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Abstract

The main result of this paper gives a sufficient condition for removabil-
ity of an isolated singularity of a harmonic function. The condition is
given in terms of Newtonian capacity. In addition, an application to an
approximation problem is presented.

Introduction

This note deals with a problem of removable isolated singularities of harmonic
functions. Suppose u is harmonic and of at most polynomial growth on a
punctured neighborhood of a point zy and its gradient Vu satisfies |Vu(z)| <
Clz — 20|~ on a set K, where zg is an accumulation point of K. Under
these hypotheses, what size restrictions on K ensure that xy is a removable
singularity of u? This type of growth constraint is rather natural in the case
of harmonic functions, while for analytic functions, a bound on the function
is often used, and the answer in this case is very well known (see e.g. [1],
Proposition 2.4.4):

Theorem A. Assume f is holomorphic and single valued on the punctured
disk {z : 0 < |z — 29| <1} and bounded on a sequence of points clustering at
zo. Then f cannot have a polar singularity at zg.

The two dimensional case of the removable singularities problem for harmon-
ic functions mentioned above, and with a bounded gradient on the set K, is
settled by Theorem A. However, in higher dimensions the situation is more
complicated. We present here a generalization of the above for harmonic func-
tions in IR™®,n > 3. The Newtonian capacity will measure the “size” of K.

In order to state our result, we introduce some notations. We let B.(xg) =
{z : |x — 29| < r} be the ball of radius r centered at xy, B, = B,.(0),
S(a,b,z9) = {z : a < |z — x| < b} and S(a,b) shall denote S(a,b,0). The
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gradient of a function is denoted by V, A is the Laplace operator and cap (K)
denotes the Newtonian capacity of the set K (see [4]).

Theorem 0.1. Let m be a positive integer and assume that a function u
satisfies
(a) Au =0 in Bi(xg) \ {zo},

(b) u(z) = O(|x — x| ™™) as x — wo,
and

(¢) IVu(z)| < 55 on K N (Bi(zo) \ {zo}).

[z—o]

If

. cap (K N S(%r, T, :Uo))
lim sup
r—0 cap (S(%r, r))

then u extends to a harmonic function on all of Bi(xg).

> 0, (0.1)

Remark. The condition (0.1) is called a capacity density condition. It has
appeared in various papers on potential theory, see [2] and the references there.

The plan of the paper is as follows: In Section 1 we prove Theorem 0.1 and we
will also provide an example showing that the result is not true, if the capacity
density condition (0.1) is abandoned. In Section 2 we will apply Theorem 0.1
to an approximation problem.

1 Proof of the Main Result

The proof relies on certain results from [2]. Let F' be a closed bounded set
of R", and C'(F) the set of restriction to F of continuously differentiable
functions on R™.

Definition 1.1 (A-stable). A family € of subsets of F is A-stable, if for every

sequence {E;} C &, the set
[e.e] [e.e]
N ( Ej)
m=1 \j=m

belongs to the family £. Here ( - ) denotes the closure.
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Definition 1.2 (Sets of uniqueness). Let P be a closed subspace of C*(F).
A closed set K of F is a set of uniqueness for P, if the only p in P with
gradient vanishing on all of K are constants.

Lemma 1.3 ([2]). Suppose that P is a finite-dimensional subspace of C*(F)
and that £ is a A-stable family of subsets of F', each of which is a set of
uniqueness for P. Then there is a constant Cg such that for each K in &

<C
max [p(z)] < Cg max [Vp(z)]
for every p in P with p(xg) = 0, where xqy is a fized point in F.
Remark. The requirement p(zp) = 0 is not necessary in case the subspace P

does not contain a nonzero constant function.

Set F = S(3,1) = {3 < |z| < 1} and let & be the family of all Borel subsets E
of F' satisfying
cap (E) > v, (1.1)

where v is a positive constant.

To verify that £ is A-stable one has to check the following three conditions:

(i) € is closed under formation of countable unions.
(ii) If E € &, then E € £.
(iii) The intersection of a countable, monotone decreasing sequence of closed

nonempty sets from £ is again in £.

It is known that the family defined by (1.1) has these properties. We refer to
[4] and [2] for further details. We now introduce the finite dimensional space
Hp,, consisting of harmonic functions of the following form:

~_pj()
7=0

where p; is a homogeneous harmonic polynomial of degree j.

The set {x : |Vu(xz)| = 0} is called the critical set of the function u. Kuran
proved that the critical set of a non-constant harmonic function has zero New-
tonian capacity (see [3] Lemma 1). That is, a compact subset K of S(3,1) of
positive capacity is a set of uniqueness for the space H,,.
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Applying Lemma 1.3 with £ as above and with P = H,,, we get

Corollary 1.4. Given a positive constant v and a positive integer m, there is
a positive constant c(y, m) such that

max |h(x)| < e(y,m) max|Vh(z)| (1.2)
mGS(%,l) reK

holds for every h in H,, and for every compact set K C S(%, 1) with cap (K) >

.

Proof of Theorem 0.1. First, we may assume that zy = 0. Conditions (a) and
(b) of Theorem 0.1 imply that u = ug + h, where ug is harmonic in B; and h
in H,,. By the capacity density condition (0.1), there is a sequence of positive
numbers {r;}, r; \, 0 and there is a constant v > 0 such that

cap (K N S(3r;, rj))

>~ j=1,2, .. (1.3)
cap (S(%rj,rj))
Let (ri2)
h(r;x
hi(e) = =3
j
and

Then, (1.3) becomes

cap (Kj NS, 1))
cap (S(%, 1))

>y, =12

and by condition (c¢),

|th(’l"jl‘)| C 2C 1
[Vhj(z)] ST S for x € K;N.S(3, 1)

Since hj € H,, we may apply Corollary 1.4 and (1.2) and obtain

2
max [hy(z)] < 224™),
S(3.1) T
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or
max [h(z)| < 2Cc(y,m),
S(%T‘]’,T]')
where r; — 0. This, together with A belonging to H,,, implies h = 0. Hence
u = ug is harmonic in B;. O

Example. We give an example showing that if (0.1) is not assumed, then the
conclusion of Theorem 0.1 no longer holds. Let n = 3, and take

K={zecR>?: \/a? + 23 < a3}

We verify that (0.1) does not hold. For each 0 < r < 1, the set S(37,7)NK =
{3r < |z| < r}N K is included in a cylinder of helght r and base radius 7,
and hence it is contained in an ellipsoid with semi-axes *, r* and r. The
Newtonian capacity of an elongated ellipsoid
3

bz’

2v/b2% — g2

ios (2]

see [4] page 165. Setting a = r* and b = r, we have
2ry/1 —rb 2ry/1 —rb

1
o (K0SG0) € G () o+ 202))

Since the shell S (%r, r) contains a ball of radius £,

x%—l—xz

{reR3: 0<a<b}

is equal to

1 T
cap (S(5r,7)) = cap (By) = —.

Having these two estimates, we see that,
cap (S(%r,r)ﬂK) . 41 =16
cap (S(%r, r)) log (1 + 2\/\}1—%
Thus (0.1) fails.
Let

—0 asr—0.
)

122
u(z) = T
It is easy to check that |Vu(z)| < % on K, for a positive constant C. Thus

u satisfies the conditions (a), (b) and (c) of Theorem 0.1, and the origin is not
a removable singularity of w.
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2 An approximation problem

Let © be a bounded domain in R™,n > 3. We denote by LP(Q) the usual
Lebesgue space, and by H LP(£2) its subspace of harmonic functions in 2. We
consider the subspace ®,,(2), of HLY(Q) consisting of harmonic functions
whose partial derivatives of order less than or equal m vanish at the point
xo. We address the question: Under which conditions, is the subspace @y, (£2)
dense in HL'(Q) in the L'-norm. One should note that if xq is an interior
point of €, then it is impossible that ®,,(£2) will be dense in HL!(Q), because
convergence in L'-norm for harmonic functions implies the convergence in the
supremum-norm in a neighborhood of xg, and hence, for example, the function
h = 1 cannot be approximated by functions from ®,,(€2). However, in case
xo is a boundary point of ), we will show that the capacity density condition
(2.2) suffices for such approximation.

We recall first a result of Sakai, [5]. Let N(z) = ¢,|z|>™" be the Newtonian
kernel, and U* = N % u the Newtonian potential of a distribution p with a
compact support. The constant ¢, is chosen so that

AU* = p. (2.1)
We set
Q) =span{N(y—z), O;N(y—=z), € R"\Q,i=1,...,n}.

Theorem B. (Sakai [5]). For any bounded set 2 of R™, ®(Q) is dense in
HL'(Q).

For a point zg € 92 and a positive integer m, we set

P, () = span {N(y — ) — ja<m L2 (9*N) (0 — ),
KN (y = ) = X jaj<m Lt (0°0:N) (w0 — ),

xeR"\ Qx#xo,i=1,..,n}.

Theorem 2.1. Let Q be a bounded domain, m a positive integer and xg € 0S2.
If
cap ((IR"\ ) N S(3r,r,20))
lim sup

r—0 cap (S(%r, r))

> 0, (2.2)
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then ®,.m(Q) is dense in HLY(Y) in the topology of the L*-norm.

Corollary 2.2. Let 2 be a bounded domain such that Q) is the interior of
its closure, m a positive integer and xog € 0. If (2.2) holds, then the har-
monic functions on a neighborhood of the closure of Q0 such that their partial

derivatives of order less or equal to m wvanish at the point xo, are dense in
HL'(Q).

Proof of Theorem 2.1. By the the Hahn-Banach theorem, we have to show
that if f € L°°(Q) annihilates ®,,,,(Q), then f annihilates HL'(Q2) too. Let

o) = [ (N<y—x>— > M(aa]v)(l“o—l“)) (o).

R
Then )
. _ . (y - xO)a .
div(z) = /Q (@N(y —z)— Z ol (0“O;N) (o — x)) f(y)dy
|| <m '
and by (2.1),

Av = XQf in IR" \ {1‘0},
where xq denotes the characteristic function of Q2. Also, v(x) and Vu(z) vanish
on R™\ (QU {zo}) since f annihilates @y, (£2). Setting

u(z) = U%) () — v(w),
we have that u satisfies:
(a) Au=01in R"\ {zo},
(b) u(@) = O(|z — @o| "™27™) as & — w,
and since UX2f) is C' and Vu(zx) vanishes on IR™ \ Q,
(¢) |Vu(z)] < C onIR™\ Q.

So we are now in the situation where Theorem 0.1 can be applied. By the
hypothesis (2.2), we conclude that w is harmonic in a neighborhood of .
This means that

/ﬂ ( 2 (y_aﬂ(acw)(% —33)> fy)dy =0
lo]<m :

for all . Therefore, Uxef) and VUX2f) vanish on R \ Q. That is, f anni-
hilates the class ®(f2) and By Sakai’s theorem, f annihilates HI'(2). a
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