
Contents

1. Introduction 2
1.1. Physical model 2
1.2. Polubarinova-Kochina equation 4
1.3. Kufarev-Vinogradov equation and HS-Problem 5
2. Preliminary assertions 6
2.1. ?-derivative 6
2.2. Schwarz integral formula 8
2.3. Imaginary part of Schwarz operator 9
2.4. Area-preserving homeomorphism 10
2.5. Richardson-type theorem for sector 11
3. Envelope functions 12
3.1. Envelopes 12
3.2. Barriers 14
3.3. Inner and outer radii 14
4. A priori estimates 17
4.1. Maximal distortion function 17
4.2. Estimates for M(t) 19
4.3. Estimates for σ(t) 20
4.4. Collective estimates 22
5. Main results 23
5.1. Functions with bounded angle variation 23
5.2. Invariant classes and asymptotic behavior 24
5.3. Isoperimetric defect 27
References 31
Index 33

1



1

INVARIANT FAMILIES IN THE HELE-SHAW PROBLEM

KUZNETSOVA O.S.

Abstract. This paper contains the recent results on invariant families were previously
announced in the author’s PhD thesis [PhD]. Some of the results were published in
[Ku98, KuP] in Russian and the part concerning the polynomial solutions in [Ku01].
The results concerning the invariant families with bounded distortion of the logarithmic
derivative (see Section 5 below) were never published before by the author. The dis-
cussion of isoperimetric defect estimates and related questions were firstly announced
jointly with V. Tkachev paper [KuT].

We give here only a brief outline of preliminaries concerning the Hele-Shaw model
and its basic properties. For more detailed discussion of this theme we refer e.g., to [EJ],
[G84], [BF], [Rs72] and [VE].

We would like to thank Dmitrii Prokhorov and Björn Gustafsson for their attention
and helpful discussion on the topics of this work. The author wishes also to thank
Semeon Nasyrov for his valuable remarks.

We also appreciated to Alexander Vasil’ev for information about the recent results in
[V01, V02] and [VPr].

1. Introduction

1.1. Physical model. Our aim of this section is to give a brief description of the well-
known facts about the evolutionary model of Hele-Shaw flow with the discrete point-
sources. Here we restricted ourselves by heuristic derivation of the equations which cor-
respond to the Hele-Shaw flow.

Basically, the Hele-Shaw flow arises if newtonian unpressured viscous fluid moves in
a narrow gap between two parallel planes sufficiently slowly. The width of the gap is
relevantly small in comparison to sizes of initial viscous configuration. Choose a cartesian
system R2(x, y) in a parallel to the Hele-Shaw cell plane and denote by ν = (u, v) =
(u(x, y), v(x, y)) the velocity field of the fluid at the point (x, y) at time t and by p(x, y, t)
the viscous pressure.

From the Darcy law follows that the velocity of the fluid is proportional to the pressure
gradient

ν = −κ∇p(x, y, t) = −κ · (p′x, p′y), (1.1)

where κ > 0 is a coefficient depending on the medium. Incompressibility of the fluid leads
us to the continuity equation

div ν ≡ ∂u

∂x
+

∂v

∂y
= 0 (1.2)
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which holds at every point of the domain Ω(t) except the points of sink or source. Indeed,
the last points are singular for the velocity field ν.

If we have free boundaries and don’t take in account the surface tension then the
pressure function p(x, y, t) is constant on the boundary ∂Ω(t). Without loss of generality
we have

p(x, y, t) ≡ 0, (x, y) ∈ ∂Ω(t).

From (1.1) and (1.2) follows that the velocity field ν is potential. Moreover, the function
Φ(x, y, t) = κ p(x, y, t) is harmonic in Ω(t) minus the set of singularities:

∆Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
≡ 0, ∇Φ = −ν.

Observe that the total derivative of the function p on time t vanishes on the boundary
∂Ω(t), which means

d p

d t
≡ ∂p

∂t
+ 〈ν,∇ p〉 =

∂p

∂t
− κ|∇p|2 =

1

κ

(
∂Φ

∂t
− |∇Φ|2

)
≡ 0,

for (x, y) ∈ ∂Ω(t).
Using complex coordinates z = x + iy we notice that the set of sinks and sources

is described by the finite set of points z1, . . . , zn with powers q1, . . . , qn, where qi > 0
corresponds to the source and qi < 0 — to the sink. So we equivalently rewrite the last
equation in terms of our terminology

Φ(z, t) = −
n∑

j=1

qj

2π
· ln |z − zj|+ φ(z, t), (1.3)

where φ(z, t) is smooth everywhere in Ω(t) harmonic function. Actually, (1.3) means that
the quantity of liquid flowing via the point zj in a unit of time (power) of the source qj

is equal to ∫

γ

〈ν, N〉 ds = −
∫

γ

〈∇Φ, N〉 ds = −
∫

∂Bε(zj)

〈∇Φ, N〉 ds−

−
∫

G\Bε(zj)

∆Φ dx dy =

∫

∂Bε(zj)

qj

2π
〈∇ ln |z − zj|, N〉 ds = qj.

Here we denote by N the unit external normal to the boundary curve γ = ∂G and by
Bε(zj) the disk of radius ε with the center zj such that Bε(zj) ⊂ G.

Definition 1.1. A family Ω(t), t ∈ [0, b) ⊂ R1 such that a C2-differentiable in (Ω(t) \
Π)×[0; b) function Φ(z, t) does exist we call a classical solution to the Hele-Shaw equation
with sources set Π ≡ {z1, . . . , zn} if

(i) ∆Φ ≡ 0, z ∈ Ω(t), t ∈ [0, b),

(ii) Φ(z, t) = 0, z ∈ ∂Ω(t), t ∈ [0, b),

(iii) Φ(z, t) = ϕ(z, t)−
n∑

j=1

qj

2π
ln |z − zj|, z ∈ Ω(t),

(iv)
∂Φ

∂t
= |∇Φ(z, t)|2, z ∈ ∂Ω(t), t ∈ [0, b),

(1.4)

for some continuous in Ω(t) harmonic function ϕ(t).
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Remark 1.1. We notice that (i) and (iii) can be collected as the following single condition

∆Φ(z, t) =
n∑

j=1

qjδzj
(z) ≡ H(z),

where δa(z) is the δ-Dirac function with respect to a ∈ C and should be (1.4) considered in
distributional sense. In this case the right side of H(z) depends on the initial configuration
of sources only.

1.2. Polubarinova-Kochina equation. In what follows we shall consider the simplest
case of (1.4) with a single source. We can suppose without less of generality that it is
situated at the origin: z1 = 0 and its power is normalized by |q| = 2π. Then we have
from (i)–(iii) that Φ(z, t) ≡ q̂ GΩ(t)(z, 0) where GD(z, ζ) is the Green function of D and
q̂ = q/2π.

As the initial data Ω(0) we consider a simply-connected domain z ∈ C, z1 = 0 ∈ Ω(0)
and assume that Ω(0) is the image of the unit disk U = {ζ ∈ C : |ζ| < 1} by a conformal
mapping w(z) : U 7→ Ω(0) which is normalized by

w(0) = 0, w′(0) > 0. (1.5)

In this case the Green function GΩ(0)(z, 0) with z = 0 as a pole has the following
representation

GΩ(0)(z; 0) = − ln |f(z)|,
where f(z) is the reciprocal to z = w(ζ) function,

w ◦ f(z) ≡ z; f ◦ w(ζ) ≡ ζ.

It follows that
Φ(z; 0) = q̂GΩ(0)(z; 0) = −q̂ ln |f(z)|.

Let {Ω(t)} be the evolution family associated with a classical solution to (1.4) within
the interval t ∈ [0, b). Then for t, t > 0, sufficiently small we conclude that all of Ω(t)
will be simply-connected domains. Thus, by introducing the corresponding conformal
mappings w(ζ; t) : U 7→ Ω(t) which satisfy

w(0; t) = 0; w′
ζ(0; t) > 0,

we arrive at
Φ(z; t) = q̂GΩ(t)(z; 0) = −q̂ ln |f(z; t)|,

where f(w(ζ; t), t) ≡ ζ and w(f(z; t); t) ≡ z for all z ∈ Ω(t), ζ ∈ U . It follows from the
last relations that

w′
ζ(f(z; t); t) · f ′z(z; t) = 1,

w′
ζ((f(z; t); t)) · f ′t(z; t) + w′

t(f(z; t); t) = 0 (1.6)

whence z ∈ Ω(t).
Now we can interpret equation (iv) with our notations. We additionally assume that

for every t ∈ [0, b), w(ζ; t) is holomorphic at a neighborhood of U (which depends on t)
and univalent in U . Then

∂Φ

∂t
= −q̂

∂

∂t
ln |f(z; t)| = −q̂ Re

(
∂

∂t
ln f(z; t)

)
= −q̂ Re

(
f ′t(z; t)

f(z; t)

)
,

and using the fact that ln |f(z; t)| = Re(ln f(z; t)) we obtain

|∇Φ(z; t)|2 =
|f ′z(z; t)|2
|f(z; t)|2 .
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By virtue of our assumptions on w(ζ; t) we conclude that f(z; t) is univalent holomor-

phic on Ω(t) as well and it yields by (iv) that for every point z ∈ ∂Ω(t)

Re

(
f ′t(z; t)

f(z; t)

)
= −q̂ · |f

′
z(z; t)|2
|f(z; t)|2 , (1.7)

because q̂2 = 1. Taking into account (1.6) and (1.7) we obtain

f ′z(z; t) =
1

w′
ζ(f(z; t), t)

, f ′t = −w′
t(f(z; t); t)

w′
ζ(f(z; t); t)

,

and it follows from (1.7) that

Re

(
w′

t(f(z; t); t)

f(z; t) · w′
ζ(f(z; t); t)

)
= q̂

1

|w′
ζ(f(z; t); t)|2 ·

1

|f(z; t)|2 .

We use ζ = f(z; t) so we obtain for every ζ ∈ ∂U

Re

(
w′

t(ζ; t) w′
ζ(ζ; t) · ζ

|ζ|2|w′
ζ(ζ; t)|2

)
= q̂

1

|w′
ζ(ζ; t)|2 ·

1

|ζ)|2 ,

and after simplification we arrive at

Re
(
w′

t(ζ; t) · w′
ζ(ζ, t) ζ

)
≡ q̂.

Definition 1.2. Denote by O(U) the class of all holomorphic in a neighborhood U and
univalent in U functions w(z) satisfying the normalization (1.5).

Let us give the equivalent formulation of the Hele-Shaw problem by using the previous
definition (1.2) (cf. with [G84]).

Problem A. Given a mapping w0(z) ∈ O(U), find b > 0 and the family w(z; t),
w( · ; t) ∈ O(U) for every t ∈ [0; b) and with initial condition w(z; 0) = w0(z) such that
w(z; t) is continuous on t and for all (z; t) ∈ ∂U × [0; b) the following relation holds

Re

(
∂w

∂t
(z; t) · ∂w

∂z
(z; t) · z

)
= q̂, q̂2 = 1. (1.8)

Polubarinova-Kochina [P-K] and Galin [Gl] were the first who derived this form of the
Hele-Shaw equation and applied it to constructing of explicit examples .

1.3. Kufarev-Vinogradov equation and HS-Problem. To simplify the previous equa-
tion we assume that w(z; t) belongs to O(U) for t ∈ [0; b), b > 0. Then it follows from
(1.8) that

Re

(
w′

t(z; t)

z w′
z(z; t)

)
=

q̂

|z w′
z(z; t)|2 =

q̂

|w′
z(z; t)|2 , z ∈ ∂U. (1.9)

But ϕ(z; t) = w′
t(z; t)/z w′

z(z; t) is a regular holomorphic function of z for fixed t ∈ [0; b)
and by virtue of (1.9) we have for the real part

Re ϕ(z; t) =
q̂

|w′
z(z; t)|2 ,

which yields by Schwarz representation formula [Ev] that

ϕ(z; t) =
q̂

2π

2π∫

0

1

|w′
z(e

iθ; t)|2 ·
eiθ + z

eiθ − z
dθ,
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or what is the same

w′
t(z; t) = z w′

z(z; t)
q̂

2π

2π∫

0

1

|w′
z(e

iθ; t)|2 ·
eiθ + z

eiθ − z
dθ. (1.10)

Remark 1.2. The last integro-differential relation (1.10) was firstly obtained by P.P. Ku-
farev and Yu.P. Vinogradov in [VKf]. They also were settled the problem of existing and
uniqueness of solutions to Problem HS on small time intervals and proved that given a
univalent in the unit disk initial data w(z, 0) ∈ O(U) normalized by w′

z(z, 0) > 0 there
exists a small ε > 0 and w(z, t) ∈ O(U) for all t ∈ [0; ε) such that (1.10) holds (we refer
to this assertion as to Kufarev–Vinogradov theorem) .

Remark 1.3. Relations (1.8) and (1.10) was studied by B. Gustafsson in [G84] to establish
the local and global solvability of Problem HS for rational and polynomial initial data
w0(z).

It was mentioned above that our main goal is the case of (1.10) for a single source
normalized by q̂ = +1.

Definition 1.3 (Problem HS.). Given an initial holomorphic mapping w0(z) ∈ O(U),
a family of holomorphic functions w(z; t) such that w(z; t) is of C1 on t, t ∈ [0; b) we call
an HS-solution to the Hele-Shaw equation with initial data Ω0 ≡ w(U ; 0) = w0(U) if

(a) w(z; t) ∈ O(U) for all t ∈ [0; b) and w(z; 0) = w0(z);
(b) (1.5) one holds;
(c) for every z ∈ U and t ∈ [0; b) relation (1.10) holds.

Let now Γ ⊂ O(U) be a subclass of holomorphic univalent functions.

Definition 1.4. The class Γ ⊂ O(U) is said to be invariant (for the Problem HS) if for
every initial mapping w0(z) ∈ Γ a HS-solution w(z; t) with w(z, 0) = w0(z) does exist in
a small interval t ∈ [0, b) and belongs to Γ.

The simplest case of the invariant class is just O(U). On the other hand, we are mostly
interested in those invariant classes which can be characterized by geometric properties
of w(z) ∈ Γ. We give a brief list of known invariant classes.

Let S? = {w ∈ O(U) : Re(zw′
z/w) > 0} be the class of star-like functions which map

the unit disk on a star-shaped domain. In recent paper [HPV] the invariance property of
S? has been established. In section 5 we obtain some extensions of this property.

Other examples are

a) a class Pn(U) of all univalent in the unit disk polynomials of fixed degree n, [Gl],
[Rs72];

b) a subclass Pn,odd(U) ⊂ Pn(U) consisting of all odd polynomials;
c) a subclass of Pn(U) consisting of polynomials w(z) = a1z + anz

n [HR], [Rs94].
Another examples will be discussed in Section 5 below.

2. Preliminary assertions

2.1. ?-derivative. We have mentioned before that a function w(z) is a star-like in the
unit disk U if the image w(U) is a star-shaped domain U with respect to the origin. Then
the last requirement is equivalent to that for all z ∈ ∂U the following inequality holds
[Al]

Re

(
z w′(z)

w(z)

)
=

d arg w

d arg z
> 0.
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Let us denote the inner term by

w?(z) ≡ z w′(z)

w(z)

which can be formally written as

d ln w

d ln z
=

dw

w
· z

dz
.

We call it the ?-derivative of w. This characteristic has a clear geometrical sense (see
Proposition 2.2 below) and plays an important role in geometric function and univalent
function theories [Go, Du].

The properties of w?(z) below follow immediately from the definition of ?-operator.

Proposition 2.1. Let w(z) and u(z) are non-vanished holomorphic functions in a unit
disk. Then

1) (w(z) u(z))? = w?(z) + u?(z);

2)

(
w(z)
u(z)

)?

= w?(z)− u?(z);

3) for any α ∈ R, (wα(z))? = αw?(z);
4) (az)? = 1 for any a ∈ C;
5) if the composition w(u(z)) is defined then (w(u(z)))? = w?(u(z)) · u?(z).

Moreover,
w′?(z) = w??(z) + w?(z)− 1 (2.1)

Proposition 2.2. Let w(z) be an analytic in the unit disk U and w(z) 6= 0 in U . Then

∂ ln |w(r eiθ)|
∂r

=
1

r
Re w?(r eiθ),

∂ ln |w(r eiθ)|
∂θ

= − Im w?(r eiθ);

∂arg w(r eiθ)

∂r
=

1

r
Im w?(r eiθ),

∂arg w(r eiθ)

∂θ
= Re w?(r eiθ),

for any choice of 0 < r < 1, θ ∈ [0; 2π].

Proof. It is sufficient to prove the first property only. We have from

ln w(reiθ) = ln |w(reiθ)|+ iarg w(reiθ)

the following relation

∂ ln |w(r eiθ)|
∂r

= Re
∂

∂r

(
ln w(r eiθ)

)
= Re

(
w′

z(re
iθ)

w(reiθ)
· eiθ

)
=

1

r
Re w?(r eiθ),

and
∂ ln |w(r eiθ)|

∂θ
= Im

(
w′

z(re
iθ) · rieiθ

w(reiθ)

)
= −Re w?(r eiθ).

¤
Corollary 2.1. Let w(z) be an analytic function in the unit disk U such that w(z) 6= 0
in U . Then for the Jacobian of the mapping

P : (r; θ) 7→ (ln |w(reiθ)|; arg w(reiθ))

there holds

JP (r; θ) ≡ ∂(ln |w|; arg w)

∂(r; θ)
=

1

r
|w?(reiθ)|2.
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2.2. Schwarz integral formula. Here we adopt the method due to [HPV] of transfor-
mation of the Schwarz integral formula. Let u = u(eiθ) be some differentiable function
defined on the unit circle ∂U . We denote by

Su(z) =
1

2π

2π∫

0

u(θ; t) · eiθ + z

eiθ − z
dθ

the Schwarz integral which represents an analytic function by its real part values on the
unit circle. So, for any analytic function f(z) holomorphic in U (i.e., in a neighborhood
of U) one holds

Su(z) ≡ f(z) in U, u = Re f(eiθ).

Moreover, if u(eiθ) is a real-valued function for θ ∈ [0; 2π] then Su(z) is analytic in U
and for any z0 ∈ ∂U the following limit does exist

lim
z→z0z∈U

Re(Su(z)) = u(z0).

Given a function u(ζ) ∈ C1(∂U) we denote by

u′(ζ) ≡ d

dθ
u(eiθ), ζ = eiθ ∈ ∂U.

Then for z ∈ U we have

d

dz
Su(z) =

1

2π

2π∫

0

u(eiθ)
2eiθ

(eiθ − z)2
dθ.

On the other hand,

d

dθ

(
eiθ + z

eiθ − z

)
= − 2ieiθz

(eiθ − z)2
,

and by virtue of integrating by parts we obtain

d

dz
Su(z) =

i

2πz

2π∫

0

u(eiθ) d

(
eiθ + z

eiθ − z

)
= − i

2πz

2π∫

0

eiθ + z

eiθ − z
· d

dθ
u(eiθ),

which yields

Su′(z) = iz · d

dz
(Su(z)). (2.2)

Now take z = reiθ. It follows from the fact

∂f(reiθ)

∂r
=

df

dz
(reiθ)

∂(reiθ)

∂r
= eiθ df

dz
(reiθ),

∂f(reiθ)

∂θ
=

d

dz
(reiθ)

∂(reiθ)

∂θ
= ireiθ df

dz
(reiθ),

and (2.2) that

∂

∂r
Su(z) = eiθ d

dz
(Su(z)) =

eiθ

ireiθ
Su′(z) = − i

|z|Su′(z),

∂

∂θ
Su(z) = ireiθ d

dz
(Su(z)) =

iz

iz
Su′(z) = Su′(z), (2.3)
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2.3. Imaginary part of Schwarz operator. We recall that given a real-valued function
u(eit) we can associate the so-called conjugate function (see [Gt]) defined as the imaginary
part of the Schwarz operator Su(z). It turns out that this function plays an important
role in further considerations.

We need a special inequality (2.7) for the conjugate functions in the case when the
kernel of the Schwarz operator u(eit) is equal to absolute value of a holomorphic in the
unit disk function. This fact is an easy consequence of the maximum principle and the
well known normal derivative lemma in PDE’s theory [GT].

Let us consider a subharmonic in the closed unit disk function v = v(z) such that

v(eiθ) = 0, 0 ≤ θ ≤ 2π. (2.4)

We assume that v(z) is of C2 class in U . Then by the maximum principle we have

∂

∂r
v(reiθ)

∣∣∣∣
r=1

≡ lim
z→1−0

v(eiθ)− v(reiθ)

1− r
≥ 0. (2.5)

Lemma 2.1. Let u(z) be a harmonic in U function and ϕ(z) be an analytic in U function.
Let the following equality hold

u(eiθ) = |ϕ(eiθ)|, ∀θ ∈ [0; 2π].

Then
∂u

∂r
(reiθ)

∣∣∣∣
r=1

≤ ∂

∂r
|ϕ(reiθ)|

∣∣∣∣
r=1

, ∀θ ∈ [0; 2π]. (2.6)

Proof. Because |ϕ(z)| is subharmonic in U , the difference |ϕ(z)| − u(z) is too. Applying
(2.5) to the latter we arrive at (2.6). ¤

Corollary 2.2. Let ϕ(z) be an analytic in U function such that ϕ(z) 6= 0 in U . Moreover,
let u(eiθ) = |ϕ(eiθ)|2. Then

Im Su′(e
iθ) ≤ 2|ϕ(eiθ)|2 · Re ϕ?(eiθ). (2.7)

Proof. By virtue of (2.3) we obtain

Im Su′(re
iθ) = Im

(
ir

∂

∂r
Su(re

iθ)

)
= r Re

∂

∂r
Su(re

iθ) =

= r
∂

∂r
Re Su(re

iθ). (2.8)

Now, let v(z) = Re Su(z). Then v(z) is a harmonic in the unit disk U function which
is continuous up to the boundary ∂U with its consequent derivatives. It follows by (2.8)

Su′(e
iθ) = lim

r→1−0
Im Su′(re

iθ) = lim
r→1−0

r
∂

∂r
Re Su(re

iθ) = lim
r→1−0

r
∂

∂r
v(reiθ) =

∂

∂r
v(reiθ)

∣∣∣∣
r=1

.

On the other hand,

v(eiθ) = Re Su(e
iθ) = u(eiθ) = |ϕ(eiθ)|2.

Using Lemma 2.1 we conclude that

a ≡ ∂

∂r
|ϕ(reiθ)|2

∣∣∣∣
r=1

≥ ∂

∂r
v(reiθ)

∣∣∣∣
r=1

= Im Su′(e
iθ).
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To find a we use analytic behavior of ϕ(z) and applying Proposition 2.3 we obtain

∂

∂r
|ϕ(reiθ)|2 = 2|ϕ(reiθ)|2 · ∂

∂r
ln |ϕ(reiθ)| = 2|ϕ(reiθ)|2 · 1

r
Re ϕ?(reiθ),

whence
a = 2|ϕ(eiθ)|2 · Re ϕ?(eiθ)

which completes the proof. ¤
Remark 2.1. In what follows we will apply Corollary 2.2 in the special case where u(eit)
coincides with |w′

z(z, t)|−2. In our notations it corresponds to ϕ(z) = w′
z(z, t)

−1. Clearly,
by univalence of w(z, t) the function ϕ(z) takes no zeroes in the unit disk and it follows
that

Im Su′(e
iθ) ≤ 2

|w′
z(z, t)| Re

(
1

w′
z(z, t)

)?

= −2 Re w′?
z(z, t)

|w′
z(z, t)| .

2.4. Area-preserving homeomorphism. Here we recall some basic facts related to
geometric properties of Hele-Shaw cell properties.

Let w(z; t) be a solution of Problem HS for t ∈ [0; b). We introduce the characteristics

%(z; t) = ln |w(z; t)|, ϕ(z; t) = arg w(z; t).

From the univalence property of w(z; t) and the initial condition w(0; t) = 0 it follows that
functions %(z; t) is defined everywhere in the unit disk punctured at the origin, U \ {0}.
We can regard there the function ϕ(z; t) to be a smooth on both variables multi-valued
branch of arg w(z, t) (on z) such that the function ϕ(eiθ, t) is single-valued on θ.

Denote by u(θ; t) = |w′
z(e

iθ; t)|−2
and take

Su(z) =
1

2π

2π∫

0

u(θ; t) · eiθ + z

eiθ − z
dθ.

From (1.10) we have

∂

∂t
ln

w(z; t)

z
=

1

w(z; t)
· ∂

∂t
w(z; t) =

w′
z(z; t) · z
w(z; t)

· Su(z),

whence
∂

∂t
ln

w(z; t)

z
= w?(z; t) · Su(z). (2.9)

So, we arrive at the following differential relation

∂

∂t
(%(z; t)− ln |z|+ iϕ(z; t)) = w?(z; t) · Su(z).

By separating the real and imaginary parts we obtain from the last equality

∂%(z; t)

∂t
= Re w?(z; t) · Su(z),

∂ϕ(z; t)

∂t
= Im(w?(z; t) · Su(z)).

Using formulae from the proposition 2.2 gives us further

∂%

∂t
· ∂ϕ

∂θ
− ∂%

∂θ
· ∂ϕ

∂t
= Re(w?Su) · Re(w?) + Im w? · Im(w?Su) =

= Re(w?Su) · w? = |w?|2 Re Su.

From the other hand, if z = eiθ then from the characteristic property of Schwarz
integral it follows

Re Su(e
iθ) =

1

|w′
z(e

iθ; t)|2 ,

10



and, henceforth,

∂(%; ϕ)

∂(t; θ)
≡ det

(
%′t %′θ
ϕ′t ϕ′θ

)
=

w?(eiθ; t)|2
|w′

z(e
iθ; t)|2 =

1

|w(eiθ; t)|2 = e−2%(eiθ;t).

By changing the variables we obtain

∂ (e2%(eiθ;t), ϕ(eiθ; t))

∂(t, θ)
= 2. (2.10)

and as a consequence of (2.10) we have

Proposition 2.3. The mapping

f(t; θ) =
e2%(eiθ;t) + iϕ(eiθ; t)√

2
=
|w(eiθ; t)|2 + iarg w(eiθ; t)√

2

is local homeomorphism which preserves the area.

2.5. Richardson-type theorem for sector. Let w(z; t) be a HS-solution with the
interval of existence [0, b) and ζk ≡ w(eiθk ; 0), k = 1, 2 be two points on the initial
domain’s boundary ∂Ω(0). Then

ζ(t) ≡ w(eiθk ; t), t ∈ [0; b),

defines trajectories ejected from ζk after the Hele-Shaw flow. Denote by Ωt(ζ1, ζ2) the

sector which is cut out from the ring Ω(t) \Ω(0) by these trajectories (from the point ζ1

to ζ2 in the positive direction of the boundary ∂Ω(0)).
Then the following result is a slight generalization of one theorem due to Richardson

[Rs72] on the linear dependence of the area of the Hele-Shaw cell on the time parameter
(the so called ”Area Theorem”).

Theorem 2.1. The area of the sector Ωt(ζ1; ζ2) has linear growth on t

|Ωt(ζ1; ζ2)| = (θ2 − θ1) · t = c(ζ1; ζ2) · t.

Proof. We notice that Ωt(ζ1; ζ2) admits the following representation

Ω(t) \ Ω(0) = {ζ ∈ C : ζ = w(eiθ; τ); θ ∈ [θ1; θ2], τ ∈ (0; t)}.
Then the area element is

dx ∧ dy =

(
dζ + dζ

2

)
∧

(
dζ − dζ

2i

)
=

i

2
dζ ∧ dζ

and by the decomposition

ζ = w(eiθ; τ) = |w(eiθ; τ)| · eiarg w(eiθ; τ) = e%(eiθ; τ) + iϕ(eiθ; τ),

we arrive at
dζ = e%+iϕ(d% + idϕ),

dζ = e%−iϕ(d%− idϕ),

which yields

dx ∧ dy =
i

2
e2%(−2id% ∧ dϕ) = e2%d% ∧ dϕ =

= e2% ∂(%, ϕ)

∂(τ, θ)
· dτ ∧ dθ =

1

2

∂(e2%, ϕ)

∂(τ, θ)
· dτ ∧ dθ = dτ ∧ dθ.

11



Hence,

|Ωt(ζ1; ζ2)| =
∫∫

Ωt(ζ1;ζ2)

dx ∧ dy =

θ2∫

θ1

d θ

t∫

0

d τ = (θ2 − θ1)t,

¤
Substituting θ1 = 0, θ2 = 2π we obtain the result due to Richardson

Corollary 2.3 (Area Theorem, [Rs72]). Let |Ω(t)| be the area of Ω(t). Then

|Ω(t)| = |Ω(0)|+ 2πt. (2.11)

The last fact is a part of theorem due to Richardson [Rs72] concerning the conservative
law for complex moments. Actually it states that for every positive integer n∫∫

Ω(t)

(x + iy)n dx ∧ dy =

∫∫

Ω(0)

(x + iy)n dx ∧ dy, t ≥ 0,

while for n = 0 one holds linear law (2.11).
From this view point the Proposition 2.3 could be regarded as a local version of Corol-

lary 2.3.

3. Envelope functions

3.1. Envelopes. Let H(θ; t) ∈ C1(R × (a, b)), H(θ + 2π; t) = H(θ; t) be an arbitrary
function of two real variables. It follows from continuity of H(θ; t) that the following
function is well-defined

h(t) = max
θ∈[0;2π]

H(θ; t),

and we call it the upper envelope to H(t). Moreover, by periodicity of H the following
set is a non-empty compact

Et ≡ Et(H) = {θ ∈ [0; 2π] : H(θ; t) = h(t)}.
Lemma 3.1. The upper envelope function h(t) is a locally Lipschitz function on (a; b).

Proof. Really, let the segment [a1; b1] ⊂ (a; b) be chosen arbitrary. Let

M1 = sup{|H ′
t(θ; t)| : 0 ≤ θ ≤ 2π, t ∈ [a1; b1]}.

Then continuity of H ′
t(θ; t) implies M1 < +∞. Let t1, t2, t1 < t2, an arbitrary pair of

points from [a1; b1] and θi ∈ Eti , i = 1, 2, the corresponding extremal points. By the
mean value theorem we have

h(t2)− h(t1) = H(θ2; t2)−H(θ1; t1) ≤ H(θ2; t2)−H(θ2; t1) =

= H ′
t(θ2; ξ

′)(t2 − t1) ≤ M1(t2 − t1),

where ξ′ ∈ (t1; t2) ⊂ [a1; b1].
Similarly, we obtain

h(t2)− h(t1) ≥ H(θ1; t2)−H(θ1; t1) = H ′
t(θ1; ξ

′′)(t2 − t1) ≥ −M1(t2 − t1).

Combing the inequalities obtained we conclude that h satisfies the Lipschitz condition
on [a1; b1] with constant M1. Hence, h ∈ Liploc(a; b) and the required assertion is proved.

¤
Corollary 3.1. The function h(t) is an absolutely continuous function on (a; b) and has
almost everywhere in (a; b) the first derivative.
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Lemma 3.2. Let for any t ∈ (a; b) and θ0 ∈ Et(H) the inequality H ′
t(θ0; t) > 0 (or

H ′
t(θ0; t) < 0) hold. Then h(t) is strictly increasing (or strictly decreasing) Lipschitz

function on (a; b) (in particular, it is absolutely continuous).

Proof. Firstly, we notice that it is sufficient to treat the positive derivative situation only.
Really, if it is the case, we can introduce an auxiliary function H̃(θ; t) = H(θ;−t). Then

we have h̃(t) = h(−t) and it follows from H̃ ′
t(θ; t) = −H ′

t(θ;−t) > 0 that h̃(t) is increasing
while h(t) is decreasing function.

Now, return to the positive derivative case: H ′
t(θ0; t) > 0 for every θ0 ∈ Et(H). Then

we claim that h(t) has no local maximum points. To prove it we show that given an
arbitrary τ ∈ (a; b) we can find ετ > 0 such that

h(t) > h(τ), ∀t ∈ (τ ; τ + ετ ). (3.1)

Really, otherwise, a point τ0 ∈ (a; b) and a sequence of τk > τ0, τk → τ0 as k →∞ do
exist such that h(τk) ≤ h(τ0). Choose θ0 ∈ Eτ0(H). Then by the definition of h we have

H(θ0; τ0) = h(τ0) ≥ h(τk) ≥ H(θ0; τk)

and by the mean value theorem we obtain

0 ≥ H(θ0; τk)−H(θ0; τ0) = H ′
t(θ0; ξk)(τk − τ0),

for some ξk ∈ (τ0; τk). The last implies that H ′
t(θ0; ξk) ≤ 0 and it follows from continuity

of the derivative H ′
t and the convergency of ξk → τ0 that

H ′
t(θ0; τ0) = lim

k→+∞
H ′

t(θ0; ξk) ≤ 0.

But the last inequality contradicts to the fact that H ′
t is being positive at (θ0; τ0).

Thus, we have established the existence of ετ . Clearly, it implies that h(t) has no local
maximum points.

Finally, to show that h(t) is strictly increasing we assume the opposite and find a pair
t1 < t2 form (a, b) such that h(t1) ≥ h(t2). Then by (3.1) and by continuity of h(t) we
have that there exists a global maximum point of h(t) on [t1, t2] which contradicts to the
last claim and proves the lemma. ¤

Lemma 3.3. If we assume that semi-definite inequalities hold in Lemma 3.2 then h(t)
will be still monotone but non strictly monotone in general.

Proof. Really, let the following inequality holds

H ′
t(θ0; t) ≥ 0, ∀θ0 ∈ Et(H).

We can involve an auxiliary function F (θ; t) = εt+H(θ, t) where ε > 0 is chosen arbitrary.
Clearly, the derivative F ′

t(θ0; t) = ε + H ′
t(θ0; t) > 0 is positive for any θ0 ∈ Et(H). Hence,

applying Lemma 3.2 we conclude that the function f(t) ≡ maxθ∈[0;2π] F (θ, t) is strictly
increasing on (a; b). But f(t) = h(t) + εt, whence for any two values t2 > t1 from (a; b)
we obtain

0 < f(t2)− f(t1) = h(t2)− h(t1) + ε(t2 − t1),

and taking ε → 0 we arrive at h(t2) ≥ h(t1). It follows that h increases. ¤
13



3.2. Barriers. Here we involve the auxiliary notion of the barriers for envelope functions.
This simple but useful technique allows us to establish more delicate properties of the
further objects.

Definition 3.1. A function is called λ(t) a lower (resp. upper) barrier for h(t) for
t ∈ (a; b) if the inequality

H ′
t(θ0; t) ≥ λ(t)

(resp. H ′
t(θ0; t) ≤ λ(t)) holds for any θ0 ∈ Et(H).

Lemma 3.4. Let λ(t) be a lower (resp. upper) barrier for h(t) for t ∈ (a; b). Then almost
everywhere in (a; b) the inequality holds h′(t) ≥ λ(t) (resp. h′(t) ≤ λ(t)).

Proof. Let F be a subset of (a; b) where the derivative h′(t) does exist (by Corollary 3.1
h′(t) does exist almost everywhere in (a; b)). We claim that the assertion of the lemma
is valid everywhere on F . Arguing similarly to that in Lemma 3.2 it is sufficient to treat
the case of the lower barrier only.

We fix an arbitrary point t0 ∈ F and assume that t1 > t0. Then for θi ∈ Eti(H),
i = 1, 2:

h(t1)− h(t0) = H(θ1; t1)−H(θ0; t0) ≥ H(θ0; t1)−H(θ0; t0).

By the mean value theorem we obtain for some ξ1 ∈ (t0; t1)

h(t1)− h(t0)

t1 − t0
≥ H ′

t(θ0; ξ1).

Taking the limit as t1 → t0 we arrive at h′(t0) ≥ H ′
t(θ0; t0) ≥ λ(t0) and the lemma is

proved. ¤
Corollary 3.2. Let λ(t) be a locally integrable function which is a lower barrier for h(t).
Then for all a1 < b1 from [a; b]

h(b1)− h(a1) ≥
b1∫

a1

λ(t) dt.

Proof. It is just a consequence of absolute continuity of the envelope function h(t):

h(b1)− h(a1) =

b1∫

a1

h′(t) dt ≥
b1∫

a1

λ(t) dt.

¤
Remark 3.1. Certainly, all the assertions were formulated above are still valid for the
upper envelope g(t) = minθ∈[0;2π] H(θ; t) which one is an lower envelope for the function

H̃ = −H(θ; t).

3.3. Inner and outer radii. Let w(z; t), t ∈ [0; b) be a HS-solution. As before we denote
by Ω(t) = w(U ; t) the image of the unit disk by the conformal mapping representing the
solution. By the definition we have ζ = 0 ∈ Ω(t) and it allows us to introduce the inner
and outer radii of Ω(t) with respect to the origin by letting

Ri(t) = min
θ
|w(eiθ; t)|,

Re(t) = max
z∈U

|w(z; t)| = max
θ
|w(eiθ; t)|.

Clearly, Ri(t) = dist (0, ∂Ω(t)).
14



Definition 3.2. Given a real R ≥ 0, we call the function

w(z; t) = z
√

2t + R2 (3.2)

to be a trivial HS-solution.

Obviously, (3.2) produces an evolution family (a solution to the Hele-Shaw equation)
with initial domain is being the disk of radius R with the origin as its center. Moreover,
it immediately follows from Kufarev–Vinogradov local existence theorem that the trivial
solutions (3.2) are the only solutions to Problem HS which have an initial data w(z, t0) =
c0z, c0 = const.

In further considerations we need also the following characteristics of w(z; t) which are
well-known as the distortions characteristics in the geometric function theory

M(t) = max
|z|=1

|w′
z(z; t)|2, m(t) = min

|z|=1
|w′

z(z; t)|2. (3.3)

As a consequence of the maximum principle for subharmonic functions we also have

M(t) = max
|z|≤1

|w′
z(z; t)|2.

Theorem 3.1. Let w(z; t) be a non-trivial solution to Problem HS for all t ∈ [0; b).
Then Ri(t) and Re(t) are strictly increasing locally-Lipschitz functions in [0; b) and almost
everywhere in [0; b) there holds

R′
e(t) ≥ Re(t) · 1

M(t)
, (3.4)

R′
i(t) ≤ Ri(t) · 1

m(t)
. (3.5)

Proof. We consider t0 ∈ [0; b) and let θ0 ∈ [0; 2π] be a value such that

Re(t0) = |w(eiθ0 ; t0)|. (3.6)

Then

v(z; t) = ln

∣∣∣∣
w(z; t)

z

∣∣∣∣
is an analytic function which is well-defined everywhere in U for all t0 ∈ [0; b) by virtue
of w(z; t)/z 6= 0 (i.e. w(z, t) is univalent in U , w(0, t) = 0 and w′

z(0; t) 6= 0). Because
of non-triviality of w the fraction w(z; t0)/z is not identically constant, we can apply
Schwarz lemma:

|w(z; t)| < Re(t) · |z|
for all z ∈ U . Hence,

ln Re(t) = max
|z|≤1

v(z; t) = max
|z|=1

v(z; t), (3.7)

and what is more, for t = t0 the maximum of the right hand of (3.7) attains in the same
points z = eiθ that (3.6) does.

On the other hand, we have

∂

∂t
v(z; t) =

∂

∂t
ln

∣∣∣∣
w(z; t)

z

∣∣∣∣ ,

and by virtue of (2.9),

∂

∂t
v(z; t) = Re

∂

∂t
ln

(
w(z; t)

z

)
= Re(w?(z; t) · Su(z)). (3.8)
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Now, using the extremal properties of θ0 and relation (3.7) we find that

∂

∂θ
v(eiθ; t0)

∣∣∣∣
θ=θ0

= 0,

which yields from Proposition 2.2 that

− Im

(
w(z; t)

z

)?

= 0, for z = eiθ0 , t = t0.

Simplifying the left hand of the previous equality (see Proposition 2.1) we arrive at

Im w?(eiθ0 ; t0) = 0. (3.9)

and substituting of (3.9) in (3.8) implies

∂

∂t
v(eiθ0 ; t)

∣∣∣∣
t=t0

= Re w?(eiθ0 ; t0) · Re Su(e
iθ0)− Im w?(eiθ0 ; t0) · Im Su(e

iθ0) =

= u(eiθ0 ; t0) · Re w?(eiθ0 ; t0) =
1

|w′
z(e

iθ0 ; t0)|2 Re w?(eiθ0 ; t0). (3.10)

We notice now that v(z; t0) is actually a harmonic in U function which attains its
maximum at z = eiθ0 . Hence, it follows from the normal derivative lemma [GT] that the
derivative of v(z; t0) along the outward normal to the unit circle at the point z = eiθ0 is
positive:

∂

∂r
v(reiθ0 ; t0) > 0, for r = 1. (3.11)

The direct computations show that

∂

∂r
v(reiθ0 ; t0) =

∂

∂r
ln

∣∣∣∣
w(reiθ0 ; t0)

r

∣∣∣∣ =
1

r
Re w?(reiθ0 ; t0)− 1

r
,

which implies after the substitution of r = 1 and (3.11) that

Re w?(eiθ0 ; t0) > 1.

We notice also that it follows from (3.9) that w?(eiθ0 ; t0) takes a real value. Thus, we
have from (3.10)

v′t(e
iθ0 ; t0) =

1

|w′
z(e

iθ0 ; t0)|2 · Re w?(eiθ0 ; t0) >
1

|w′
z(e

iθ0 ; t0)|2 ≥
1

M(t0)
. (3.12)

On the other hand, we notice that ln Re(t) is actually an upper envelope to v(eiθ; t)
with the lower barrier is being equal to 1/M(t). Hence, from (3.12) and Lemmas 3.1, 3.4
we conclude that the function ln Re(t) is strictly increasing and locally-Lipschitz in [0; b).
Moreover, almost everywhere in [0; b) one holds

d

dt
ln Re(t) ≥ 1

M(t)
.

Thus, we have established the required property (3.4).
To prove (3.5) we notice that by virtue of harmonicity of v(z; t) there exists a point

θ1(t) such that

ln Ri(t) = min
|z|=1

v(z, t) = min
|z|≤1

v(z, t) ≡ v(eiθ1(t); t).

Arguing similar to that above we can obtain that

Im w?(eiθ1(t0); t0) = 0
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and by the definition of the inner radius and by the normal derivative lemma we have

∂

∂r
v(reiθ1 ; t0)

∣∣∣∣
r=1

< 0, θ1 = θ1(t0),

whence

Re w?(eiθ1 ; t0) < 1.

Thus,

v′t(e
iθ1 ; t0) <

1

|w′
z(e

iθ1 ; t0)|2 ≤
1

m(t0)
.

Since the function ln Ri(t) is a lower envelope of v(eiθ; t) with an upper barrier 1/m(t)
and we similarly arrive at (3.5).

We must only to show that Ri(t) does strictly increase. By analogy with the pre-
vious case, to prove the required property it is sufficient to establish the inequality
Re w?(eiθ1 ; t0) > 0. With this aim we recall that Im w?(eiθ1 ; t0) = 0. Moreover, it follows
from the property of w(z; t) being univalent in U that w′

z(z; t) 6= 0 in U and we have as
a consequence that w?(eiθ1 ; t0) 6= 0. Thus, β = Re w?(eiθ1 ; t0) 6= 0.

On the other hand, applying Proposition 2.2 we see that

β = Re w?(eiθ1 ; t0) =
∂

∂θ
arg

(
w(eiθ; t0)

)∣∣∣∣
θ=θ0

.

We notice that by the argument principle, w(eiθ; t) gives a parametrization of the corre-
sponding plane Jordan curve in the right direction with respect to the origin (in other
words, it agrees with the orientation of the boundary of Ω(t) = w(U ; t0)).

To finish the proof we notice that the segment between ζ = 0 and ζ = w(eiθ1 ; t0) is

entirely containing in Ω(t0) (by the definition of Ri(t)). It follows that near the point
θ1 the function arg w(eiθ; t0) is actually strictly increasing (e.g., see [Ax, n. 67]). Thus,
β ≥ 0 and because β 6= 0 the latter is a strictly positive quantity which completes the
proof. ¤
Remark 3.2. Some related results to that ones in Theorem 3.1 have been obtained in [Kh]
and [HKh]. We notice that our estimates (4.17) and (4.18) following from (3.4) for the
upper radius are more sharp than those given in [HKh].

4. A priori estimates

4.1. Maximal distortion function. Further we need the modification of (2.9). We
have from (2.9) and (2.2)

∂

∂t

(
w′

z

w

)
= (w?)′z · Su +

w?

iz
· Su′ .

and by further multiplication on z/w? we arrive at

1

w?

∂

∂t
(w?) = w?? · Su − iSu′ .

We have shown above (see proof of Theorem 3.1) that w(z, t)/z as well as w′
z(z, t) are

non-vanishing in U functions provided that w ∈ O(U). It follows that w? 6= 0 for a HS-
solution and due to simply-connectedness of U , one can well define there the logarithm
branches of ln w?(z; t) and ln w′

z(z; t). Moreover, an easy computation shows that for all
w ∈ O(U):

w?(0, t) = 1.
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Thus,
∂ ln w?

∂t
= w??Su − iSu′ . (4.1)

From (4.1) and (2.9) we obtain

∂

∂t
ln(w′

z) = (zw′
z)

?Su − iSu′ = [1 + (w′
z)

?]Su − iSu′ . (4.2)

The following property characterizes the asymptotic behavior of the maximal distortion
function M(t) (3.3).

Theorem 4.1. Let w(z; t) be a non-trivial HS-solution in [0; b). Then the function M(t)−
2t is strictly decreasing and locally-Lipschitz in [0; b).

Proof. To prove this fact we fix t0 ∈ [0; b) and choose θ0 ∈ [0; 2π] such that |w′
z(e

iθ0 ; t)|2 =
M(t0). Similarly to that above we have from extremal property of θ0 and Proposition 2.2
that

0 =
∂

∂θ
ln |w′

z(e
iθ; t0)|

∣∣∣∣
θ=θ0

= − Im w′
z
?
(eiθ0 ; t0). (4.3)

On the other hand, we notice that v(z; t) ≡ ln |w′
z(z; t)| is a harmonic function of z

which is continuous in U . Moreover, again by extremality of θ0 and non-triviality of the
solution we can apply the normal derivative lemma which implies

v′r(re
iθ0 ; t0)

∣∣
r=1

> 0,

whence taking into account the fact

v′r(re
iθ0 ; t0) =

∂

∂r
ln |w′

z(re
iθ0 ; t0)| = 1

r
Re w′

z
?
(reiθ0 ; t0),

we obtain for r = 1

Re w′
z
?
(eiθ0 ; t0) > 0. (4.4)

From (4.2) we see that

∂

∂t
ln |w′

z(e
iθ0 ; t0)| = Re(1 + w′

z
?
(eiθ0 ; t0)) · Re Su(e

iθ0 ; t0)−
− Im(1 + w′

z
?
(eiθ0 ; t0)) · Im Su(e

iθ0 ; t0) + Im Su′(e
iθ0 ; t0).

(4.5)

The middle term in the right hand of (4.5) is equal to zero since (4.3).
To estimate the last term we can apply Corollary 2.2. In our notations ϕ(z) = 1/w′

z(z; t)
which yields

Im Su′(e
iθ; t) ≤ 2

|w′
z(e

iθ; t)|2 · Re

(
1

w′
z(z; t)

)?∣∣∣∣
z=eiθ

= −2 Re w′
z
?(eiθ; t)

|w(eiθ; t)|2 . (4.6)

Consequently, we have from (4.5)

∂

∂t
ln |w′

z(e
iθ0 ; t)| = 1− Re w′

z
?(eiθ0 ; t)

|w′
z(e

iθ0 ; t)|2 ,

that is just the same as the following

1

2
· ∂

∂t
|w′

z(e
iθ0 ; t)|2 ≤ 1− Re w′

z
?
(eiθ0 ; t).

Simplifying the last inequality yields

∂

∂t
(|w′

z(e
iθ0 ; t)|2 − 2t) ≤ −2 Re w′

z
?
(eiθ0 ; t).
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But the function M(t)− 2t is an upper envelope to |w′
z(e

iθ0 ; t)|2− 2t. Thus, using (4.4)
and barriers lemmas we obtain that (M(t)− 2t) is a locally Lipschitz strictly decreasing
function which completes the proof. ¤

4.2. Estimates for M(t). Now we study the function H(t) = M(t)− 2t in more detail.
Firstly we notice that the following is an immediate consequence of decreasing property
of H:

H(t) = M(t)− 2t ≤ H(0) = M(0).

Now we show that H(t) is bounded from below. To do it we observe that by the Area
Theorem (Corollary 2.3) the following relation holds

|Ω(t)| ≡
∫∫

U

|w′
z(z; t)|2 dxdy = |Ω(0)|+ 2πt. (4.7)

Taking into account the definition of M(t) we can derive from (4.7) that

M(t) ≥ 1

π
|Ω(0)|+ 2t,

i.e. H(t) ≥ 1
π
|Ω(0)|. We arrive at the following result

Corollary 4.1. Let w(z; t) be a HS-solution. Then the function

H(t) ≡ max
|z|≤1

|w′
z(z; t)|2 − 2t

strictly decreasing and locally-Lipschitz in [0; b) and it is bounded from below by the quan-
tity which depends only on the initial data Ω(0):

H(t) ≥ 1

π
|Ω(0)|. (4.8)

In particular, the following limit does exist limt→b−0 H(t).

Remark 4.1. We emphasize that the last limit is of most interest when b = +∞. Moreover,
it follows from direct computations (valid e.g. for the trivial or polynomial solutions)
estimate (4.8) is asymptotically sharp.

Let a1(t) = w′
z(0; t) be the leading coefficient of the Taylor expansion of w(z; t)

w(z; t) = a1(t)z + a2(t)z
2 + a3(t)z

3 . . . . (4.9)

By the definition of a HS-solution, a1(t) is a positive real. Moreover, it easily follows
from the definition of M(t) that

a2
1(t) = |w′

z(0; t)|2 ≤ max
|z|≤1

|w′
z(0; t)|2 = M(t).

On the other hand, we have

w′
t(z; t)

z
= w′

z(z; t) · 1

2π

2π∫

0

1

|w′
z(e

iθ; t)|2 ·
eiθ + z

eiθ − z
dθ,

and substituting z = 0 we see that

da1(t)

dt
= a1(t) · 1

2π

2π∫

0

1

|w′
z(e

iθ; t)|2 dθ,
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whence

d

dt
ln a1(t) ≥ 1

2π

2π∫

0

1

M(t)
dθ =

1

M(t)
≥ 1

M(0) + 2t
=

1

2

d

dt
ln(M(0) + 2t).

Integration of the last inequality yields that

a2
1(t)

M(0) + 2t

is an increasing function.

Theorem 4.2. The function a2
1(t) − 2t is strictly increasing and of Liploc provided that

w(z; t) is a non-trivial HS-solution. Moreover,

a2
1(t)− 2t ≤ 1

π
|Ω(0)|. (4.10)

Proof. The function v(z; t) = ln |w′
z(z; t)| is harmonic and continuous in U . By the mean

value theorem for harmonic functions we have

1

2π

2π∫

0

v(eiθ; t) dθ = v(0; t) = ln a1(t). (4.11)

On the other hand, for any continuous in [0; 2π] function λ(θ) the Jensen inequality [HLP]

1

2π

2π∫

0

eλ(θ) dθ ≥ exp
1

2π

2π∫

0

λ(θ) dθ. (4.12)

Using (4.11) and (4.12) we get from (4.10)

a′1(t)
a1(t)

=
1

2π

2π∫

0

e−2v(eiθ;t) dθ ≥ exp


 1

2π

2π∫

0

−2v(eiθ; t) dθ


 =

1

a2
1(t)

,

whence 2a′1a1 = (a2
1)
′ ≥ 2 and as a consequence, the function a2

1(t)− 2t is decreasing. To
establish (4.10), it remains to notice that

πa2
1(t) ≤

∫∫

U

|w′
z(z; t)|2 dxdy = |Ω(t)| = |Ω(0)|+ 2πt.

¤

4.3. Estimates for σ(t). Another helpful consequence of the results formulated above
is the following uniform estimate for the Taylor coefficients of a HS-solution.

Theorem 4.3. Let w(z; t) be a HS-solution in [0; b) with expansion (4.9). Then for any
t ∈ [0; b)

g(t) ≡
∞∑

k=2

k|a2
k(t)| ≤

1

π
|Ω(0)| − a2

1(0).

and g(t) is a decreasing function of t.
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Proof. Indeed, because the mapping w(z, t) is univalent we have

π

∞∑

k=1

k|ak(t)|2 =

∫∫

U

|w′
z(z; t)|2 dxdy = |Ω(t)| = |Ω(0)|+ 2πt.

It follows that ∞∑

k=2

k|ak(t)|2 =
1

π
|Ω(0)|+ 2t− a2

1(t) ≡ g(t).

From the Theorem 4.2 we conclude that the function g(t) is strictly decreasing for t ∈
[0; b). Moreover, g(0) = 1

π
|Ω(0)| − a2

1(0) gives us the desired inequality. ¤
Theorem 4.4. Let w(z; t) be a nontrivial HS-solution and

σ(t) = max
z∈U

|w(z; t) · w′
z(z; t)|.

Then σ(t)− 2t is strictly decreasing and locally-Lipschitz and

a1(0)2 ≤ a1(t)
2 − 2t ≤ σ(t)− 2t ≤ σ(0). (4.13)

Proof. Multiplying (2.9) by 2 and adding with (4.1) we have

∂

∂t
ln

(
w2

z2
· zw′

z

w

)
= (w?? + 2w?)Su − iSu′ ,

which implies by virtue of w?? + 2w? = (w?w2)? = (w′
zzw)? that

∂

∂t
ln

(w

z
· w′

z

)
= (w′

z
?
+ w? + 1)Su − iSu′ . (4.14)

We consider as a test harmonic function v(z; t) = ln
∣∣w

z
· w′

z

∣∣. Then v(z; t) is well-defined

in U by univalency of w(z; t) and w(z; t) ∈ O(U). Thus,

ln σ(t) = max
|z|=1

ln |w(z; t) · w′
z| = max

|z|≤1
v(z; t) = max

|z|=1
v(z; t).

Let z = eiθ0 be a maximum point of v(z; t) for t = t0 ≤ 0. Arguing similar to that above
we arrive at

∂

∂θ
v(eiθ; t0) =

∂

∂θ
ln

∣∣∣w
z
· w′

z

∣∣∣ = − Im
(w

z
· w′

z

)?

,

whence after θ = θ0 we obtain for t = t0 that

Im(w′
z
?
+ w? − 1) = 0.

The last can be rewritten as

Im(w′
z
?
(eiθ0 ; t0) + w?(eiθ0 ; t0)) = 0. (4.15)

Now we suppose that ln
∣∣w

z
· w′

z

∣∣ is identically constant for some t = t0 ≥ 0. It follows
then that ww′

z = cz, or w2 = cz2 + c1. Taking into account that w(0, t0) = 0 we obtain
c1 = 0 which implies that w(z; t) is trivial and leads to a contradiction. Thus, given
an arbitrary t the function ln

∣∣w
z
· w′

z

∣∣ is different from a constant. Consequently, due to

extremality of z = eiθ0 we have for a normal derivative

∂

∂%
v(%eiθ; t0)

∣∣∣∣
%=1

> 0.

By simplification we obtain

Re(w′
z
?
+ w? − 1) > 0, z = eiθ0 , t = t0 (4.16)
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and going to the real part of (4.14) we arrive at

∂

∂t
ln v(z; t) = Re(w′

z
?
+ w? + 1) Re Su − Im(w′

z
?
+ w? + 1) Im Su + Im Su′ .

We notice that at z = eiθ0 and t = t0 relations (4.15) and (4.16) does hold. Therefore,
by virtue of (4.6) we find from the last inequality that

∂

∂t
ln v(eiθ0 ; t)

∣∣∣∣
t=t0

≤ 1

|w′
z|2

Re(w′
z
?
+ w? + 1)− 2 Re w′

z
?

|w′
z|2

=

= − 1

|w′
z|2

Re(w′
z
?
+ w? − 1) +

2 Re w?

|w′
z|2

<

<
2 Re w?

|w′
z|2

≤ 2∣∣∣w′
z ·

w

z

∣∣∣
=

2

v(eiθ0 ; t0)
.

It follows that
∂

∂t
(v(%eiθ; t0)− 2t)

∣∣∣∣
t=t0

> 0

and by Lemma 3.2 we obtain that

σ(t)− 2t = max
|z|=1

v(z; t)− 2t

is strictly decreasing.
To complete the proof we need to settle (4.13). The right side of the inequality follows

from monotonicity of σ(t)− 2t. To prove the left hand we observe that

max
z=1

v(z; t)− 2t ≥ v(0; t)− 2t = lim
z→0

∣∣∣∣
w(z; t)

z
· w′

z(z; t)

∣∣∣∣− 2t =

= |w′
z(0; t)|2 − 2t = a1(t)

2 − 2t.

By Theorem 4.2 the function a1(t)
2 − 2t is strictly increasing and

a1(t)
2 − 2t ≥ a1(0)2,

which completes the proof. ¤

4.4. Collective estimates. The next assertion establishes the connection of the inner
radius Re(t) with characteristics σ(t) and M(t).

Theorem 4.5. Let w(z; t) be a HS-solution. Then

1

2
R2

e(t) ≤ σ(t) ≤ Re(t)
√

M(t) ≤ M(t) (4.17)

for any t ∈ [0; b). In particular,

Re(t) ≥ a1(t) ≥
√

2t + a1(0). (4.18)

Proof. It is a direct consequence of the definitions that

σ(t) = max
|z|=1

|w(z; t)w′
z(z; t)| ≤ max

|z|=1
|w(z; t)|max

|z|=1
|w′

z(z; t)| = Re(t)
√

M(t).
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On the other hand, let ζ be a point where the value Re(t) = maxz=1 |w(z; t)| = |w(ζ; t)|
is attained. Then by harmonicity of |w(z; t)|, ζ belongs to the unit circle ∂U , i.e. |ζ| = 1.
We have

Re(t) = |w(ζ; t)− w(0; t)| =
∣∣∣∣∣∣

1∫

0

w′
z(%ζ; t) d%

∣∣∣∣∣∣
≤

1∫

0

√
M(t) d% =

√
M(t),

whence

Re(t) ≤
√

M(t),

and the right hand of (4.17) is proved.
Similarly, by the definition of outer radius we have

R2
e(t) = |w(ζ; t)|2 =

∣∣∣∣∣∣

1∫

0

(w2(%ζ; t))′% d%

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣

1∫

0

w′
z(%ζ; t) · w(%ζ, t) ζ d%

∣∣∣∣∣∣
≤ 2σ(t),

which proves (4.17). Finally, applying Schwarz lemma for w(z, t)/Re(t) and using (4.13)
we arrive at (4.18). ¤

5. Main results

5.1. Functions with bounded angle variation. Let us consider the following function

Λ(z; t) = arg w?(z; t) = arg
zw′

z(z, t)

w(z, t)

where w(z; t) be a HS-solution. Without loss of generality, we can assume that Λ(z; t) is
defined as

Λ(0; t) = arg w?(0; t) = arg 1 = 0

because w?(z; t) 6= 0 in the unit disk and w?(0, t) is a positive real. Denote by

Λ+(t) = max
θ∈[0;2π]

Λ(eiθ; t) = max
|z|≤1

Λ(z; t),

Λ−(t) = min
θ∈[0;2π]

Λ(eiθ; t) = min
|z|≤1

Λ(z; t),

where we use harmonicity of Λ(z; t) for the equality of boundary and inner extremal
values.

We notice that provided that w(z; t) is non-trivial the function Λ(z, t) is always different
from a constant. Moreover, because Λ(0, t) = 0 the following inequality holds

Λ−(t) < 0 < Λ+(t).

Theorem 5.1. Let w(z; t) be a HS-solution in [0; b) such that

Λ+(0) ∈ [0; π), (or Λ−(0) ∈ (−π; 0]).

Then Λ+ is strictly decreasing (or Λ− strictly increasing) and locally-Lipschitz in [0; b).

Proof. Firstly, we treat the decreasing of Λ+. Really, consider t0 ∈ [0; b) and θ0 = θ(t0)
the values such that

Λ+(t0) = Λ(eiθ0 ; t0) ≡ arg w?(eiθ0 ; t0).

By extremal property of θ0 we have (see Proposition 2.2)

0 =
∂

∂θ
Λ(eiθ; t0) = Re w??(eiθ0 ; t0),
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i.e. w??(eiθ0 ; t0) is a purely imaginary value. On the other hand, θ0 is a global maximum
point of harmonic function Λ(z; t0) in the closed unit disk and by the normal derivative
lemma we have

∂

∂r
Λ(reiθ0 ; t0)

∣∣∣∣
r=1

> 0,

whence

Im w??(eiθ0 ; t0) ≡ λ > 0, (5.1)

where w??(eiθ0 ; t0) = iλ. It follows from (4.1) after taking the imaginary part at the point
z = eiθ0 , t = t0, that

∂Λ

∂t
= Re Su · Im w?? + Im Su · Re w?? − Re Su′ =

Im w??(eiθ0 ; t0)

|w′
z(e

iθ0 ; t0)|2 − u′θ(e
iθ0 ; t0),

where u(θ; t) = |w′
z(e

iθ; t0)|−2. By Proposition 2.2 we obtain

(ln u)′θ = −2(ln |w′
z(e

iθ; t0)|)′θ = 2 Im w′
z
?
(eiθ0 ; t0).

Now, taking into account (5.1) and (2.1) we have

∂Λ

∂t
(eiθ0 ; t0) =

1

|w′
z(e

iθ0 ; t)|2
(
Im w??(eiθ0 ; t0)− 2 Im w′

z
?
(eiθ0 ; t0)

)
=

=
1

|w′
z(e

iθ0 ; t)|2
(− Im w??(eiθ0 ; t0)− 2 Im w?(eiθ0 ; t0)

)
. (5.2)

We see from (5.1) and the fact arg w?(eiθ0 ; t0) ∈ [0; π) that the last term in (5.2)
is negative. Using Lemma 3.2 we conclude that the upper envelope Λ+(t) is strictly
decreasing in [0; b).

Treatment of Λ−(t) is similar and theorem is proved. ¤

5.2. Invariant classes and asymptotic behavior. We notice that the previous char-
acteristics Λ are vastly known in the univalent functions theory. In particularly, (see [Bz],
[Zm]) that if a function w(z) defined in the unit disk and has there Re aw? to be positive
for a number a ∈ C then w(z) is actually univalent in U .

Definition 5.1. We say that f(z), f(0) = 0, f ′z(0) > 0, is of class T (α; β) with −π <
α ≤ β < π if

arg f ?(eiθ) ∈ [α; β]

for all θ ∈ [0; 2π].

The class T (α, β) contains also non-univalent functions but in what follows we deal-
ing with the HS-solutions (and it follows with univalent subclass in T (α, β)) only. In
particular, we list below some well-known subclasses .

• Star-like functions from S∗ which are after a suitable normalization by the leading
Taylor coefficient (a1 = 1) can be identified with T (−π

2
, π

2
);

• δ-spiral-like functions Sδ which have the following characterizations in our nota-
tions: Sδ = T (−π

2
− δ, π

2
− δ). Actually, the functions f(z) of this class can be

defined as f(0) = 0, f ′(0) > 0 and for some δ ∈ (−π/2; π/2) one holds

Re

(
zf ′(z)

f(z)
· eiδ

)
≥ 0, ∀z : |z| = 1.
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• α-Star-like functions (S∗α) which naturally can be included in the star-like class:
a function f(z) is of S∗α iff f(0) = 0, f ′(0) > 0 and

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ ≤ α <
π

2
, ∀z : |z| = 1.

One easily sees that S?
α = T (−α; α).

It follows from Theorem 5.1

Corollary 5.1. For any admissible α and β the class T (α; β) is HS-invariant (i.e. if
w(z; t) is a HS-solution with w(0; t) ∈ T (α; β) then w(z; t) ∈ T (α; β) for all t ∈ [0; b)).

Corollary 5.2. The classes S?, Sδ and S?
α are HS-invariant.

First results in this direction were obtained by D. Prokhorov, A. Vasiliev and Yu. Khokh-
lov in [HPV]. They proved that star-like functions are forming an invariant class while
the convex functions (i.e. those one which map the unit disk onto a convex domain) are
not. We use here some modification of their method and develop it to establish more
detail properties like monotonicity theorems for invariant classes.

Here we establish more delicate property concerning the behavior of characteristic
Λ±(t). It is clear that the following assertion is of particular interest in the case where
the time-interval is infinite.

Theorem 5.2. Let w(z; t) be a non-trivial HS-solution in [0; b) such that Λ+(0) ∈ [0; π).
Then

y+(t) = tan

(
Λ+(t)

2

)
· exp




t∫

0

2dτ

σ(τ)




is strictly decreasing in [0; b). Here

σ(t) = max
|z|=1

|w(z, t)w′
z(z, t)|.

Proof. Let ζ(t) = eiϕ(t), ϕ(t) ∈ R, such that

Λ+(t) ≡ max
|z|=1

arg w?(z; t) = arg w?(ζ(t); t).

Obviously, Λ+(t) > 0 because the solution w is non-trivial and w?(0, t) = 1 and Λ+(t) < π
as a consequence of Theorem 5.1.

Then we find from (5.2) and (5.1) that for any t0 ∈ [0; b)

∂ arg w?

∂t
(ζ(t0); t0) = −Im w??(ζ(t0); t0) + 2 Im w?(ζ(t0); t0)

|w′
z(ζ(t0); t0)|2 <

< −2 Im w?(ζ(t0); t0)

|w′
z(ζ(t0); t0)|2 . (5.3)

To simplify the previous inequality we notice that

Im w?(ζ(t0); t0)

|w′
z(ζ(t0); t0)|2 =

|w?(ζ(t0); t0)| · sin Λ(t0)

|w′
z(ζ(t0); t0)|2 =

sin Λ(t0)

|w(ζ(t0); t0) · w′
z(ζ(t0); t0)| . (5.4)

Then, using the following relation

|w(ζ(t0); t0) · w′
z(ζ(t0); t0)| ≤ σ(t0),
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we obtain from (5.3) and (5.4),

∂ arg w?

∂t
(ζ(t0); t0) < −2 sin Λ(t0)

σ(t0)
. (5.5)

Now denote by

H(θ; t) = ln tan

(
1

2
arg w?(eiθ; t)

)
.

Here and in what follows we consider a neighborhood of the contact point eiϕ(t) to apply
inequality (5.5). It follows that the function H(θ, t) will be well defined because arg w? ∈
(0, π) there. Then

∂H(θ; t)

∂t
=

1

sin(arg w?(eiθ; t))

∂ arg w?

∂t
(θ; t),

which yields (by positivity of sin-function since Λ+(t) ∈ (0, π)) that

∂H(θ, t)

∂t

∣∣∣∣
(ϕ(t);t)

+
2

σ(t)
< 0 (5.6)

for all admissible t ∈ [0; b). By Theorem 4.4 the function σ(t) is positive and absolutely
continuous. This yields

d

dt

t∫

0

dτ

σ(τ)
=

1

σ(t)
.

Thus,

∂

∂t


H(θ; t) + 2

t∫

0

dτ

σ(τ)




∣∣∣∣∣∣
(ϕ(t);t)

< 0.

Taking into account that θ = ϕ(t0) is the maximum point of arg w?(eiθ; t0) for a fixed
t0 in the closed disk U , it follows that the maximum of H(θ; t0) also is also attained at
ϕ(t0).

By Lemma 3.2 we have that the function

max
θ∈[0;2π]

H(θ; t) + 2

t∫

0

dτ

σ(τ)

is strictly decreasing. From

max
θ∈[0;2π]

H(θ; t) = ln tan
Λ+(t)

2
,

we arrive at the required property and the theorem is proved. ¤

Corollary 5.3. Under the hypotheses of Theorem 5.2 the function

(2t + σ(0)) · tan
Λ+(t)

2

is strictly decreasing and locally-Lipschitz in [0; b).

Proof. By Theorem 4.4 we have for σ(t) that

σ(t) ≤ σ(0) + 2t.
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Substituting of this inequality in (5.6) and arguing similar to what in the proof of Theo-
rem 5.2 we obtain that the function

ln tan
Λ(t)

2
+ ln

2t + σ(0)

σ(0)
,

is strictly decreasing and locally-Lipschitz which completes the proof. ¤
Remark 5.1. The both previous assertion (Theorem 5.2 and Corollary 5.3) are obviously
still valid when we consider Λ−(t) with hypothesis that Λ−(0) ∈ (−π; 0] and change Λ+(t)
by |Λ−(t)|.
Corollary 5.4. Let −π < −α < 0 < β < π and β + α < π. Then for any initial data
w(z; 0) from T (α; β) we have for a nontrivial HS-solution w(z, t), t ∈ [0; b), that

w(z; t) ∈ T (−α(t); β(t)),

where

α(t) = 2arctan

(
σ(0)

2t + σ(0)
· tan

α

2

)
< α,

β(t) = 2arctan

(
σ(0)

2t + σ(0)
· tan

β

2

)
< β.

In particular, if b = +∞,
lim

t→+∞
α(t) = lim

t→+∞
β(t) = 0.

5.3. Isoperimetric defect. Let Ω be a Jordan domain with C1-regular boundary ∂Ω.
The value

δ(Ω) = P 2(Ω)− 4π|Ω|,
is usually called the isoperimetric defect of Ω, where P (Ω) is the perimeter of the domain
Ω (which can be defined as one-dimensional Hausdorff measure because of regularity of
∂Ω) and |Ω| is the area of Ω.

It follows form the well-known isoperimetric inequality for plane domains that δ(Ω) is
always non-negative and it vanishes if and only if Ω is a round disk (see [BZ] and [Hw]).
On the other hand, δ(Ω) is an effective upper bound which is vastly used in geometrical
problems dealing with distortion of a domain from a disk. Further we basically used
the following Annulus Theorem due to Bonnesen [Bs] and in a recent version treated by
Fuglede in [Fg].

Definition 5.2. An annulus Kζ(r, R) = {z ∈ C : r ≤ |z− ζ| ≤ R} is called the minimal
for Ω if ∂Ω ⊂ Kζ(r, R) and the quantity (R − r) can not be decreased. The quantity
µ(Ω) = R− r we will call the width of Ω.

Theorem 5.3 ([BZ], [Fg]). For any Jordan domain Ω with rectifiable boundary ∂Ω the
minimal annulus Kζ(r,R) does exist and

4π(R− r)2 ≤ δ(Ω) ≤ 4π2R(R− r).

Unlike those considered above characteristics the isoperimetric defect δ(Ω(t)) (where
Ω(t) is an evolution family of Hele-Shaw flow, t ∈ [0; b)) is not monotonic on t in general
case. Really, we can consider an initial data Ω(0) = Ua to be the unit disk with the center
at a ∈ (0, 1) on the real axis. Then the corresponding evolution family Ω(t) does not
contain round disks for t > 0. The explicit solution in this case was firstly established
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by P.P. Kufarev in [Kf] and further developed by Richardson in [Rs72]. This family is
formed by the domains which are non-convex for small t > 0 (see Figure 1).

–1

–0.5

0.5

1

–1 –0.5 0.5 1 1.5 2

Figure 1. Phase portrait of the evolution family for initial domain Ω(0) =
Ua, a = 0.95, t ∈ [0, 1]

The explicit form of w(z, t) can be written as the following (see [Rs72])

w(z, t) =
βz

1− γz
+ λz,

where β, γ and λ satisfy
λ(β + λ) = 2t

(a− γλ)(1− γ2) = βγ
(1− βλ)(1− γ2)2 = β2





In particular, in this case δ(Ω(0)) = 0 while δ(Ω(t)) > 0 for all t > 0. The graph of
δ(Ω(t))-dependence for a = 0.95 is shown on the Figure 2 below.

We have the following estimate for the isoperimetric defect and the width of evolution
family elements. We also refer to recent paper due to Gustafsson and Sakai [GS] for
another approach to the related problem.

Theorem 5.4. For any admissible t ≥ 0 the following estimates hold

δ(Ω(t)) ≤ 4π2

(
M(t)− 2t− 1

π
|Ω(0)|

)
≤ 4π(πM(0)− |Ω(0)|), (5.7)

µ(Ω(t)) ≤
√

πM(0)− |Ω(0)|, (5.8)

where M(t) = maxθ∈[0,2π] |w′
z(e

iθ; t)|2.
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Figure 2. Isoperimetric defect for Ω(t) form Figure 1, t ∈ [0, 1]

Proof. By the definition of the perimeter of Ω(t) and maximal distortion function M(t)
we have

P (Ω(t)) =

∫ 2π

0

|w′
z(e

iθ; t)| dθ ≤
∫ 2π

0

√
M(t) dθ = 2π

√
M(t).

Using Theorem 4.1 we conclude that

P (Ω(t)) ≤ 2π
√

M(t) ≤ 2π
√

M(0) + 2t,

whence by (2.11) we obtain

δ(Ω(t)) ≤ P (Ω(t))2 − 4π|Ω(t)| = P (Ω(t))2 − 4π(|Ω(0)|+ 2πt) ≤
≤ 4π2(M(t)− 2t− 1

π
|Ω(0)|) ≤ 4π(πM(0)− |Ω(0)|).

In particular, Theorem 5.3 implies the desired estimates for the width of Ω(t) and the
assertion is proved. ¤

The following assertion shows that asymptotically the Hele-Shaw evolution family tends
to round domain (see also [GS]). We emphasize that the estimate proved above on the
isoperimetric defect depends on the initial data only. In particular, the distortion of
Ω(t) from a round domain in the Hausdorff metric is controlled by the initial data via
characteristic πM(0)− |Ω| which is zero in the round case.

We recall that given two domains C and D in complex plane the Hausdorff distance is
defined as follows

d(C, D) = inf{τ : Cτ ⊃ D,Dτ ⊃ C, τ ≥ 0},
where Dτ is a τ -neighborhood of D, i.e.

Dτ = {z ∈ C : dist (z, D) ≤ τ}.
Theorem 5.5. Let Ω(t) is well-defined for all t ≥ 0. Then the homothetic family

Ω(t) =
1√

2t + M(0)
· Ω(t)
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converges to the unit disk U in the Hausdorff metric.

Proof. Consider a scaled domain Ω(t). By virtue of homogeneity property of the isoperi-
metric defect of order 1 (with respect to homothety) it follows from (5.7) that

δ(Ω(t)) ≤ 4π(πM(0)− |Ω(0)|)√
2t + M(0)

.

In particular, the isoperimetric defect of the scaled domain tends to zero as t → +∞.
Now we consider the minimal annulus

Kζt(rt; Rt) = {z ∈ C : rt ≤ |z − ζt| ≤ Rt}
for Ω(t). Then by monotonicity and homogeneous of the area we easily arrive at

πr2
t ≤ |Ω(t)| = |Ω(t)|

2t + M(0)
≤ πR2

t ,

whence

πr2
t ≤

2πt + |Ω(0)|
2t + M(0)

≤ πR2
t . (5.9)

After rescaling we have from (5.8)

rt = Rt − µ(Ω(t)) ≥ Rt −
√

πM(0)− |Ω(0)|
2t + M(0)

. (5.10)

On the other hand, since the boundary of Ω(t) is completely contained in Kζt(rt; Rt)
then by the outer radius definition and by (5.9), (5.10) we get

Re(Ω(t)) ≥ |ζt|+ rt ≥

≥ |ζt|+
√

2πt + |Ω(0)|
2πt + M(0)

−
√

πM(0)− |Ω(0)|
2t + M(0)

.

Taking into account that Re(Ω(t)) ≤
√

M(t) (see (4.17)), we have form the homogene-
ity of the outer radius that

Re(Ω(t)) ≤ 1,

which yields that

|ζt| ≤ 1−
√

2πt + |Ω(0)|
2πt + πM(0)

+

√
πM(0)− |Ω(0)|

2t + M(0)
.

Because Ω(t) is well-defined for all t ≥ 0 then it follows from (5.9) and (5.10) that the
following limits do exist and

lim
t→+∞

rt = lim
t→+∞

Rt = 1,

where

lim
t→+∞

|ζt| = 0.

It finally follows from the definition of the Hausdorff metric and its property for round
disks (see e.g., [Hw, Sec. 4]) that

lim
t→+∞

d(Ω(t); U) = 0.

¤
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metric continuations in the theory of univalent functions] Izdat. “Nauka”, Moscow, 1976. 343 pp.
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