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Isolated Singularities of Harmonic

Functions

L. Karp, H.S. Shapiro

Abstract

The main result of this paper gives a sufficient condition for removabil-
ity of an isolated singularity of a harmonic function. The condition is
given in terms of Newtonian capacity. In addition, an application to an
approximation problem is presented.

Introduction

This note deals with a problem of removable isolated singularities of harmonic

functions. Suppose u is harmonic and of at most polynomial growth on a
punctured neighborhood of a point x0 and its gradient ∇u satisfies |∇u(x)| ≤
C|x − x0|−1 on a set K, where x0 is an accumulation point of K. Under
these hypotheses, what size restrictions on K ensure that x0 is a removable

singularity of u? This type of growth constraint is rather natural in the case
of harmonic functions, while for analytic functions, a bound on the function

is often used, and the answer in this case is very well known (see e.g. [1],
Proposition 2.4.4):

Theorem A. Assume f is holomorphic and single valued on the punctured

disk {z : 0 < |z − z0| < r} and bounded on a sequence of points clustering at
z0. Then f cannot have a polar singularity at z0.

The two dimensional case of the removable singularities problem for harmon-

ic functions mentioned above, and with a bounded gradient on the set K, is
settled by Theorem A. However, in higher dimensions the situation is more

complicated. We present here a generalization of the above for harmonic func-
tions in IRn , n ≥ 3. The Newtonian capacity will measure the ”size” of K.

In order to state our result, we introduce some notations. We let Br(x0) =
{x : |x − x0| < r} be the ball of radius r centered at x0, Br = Br(0),

S(a, b, x0) = {x : a ≤ |x − x0| ≤ b} and S(a, b) shall denote S(a, b, 0). The
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gradient of a function is denoted by ∇, ∆ is the Laplace operator and cap (K)
denotes the Newtonian capacity of the set K (see [4]).

Theorem 0.1. Let m be a positive integer and assume that a function u

satisfies

(a) ∆u = 0 in B1(x0) \ {x0},

(b) u(x) = O(|x− x0|−m) as x → x0,
and

(c) |∇u(x)| ≤ C
|x−x0| on K ∩ (B1(x0) \ {x0}).

If

lim sup
r→0

cap
(

K ∩ S(1
2r, r, x0)

)

cap
(

S(1
2r, r)

) > 0, (0.1)

then u extends to a harmonic function on all of B1(x0).

Remark. The condition (0.1) is called a capacity density condition. It has
appeared in various papers on potential theory, see [2] and the references there.

The plan of the paper is as follows: In Section 1 we prove Theorem 0.1 and we

will also provide an example showing that the result is not true, if the capacity
density condition (0.1) is abandoned. In Section 2 we will apply Theorem 0.1

to an approximation problem.

1 Proof of the Main Result

The proof relies on certain results from [2]. Let F be a closed bounded set
of IRn , and C1(F ) the set of restriction to F of continuously differentiable

functions on IRn.

Definition 1.1 (Λ-stable). A family E of subsets of F is Λ-stable, if for every
sequence {Ej} ⊂ E, the set

∞
⋂

m=1





∞
⋃

j=m

Ej





belongs to the family E. Here ( · ) denotes the closure.



Isolated Singularities 3

Definition 1.2 (Sets of uniqueness). Let P be a closed subspace of C1(F ).
A closed set K of F is a set of uniqueness for P , if the only p in P with
gradient vanishing on all of K are constants.

Lemma 1.3 ([2]). Suppose that P is a finite-dimensional subspace of C1(F )
and that E is a Λ-stable family of subsets of F , each of which is a set of

uniqueness for P . Then there is a constant CE such that for each K in E

max
x∈F

|p(x)| ≤ CE max
x∈K

|∇p(x)|

for every p in P with p(x0) = 0, where x0 is a fixed point in F.

Remark. The requirement p(x0) = 0 is not necessary in case the subspace P

does not contain a nonzero constant function.

Set F = S(1
2 , 1) = {1

2 ≤ |x| ≤ 1} and let E be the family of all Borel subsets E

of F satisfying
cap (E) ≥ γ, (1.1)

where γ is a positive constant.

To verify that E is Λ-stable one has to check the following three conditions:

(i) E is closed under formation of countable unions.

(ii) If E ∈ E , then E ∈ E .

(iii) The intersection of a countable, monotone decreasing sequence of closed

nonempty sets from E is again in E .

It is known that the family defined by (1.1) has these properties. We refer to
[4] and [2] for further details. We now introduce the finite dimensional space

Hm, consisting of harmonic functions of the following form:

h ∈ Hm ⇔ h(x) =
m

∑

j=0

pj(x)

|x|2j+n−2
,

where pj is a homogeneous harmonic polynomial of degree j.

The set {x : |∇u(x)| = 0} is called the critical set of the function u. Kuran

proved that the critical set of a non-constant harmonic function has zero New-
tonian capacity (see [3] Lemma 1). That is, a compact subset K of S(1

2 , 1) of

positive capacity is a set of uniqueness for the space Hm.



4 L. Karp, H.S. Shapiro

Applying Lemma 1.3 with E as above and with P = Hm we get

Corollary 1.4. Given a positive constant γ and a positive integer m, there is

a positive constant c(γ, m) such that

max
x∈S( 1

2
,1)

|h(x)| ≤ c(γ, m) max
x∈K

|∇h(x)| (1.2)

holds for every h in Hm and for every compact set K ⊂ S(1
2 , 1) with cap (K) ≥

γ.

Proof of Theorem 0.1. First, we may assume that x0 = 0. Conditions (a) and
(b) of Theorem 0.1 imply that u = u0 + h, where u0 is harmonic in B1 and h

in Hm. By the capacity density condition (0.1), there is a sequence of positive

numbers {rj}, rj ↘ 0 and there is a constant γ > 0 such that

cap
(

K ∩ S(1
2rj, rj)

)

cap
(

S(1
2rj, rj)

) ≥ γ, j = 1, 2, ... (1.3)

Let

hj(x) =
h(rjx)

r2
j

and

Kj = {x : rjx ∈ K}.

Then, (1.3) becomes

cap
(

Kj ∩ S(1
2 , 1)

)

cap
(

S(1
2 , 1)

) ≥ γ, j = 1, 2, ...

and by condition (c),

|∇hj(x)| =
|∇hj(rjx)|

rj
≤ C

r2
j |x|

≤ 2C

r2
j

for x ∈ Kj ∩ S(
1

2
, 1).

Since hj ∈ Hm, we may apply Corollary 1.4 and (1.2) and obtain

max
S( 1

2
,1)

|hj(x)| ≤ 2Cc(γ, m)

r2
j

,
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or
max

S( 1

2
rj ,rj)

|h(x)| ≤ 2Cc(γ, m),

where rj → 0. This, together with h belonging to Hm, implies h ≡ 0. Hence
u = u0 is harmonic in B1.

Example. We give an example showing that if (0.1) is not assumed, then the
conclusion of Theorem 0.1 no longer holds. Let n = 3, and take

K = {x ∈ IR3 :
√

x2
1 + x2

2 ≤ x4
3}.

We verify that (0.1) does not hold. For each 0 < r < 1, the set S(1
2r, r)∩K =

{1
2r ≤ |x| ≤ r} ∩ K is included in a cylinder of height r and base radius r4,

and hence it is contained in an ellipsoid with semi-axes r4, r4 and r. The
Newtonian capacity of an elongated ellipsoid

{x ∈ IR3 :
x2

1 + x2
2

a2
+

x2
3

b2
, 0 < a < b}

is equal to
2
√

b2 − a2

π log
(

b+
√

b2−a2

b−
√

b2−a2

) ,

see [4] page 165. Setting a = r4 and b = r, we have

cap

(

K ∩ S(
1

2
r, r)

)

≤ 2r
√

1 − r6

π
(

log
(

1+
√

1−r6

1−
√

1−r6

)) =
2r
√

1 − r6

π
(

log
(

1 + 2
√

1−r6

1−
√

1−r6

)) .

Since the shell S(1
2r, r) contains a ball of radius r

2 ,

cap (S(
1

2
r, r)) ≥ cap (B r

2
) =

r

π2
.

Having these two estimates, we see that,

cap
(

S(1
2r, r)∩ K

)

cap
(

S(1
2r, r)

) ≤ 4
√

1 − r6

log
(

1 + 2
√

1−r6

1−
√

1−r6

) → 0 as r → 0.

Thus (0.1) fails.

Let

u(x) =
x1x2

|x|5 .

It is easy to check that |∇u(x)| ≤ C
|x| on K, for a positive constant C. Thus

u satisfies the conditions (a), (b) and (c) of Theorem 0.1, and the origin is not

a removable singularity of u.
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2 An approximation problem

Let Ω be a bounded domain in IRn , n ≥ 3. We denote by Lp(Ω) the usual
Lebesgue space, and by HLp(Ω) its subspace of harmonic functions in Ω. We

consider the subspace Φx0
(Ω), of HL1(Ω) consisting of harmonic functions

whose partial derivatives of order less than or equal m vanish at the point

x0. We address the question: Under which conditions, is the subspace Φx0
(Ω)

dense in HL1(Ω) in the L1-norm. One should note that if x0 is an interior

point of Ω, then it is impossible that Φx0
(Ω) will be dense in HL1(Ω), because

convergence in L1-norm for harmonic functions implies the convergence in the

supremum-norm in a neighborhood of x0, and hence, for example, the function
h ≡ 1 cannot be approximated by functions from Φx0

(Ω). However, in case

x0 is a boundary point of Ω, we will show that the capacity density condition
(2.2) suffices for such approximation.

We recall first a result of Sakai, [5]. Let N(x) = cn|x|2−n be the Newtonian
kernel, and Uµ = N ∗ µ the Newtonian potential of a distribution µ with a
compact support. The constant cn is chosen so that

∆Uµ = µ. (2.1)

We set

Φ(Ω) = span {N(y − x), ∂iN(y − x), x ∈ IRn \ Ω, i = 1, ..., n}.

Theorem B. (Sakai [5]). For any bounded set Ω of IRn, Φ(Ω) is dense in
HL1(Ω).

For a point x0 ∈ ∂Ω and a positive integer m, we set

Φx0,m(Ω) = span {N(y − x) − ∑

|α|≤m
(y−x0)α

α! (∂αN)(x0 − x),

∂iN(y − x)− ∑

|α|≤m
(y−x0)α

α! (∂α∂iN)(x0 − x),

x ∈ IRn \ Ω, x 6= x0, i = 1, ..., n}.

Theorem 2.1. Let Ω be a bounded domain, m a positive integer and x0 ∈ ∂Ω.
If

lim sup
r→0

cap
(

(IRn \ Ω) ∩ S(1
2r, r, x0)

)

cap
(

S(1
2r, r)

) > 0, (2.2)
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then Φx0,m(Ω) is dense in HL1(Ω) in the topology of the L1-norm.

Corollary 2.2. Let Ω be a bounded domain such that Ω is the interior of

its closure, m a positive integer and x0 ∈ ∂Ω. If (2.2) holds, then the har-
monic functions on a neighborhood of the closure of Ω such that their partial

derivatives of order less or equal to m vanish at the point x0, are dense in
HL1(Ω).

Proof of Theorem 2.1. By the the Hahn-Banach theorem, we have to show
that if f ∈ L∞(Ω) annihilates Φx0,m(Ω), then f annihilates HL1(Ω) too. Let

v(x) =

∫

Ω



N(y − x) −
∑

|α|≤m

(y − x0)
α

α!
(∂αN)(x0 − x)



 f(y)dy.

Then

∂iv(x) =

∫

Ω



∂iN(y − x) −
∑

|α|≤m

(y − x0)
α

α!
(∂α∂iN)(x0 − x)



 f(y)dy

and by (2.1),

∆v = χΩf in IRn \ {x0},
where χΩ denotes the characteristic function of Ω. Also, v(x) and ∇v(x) vanish
on IRn \ (Ω ∪ {x0}) since f annihilates Φx0,m(Ω). Setting

u(x) = U (χΩf)(x)− v(x),

we have that u satisfies:

(a) ∆u = 0 in IRn \ {x0},

(b) u(x) = O(|x− x0|(−n+2−m)) as x → x0,

and since U(χΩf) is C1 and ∇v(x) vanishes on IRn \ Ω,

(c) |∇u(x)| ≤ C on IRn \ Ω.

So we are now in the situation where Theorem 0.1 can be applied. By the
hypothesis (2.2), we conclude that u is harmonic in a neighborhood of x0.
This means that

∫

Ω





∑

|α|≤m

(y − x0)
α

α!
(∂αN)(x0 − x)



 f(y)dy = 0

for all x. Therefore, U(χΩf) and ∇U (χΩf) vanish on IRn \ Ω. That is, f anni-

hilates the class Φ(Ω) and By Sakai’s theorem, f annihilates HL1(Ω).
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