 0.272 0.000
−0.700 0.213∗ 0.000
−0.600 0.159∗ 0.000
−0.500 0.112∗ 0.000
−0.400 0.072∗ 0.000
−0.300 0.0404∗ 0.000
−0.200 0.0179∗ 0.000
−0.150 0.0100∗ 0.000
−0.100 0.00443∗ 0.000
−0.050 0.00110∗ 0.000

t B∗(t) max{3t− 1, 0}
0.000 0.00000 0.000
0.050 0.00141∗ 0.000
0.100 0.0065 0.000
0.150 0.0157 0.000
0.200 0.031 0.000
0.250 0.056 0.000
0.300 0.101 0.000
0.350 0.190 0.050
0.400 0.314 0.200
0.450 0.447 0.350
0.500 0.585 0.500
0.600 0.870 0.800
0.700 1.159 1.100
0.800 1.452 1.400
0.900 1.746 1.700
1.000 2.041 2.000
1.100 2.337 2.300
1.200 2.634 2.600
1.300 2.932 2.900
1.400 3.230 3.200
1.500 3.528 3.500
1.600 3.826 3.800
1.700 4.124 4.100
1.800 4.423 4.400
1.900 4.722 4.700
2.000 5.021 5.000
2.100 5.320 5.300
2.200 5.619 5.600
2.300 5.918 5.900
2.400 6.217 6.200
2.500 6.517 6.500
3.000 8.014 8.000
4.000 11.011 11.000
5.000 14.010 14.000
6.000 17.010 17.000

TABLES 1 AND 2.
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FIGURE 1. Graph of B = B∗(t), the estimated universal spectral function; support lines
included.

REMARK 6.12 By taking advantage of the fact that the function BΣ(t) is convex, with
BΣ(t) ≤ BS(t) and BΣ(2) = 1, we derive from a somewhat larger supply of sample values
of the graphed function B∗(t) that BΣ(1) ≤ 0.4600, improving the best earlier known
estimate, due to Makarov and Pommerenke [12], which was BΣ(1) ≤ 0.4886. The value
of BΣ(1) describes the growth of the length of Green lines (the level curves of the Green
function) as they approach the boundary of an arbitrary simply connected bounded planar
domain. It also determines the rate of decay of the Laurent series coefficients of functions
in the class Σ (see [3]).

The optimization method to estimate BS using three or more terms. How do we
implement the optimization method if we take into account more than two terms on the
left hand side of the inequality of Theorem 4.9? We outline here briefly an extension of the
method which applies to the case of three terms. The method may of course be extended
to include more than three terms as well.

For simplicity, we consider real τ = t only. As we take the first three terms on the left
hand side of the inequality of Theorem 4.9 into account, putting, as before, α = β+ 2θ− 1
and g = [ϕ′]t/2, we obtain an inequality of the form∥∥∥∥∥A1(θ)∂2

{[
ϕ′
]t/2}+A2(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2∥∥∥∥∥

2

β+3

+
1

(β + 5)(β + 6)

×

∥∥∥∥∥A3(θ)∂3
{[
ϕ′
]t/2}+A4(θ)∂

{[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2}+A5(θ)

[
ϕ′′

ϕ′

]3 [
ϕ′
]t/2∥∥∥∥∥

2

β+5

≤

≤
∥∥∥[ϕ′]t/2∥∥∥2

β−1
+O

(∥∥∥[ϕ′]t/2∥∥∥2

β−1+θ

)
, (6.21)

where the functions A1 and A2 are given by (6.15) and (6.16), and the functions A3, A4,
A5 are continuous on ]0, 1], and given by certain explicit expressions. As before, we assume
that condition (6.17) is fulfilled for all θ, 0 < θ ≤ 1. The process of deriving equation
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(6.21) involves not only Theorem 4.9, but also some of the algebraic results of Section 5.
A counterpart to Proposition 6.9 is the following.

PROPOSITION 6.13 Let Eθ denote the ellipse in (x, y)-plane defined by the condition∣∣A1(θ)− xA2(θ)
∣∣2 +

∣∣A3(θ)− xA4(θ)− y A5(θ)
∣∣2 ≤ 1

(β + 1)4
.

Suppose that there exists a certain θ0, with 0 < θ0 ≤ 1, such that
(a) the intersection

⋂
θ∈[θ0,1] Eθ is empty;

(b)
∥∥(ϕ′)t/2

∥∥2

−1+β+θ0
= O(1) uniformly in ϕ ∈ S.

Then ∥∥∥[ϕ′]τ/2∥∥∥
−1+β

= O(1)

holds uniformly in ϕ ∈ S and, in particular, BS(t) ≤ β.

Proof. First, we introduce the operator of integration I0,

I0f(z) =
∫ z

0

f(w) dw, z ∈ D.

Then we apply Proposition 4.7 to the second term on the left-hand side of (6.21), which
allows us to rewrite (6.21) in the form∥∥∥∥∥A1(θ)∂2

{
(ϕ′)t/2

}
+A2(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2∥∥∥∥∥

2

β+3

+

∥∥∥∥∥A3(θ)∂2
{[
ϕ′
]t/2}+A4(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2 +A5(θ) I0

[ [
ϕ′′

ϕ′

]3 [
ϕ′
]t/2]∥∥∥∥∥

2

β+3

≤
∥∥∥[ϕ′]t/2∥∥∥2

−1+β
+O

(∥∥∥[ϕ′]t/2∥∥∥2

−1+β+θ

)
. (6.22)

A standard compactness argument shows that the assumption (a) remains valid if the
ellipses Eθ are replaced by slightly larger ellipses Eεθ , defined by∣∣A1(θ)− xA2(θ)

∣∣2 +
∣∣A3(θ)− xA4(θ)− yA5(θ)

∣∣2 ≤ 1 + ε

(β + 1)4
,

provided that the positive number ε is small enough. Moreover, a similar argument shows
that we may assume that a finite intersection of Eεθ is empty:⋂

θ∈F

Eεθ = ∅,

for some finite subset F of the interval [θ0, 1]. This condition is equivalent to having

max
θ∈F

{∣∣A1(θ)− xA2(θ)
∣∣2 +

∣∣A3(θ)− xA4(θ)− yA5(θ)
∣∣2} > 1 + ε

(β + 1)4

for all x, y ∈ R, or, expressed differently,

distX

[(
A1

A3

)
, span

{(
A2

A4

)
,

(
0
A5

)}]
>

√
1 + ε

(β + 1)4
, (6.23)
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where “span” means the R-linear span, and distX is the distance function on the space X ,
the R-linear space of vector-valued functions

θ 7→
(
ξ1(θ)
ξ2(θ)

)
, θ ∈ F,

supplied with the norm ∥∥∥∥(ξ1ξ2
)∥∥∥∥
X

= max
θ∈F

√
|ξ1(θ)|2 + |ξ2(θ)|2.

The R-linear space X ∗ of vector-valued functions

θ 7→
(
µ1(θ)
µ2(θ)

)
, θ ∈ F,

supplied with the norm ∥∥∥∥(µ1

µ2

)∥∥∥∥
X∗

=
∑
θ∈F

√
|µ1(θ)|2 + |µ2(θ)|2,

is then dual to X with respect to the natural dual pairing〈(
ξ1
ξ2

)
,

(
µ1

µ2

)〉
=
∑
θ∈F

{
ξ1(θ)µ1(θ) + ξ2(θ)µ2(θ)

}
.

By standard duality theory, the inequality (6.23) means that there exists a vector-valued
function (

µ1

µ2

)
∈ X ∗

which satisfies ∥∥∥∥(µ1

µ2

)∥∥∥∥
X∗

= 1;

√
1 + ε

(β + 1)4
<

∣∣∣∣〈(A1

A2

)
,

(
µ1

µ2

)〉∣∣∣∣ , (6.24)

while 〈(
A2

A4

)
,

(
µ1

µ2

)〉
=
〈(

0
A5

)
,

(
µ1

µ2

)〉
= 0.

We then have√
1 + ε

(β + 1)4

∥∥∥∂2
[
ϕ′
]t/2∥∥∥

β+3
<

∥∥∥∥∥∑
θ∈F

{
µ1(θ)A1(θ) + µ2(θ)A3(θ)

}
∂2
[
ϕ′
]t/2∥∥∥∥∥

β+3

=

∥∥∥∥∥∑
θ∈F

{
µ1(θ)

[
A1(θ)∂2

{[
ϕ′
]t/2}+A2(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2]+ µ2(θ)

×

[
A3(θ)∂2

[
(ϕ′)t/2

]
+A4(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2 +A5(θ) I0

[ [
ϕ′′

ϕ′

]3 [
ϕ′
]t/2]}∥∥∥∥∥

β+3

≤
∑
θ∈F

|µ1(θ)|

∥∥∥∥∥A1(θ)∂2
{[
ϕ′
]t/2}+A2(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2∥∥∥∥∥

β+3

+ |µ2(θ)|

×

∥∥∥∥∥A3(θ)∂2
{[
ϕ′
]t/2]+A4(θ)

[
ϕ′′

ϕ′

]2 [
ϕ′
]t/2 +A5(θ) I0

[ [
ϕ′′

ϕ′

]3 [
ϕ′
]t/2]∥∥∥∥∥

β+3

}

≤
∥∥∥[ϕ′]t/2∥∥∥

β−1
+O

(∥∥∥[ϕ′]t/2∥∥∥
β−1+θ

)
,
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where in the last step, we appeal to the Minkowski inequality, as well as to (6.24) and
(6.22). Since ε is positive, this completes the proof, in view of Proposition 4.7.
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