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Abstract. We establish the explicit formula of the Jacobian of the complex
moments mapping that was being previously conjectured by C. Ullemar. We
also give alternative representations of the Jacobian in terms of the derivative’s
roots and resultants. As a corollary we show that the boundary of the class of
all locally univalent polynomials in the unit disk is contained in the union of
three irreducible algebraic surfaces.

1. Introduction

Let f(z), f(0) = 0, be a univalent function defined in the unit disk D and
k ≥ 0 a nonnegative integer. Then the complex moments of f(z) (or the target
domain D = f(D)) can be defined as

Mk(f) =
i

2π

∫∫

D

fk(z)|f ′(z)|2 dz ∧ dz =
i

2π

∫∫

D

ζk dζ ∧ dζ, k ≥ 0. (1)

The complex moments can be regarded as a natural extension of classical
theory of the Stieltjes moments on the real line [2]. By analogy with the last
case important issues are the determinacy and uniqueness of the corresponding
inverse problem. Nevertheless, it follows form one result due to Sakai [15] that in
general the analytic function f(z) (or the target domain D) can not be uniquely
defined by its moments (for further discussion we refer to [1], [16]). The recent
results concerning the reconstruction of a domain by its complex moments can
be found in [8], [9],[12]. We should only mention a deep connection between the
complex moments theory with the the two-dimensional potential theory [3] and
the Hele-Shaw problem [5], [14], [11].
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In what follows we consider the special class of quadrature domains D [16]
which can be represented as the images of the unit disk D under a locally univalent
polynomial mapping

P (z) = a1z + . . . + anz
n, a1 > 0,

with real coefficients ak. Then the first part of (1) is still sensible and represents
the moments of the chain P (D).

By Pn(D) and Pn, loc(D) we denote the subclasses of polynomials P (z) of fixed
degree n ≥ 1 which are univalent and locally univalent in a neighborhood of the
closed unit disk D respectively. It is clear, that P (z) ∈ Pn, loc(D) if and only if

the derivative P ′(z) does not vanish in D. On the other hand, Pn(D) is a proper
subclass of Pn, loc(D) for n ≥ 3.

It is well known fact (see [14], [7] and paragraph 2 below) that P produces a
finite sequence of the moments:

Mk(P ) = 0, k ≥ deg P. (2)

Moreover, M0(P ) =
∑n

j=1 ja2
j > 0, Mn−1(P ) = an

1an 6= 0 and it follows from

Richardson’s formula (9) that the moment mapping is a polymorphism

µ(P ) = (M0(P ), . . . , Mn−1(P )) : R+ × Rn → R+ × Rn. (3)

It worth to say that a direct studying of injectivity of µ seems to be an
extremely hard problem because of involved structure of the univalent polynomi-
als. The only lower-degree (n ≤ 3) univalent polynomials in the unit disk have
been completely studied (see [10], [4], [17]). In particular, by using these results
C. Ullemar established in [18] that µ is globally injective on P3(D). On the other
hand, she has also constructed the explicit examples which show that µ fails the
injectivity on P3, loc(D).

The first general result concerning the injectivity of µ on the locally univalent
class Pn, loc(D) is due to B. Gustafsson [7] and states that the differential dµ

has the maximal rang n at every point P ∈ Pn, loc(D) (actually, Gustafsson has
established this property for polynomials with complex coefficients). This means
that µ is a locally injective polymorphism on Pn, loc(D). We should point out

that the question whether µ is globally injective on Pn(D) for n ≥ 4 is still open.
In the mentioned above paper Ullemar has conjectured (after direct compu-

tations for lower degree polynomials) the following formula for the Jacobian

J(P ) ≡ det dµ(P ) = 2−
n(n−3)

2 a1

n(n−1)
2 P ′(1)P ′(−1)∆n(P̃ ′(z)), (4)

which will be in the focus of the present paper. Here by ∆n(P̃ ′(z)) we denote the
main Hurwitz determinant for the Möbius transformation of the derivative P ′(ζ)
(see exact definitions in section 4). We have to notice the involved character of
(4) because it uses the characteristics of P which are far from the initial definition
of the complex moments.
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Nevertheless, an important feature of (4) is that it immediately implies the
local injectivity property. Really, it is well known fact that the corresponding
Hurwitz determinant of a polynomial is positive when it has no roots in a right
half plane.

Our main result concerns the following alternative formula for evaluation of
J(P ) via the inner characteristics of P .

Theorem 1 (Derivative Roots Formula). Let P (z) = a1z+ . . .+anzn, ak ∈ R
and ζ1, . . ., ζn−1 are all zeroes of the derivative P ′(z). Then

J(P ) = 2a
n(n−1)

2
1 (nan)n ·

∏
i≤j

(ζiζj − 1) =

= 2a
n(n−1)

2
1 (nan)n−2 P ′(1) P ′(−1)

∏
i<j

(ζiζj − 1)

(5)

Actually, the product in the right side of (5) is a symmetric function of the
roots and it follows that the Jacobian can be written as a homogeneous form of
the coefficients ak. More precisely, (see also section 6)

J(P ) = 2a
n(n−1)

2
1 Vn−1(b1, . . . , bn)

n∑
j=1

bj

n∑

k=1

(−1)kbk,

where bk = kak are the coefficients of P ′(z) and Vn−1 is a homogeneous irreducible
polynomial of degree (n− 1).

Theorem 2 (Resultant Formula). Let A∗(z) = zpA(1/z) be the reciprocal
polynomial to A(z) = α0 + α1z + . . . + αpz

p. Then in the notations of Theorem 1
we have

J(P )2 = 4(−1)n−1a
n(n−1)
1 R(P ′, P ′∗) · P ′(−1)P ′(1), (6)

where R(A,B) denotes the resultant of the corresponding polynomials.

We obtain the Ullemar’s formula (4) as a corollary of Theorem 1 and some
auxiliary properties of Hurwitz determinants which has been established in sec-
tion 4.

Now we can outline an alternative proof of the mentioned above Gustafsson’s
result.

Corollary 1. The mapping µ(P ) is locally injective on the set Pn, loc(D),
n ≥ 1.

Proof. Indeed, for any polynomial P (z) ∈ Pn, loc(D) with real coefficients

we have an 6= 0 and a1 = P ′(0) 6= 0. Moreover, |P ′(ζ)| 6= 0 in D and it follows
that all zeroes of the first derivative |ζk| > 1, k = 1, . . . , n − 1. It follows from
(5) that J(P ) 6= 0. ¤
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Another interesting consequence of our representation of J(P ) is its connec-
tion with the structure properties of class Pn, loc(D). Really, let us identify a
polynomial P (z) =

∑n
j=1 ajz

j with the point (a1, . . . , an) ∈ Rn.
The following assertion describes the structure of the class

Pn
loc = ∪1≤j≤nPj, loc(D).

Theorem 3. If n ≥ 3 then the boundary of the class Pn
loc is contained in the

following three irreducible algebraic components: the hyperplanes

Π+ : P ′(1) = a1 + 2a2 + . . . + nan = 0,

Π− : P ′(−1) = a1 − 2a2 + . . . + (−1)n−1nan = 0,
(7)

and an algebraic surface of (n− 1)th order given by

A : Vn−1(a1, 2a2, . . . , nan) = 0. (8)

We emphasize that it follows from the preceding results that Pn
loc is exactly

an open component of J(P ) 6= 0.
We should mention that closely related result has been obtained by Quine [13]

for the univalent classes Pn(D). However, in the last case only upper estimates
for the degree of the boundary ∂Pn(D) have been established.

We notice that the previous formulae as well as the suitable modifications of
the facts below are still valid for the polynomials with complex coefficients. But
in this case we need somewhat another technique which will be accomplished in
a forthcoming paper.

Acknowledges: The authors especially appreciate to Björn Gustafsson for
bringing their attention to the present theme and fruitful discussions.

2. Preliminary results

Due to S. Richardson [14] one can write the following expressions for Mk(P )

Mk(P ) =
∑

i1 · ai1 · . . . · aik+1
ai1+...+ik+1

, (9)

where the sum is taken over all possible sets of indices i1, . . ., ik ≥ 1 and it
is assumed that aj = 0 for j ≥ n + 1. These formulae are easy to use for
straightforward manipulations with the moments but actually they are useless
for investigation of their analytic properties.

We use in the sequel the following residues representation

Mk(P ) =
1

k + 1
res
ζ=0

(
P k+1(ζ)P ′

(
1

ζ

)
1

ζ

)
. (10)

Really, it follows from Stokes’ formula that

i

2π

∫∫

G

wk dw ∧ dw =
i

2π(k + 1)

∫

∂G

wk+1 dw, (11)
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where G is an arbitrary 2-chain in complex plane. Letting G = P (D) and tak-

ing into account that ζ̄ = ζ−1 along ∂D and the fact that P ′(z) = P ′(z) for
polynomials with real coefficients we have from (11)

Mk(P ) =
i

2π(k + 1)

∫

∂D

P k+1(ζ)P ′(ζ) dζ̄ =
1

2π(k + 1)

∫

∂D

P k+1(ζ)P ′
(

1

ζ

)
dζ

ζ2

which proves (10).
Moreover, we notice that in our assumptions P (0) = 0 and it follows that

P (ζ) = zP1(z) where P1 is a polynomial. Thus, the expression

ζk+1P k+1
1 (ζ)P ′

(
1

ζ

)
= ζk−n(a1 + . . . + anζ

n−1)(a1ζ
n−1 + . . . an)

is also a polynomial for all k ≥ n and it follows from (10) that for all k ≥ n we
have

Mk(P ) =
1

k + 1
res
ζ=0

ζk+1P k+1
1 (ζ)P ′

(
1

ζ

)
= 0.

As a consequence, we have (2) and, therefore, the mapping µ in (3) is well-defined.
Given meromorphic functions H1 and H2 we write

H1(z) ≡ H2(z) mod [m1; m2]

if the Laurent series of H2 − H1 does not contain zm with m ∈ [m1; m2]. Then
we have the following representation for the Jacobian of µ

Lemma 1. For any k, 0 ≤ k ≤ n− 1,

P ′(z)

(
P k(z) + P k

(
1

z

))
≡

n∑
ν=1

∂Mk(P )

∂aν

· zν−1 mod [0; n− 1]. (12)

Proof. We denote by λm(f(z)) = resz=0(f(z)z−1−m). Then it follows from
relations

∂P (1/z)

∂aν

=
1

zν
,

∂P ′(z)

∂aν

= νzν−1,

and (10) that

∂Mk(P )

∂aν

= λ0

(
P k(1/z)P ′(z)z1−ν

)
+

ν

k + 1
λ0

(
P k+1(1/z)zν

)
. (13)

On the other hand, integrating by parts yields

λ0

(
zνP k+1(1/z)

)
=

1

2πi

∫

∂D

P k+1 (1/z) zν−1 dz =
1

2πiν

∫

∂D

d
(
zνP k+1 (1/z)

)
+

+
k + 1

2πiν

∫

∂D

P k+1 (1/z) P ′ (1/z) zν−2 dz =
k + 1

ν
λ0

(
P k (1/z) P ′ (1/z) zν−1

)
,
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and by using λ0(f(1/z)) = λ0(f(z)) we arrive at

λ0

(
P k+1

(
z−1

)
zν

)
=

k + 1

ν
λ0

(
P k(z)P ′(z)z1−ν

)
. (14)

Substituting of (14) to (13) we come to

∂Mk(P )

∂aν

= λ0

[
P ′(z)z1−ν

(
P k(z) + P k

(
z−1

))]
=

= λν−1

[
P ′(z)

(
P k(z) + P k

(
z−1

))]

that is equivalent to the required formula (12). ¤

We notice that for an arbitrary index k ∈ {0, . . . , n− 1} the decomposition

P k(z) + P k
(
z−1

)
=

nk∑

m=−nk

h(k)
m zm, (15)

yields the symmetricity condition h
(k)
m = h

(k)
−m.

In order to study (12) we to consider a more general case. Really, given an
arbitrary vector x = (x0, x1, . . . , xn−1) we associate with the following Toeplitz
matrix

T (x) =




x0 x1 · · · xn−1

x1 x0 · · · xn−2
...

...
. . .

...
xn−1 · · · · · · x0


 .

Then for y = (y0, y1, . . . , yn−1) we can introduce the dual matrix B(y) by

T (x) · y> = B(y) · x>, ∀x ∈ Rn. (16)

Unlike T (x), the matrix B(y) is not symmetric yet and it has some more com-
plicated structure. We postpone the discussion of the properties of B(y) for the
next section.

Let now Hk(z) be rational functions which Laurent series have the form

Hk(z) =
N∑

m=−N

h
(k)
|m| z

m,

and let B(z) = b0 + b1z + . . . + bn−1z
n−1 be an arbitrary polynomial such that

bn−1 6= 0. We keep in mind that Hk(z) = P k(z) + P k (z−1) and B(z) = P ′(z) in

the sequel. Then we can find the polynomials Φk(z) =
∑n−1

ν=0 ϕ
(k)
ν zν , 0 ≤ k ≤ n−1,

such that

B(z) ·Hk(z) ≡ Φk(z) mod [0; n− 1]. (17)
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To proceed we consider the vectors h(k) = (h
(k)
0 , . . . , h

(k)
n−1) and b = (b0, . . . , bn−1).

It follows from (17) that the matrix identity holds

(ϕ
(k)
0 , . . . , ϕ

(k)
n−1)

> ≡ ϕ(k)> = T (h(k)) · b>,

which by the definition of dual matrix (16) implies ϕ(k)> = B(b) · h(k)>, 0 ≤
k ≤ n − 1. Therefore, denoting by Φ and H the matrices which are formed by

combination of the columns ϕ(k) and h(k)> respectively we get Φ = B(b)H and it
follows that

det Φ = det B(b) · det H. (18)

In our previous notations B(z) = P ′(z), Hk(z) = P k(z) + P k(1/z) and we
obtain from (12)

ϕ(k)
ν =

∂Mk(P )

∂aν

, dµ(P ) = Φ.

Thus, the problem of evaluating of the complex moments mapping Jacobian
J(P ) can be reduced by (18) to the general problem of evaluating of determinants
of the corresponding matrices B(b) and H (here bj−1 = jaj are the coefficients of
P ′(z)).

The last determinant can be found as follows. We notice that matrix ‖h(k)
i ‖

has the low-triangular shape in our case. Indeed, P (z) = zP1(z), where P1(z) is
a polynomial, and

P k(z) + P k
(
z−1

)
= zkP1(z) +

1

zk
P k

1

(
z−1

)
=

kn∑

m=k

(zm + z−m)h(k)
m ,

which easily implies h
(k)
m = 0, 0 ≤ m ≤ k− 1. Moreover, we have for the diagonal

elements h
(0)
0 = 2 and h

(k)
k = ak

1. This yields the desirable identity

det H = det ‖h(k)
i ‖ = 2 · a1 · a2

1 · . . . · an−1
1 = 2a

n(n−1)
2

1 . (19)

3. Toeplitz determinants

The explicit form of det B(y) in terms of the coefficients y0, . . . , ym is messy
and useless for the further analysis. However, it turns out, that this determinant
can be briefly written in terms of some intrinsic characteristics of y. Namely, let
us associate with any vector y the polynomial

By(z) = y0 + y1z + . . . + ymzm.

We also assume that ym 6= 0.

Theorem 4. Let ζ1, . . ., ζm are the roots of By(ζ). Then

det B(y) = ym+1
m

∏
i≥j

(ζiζj − 1), (20)
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Proof. First we notice that left-hand side of (20) is an algebraic function of
y0, . . ., yn−2 and it is sufficient to prove that (20) is valid for every ζ = (ζ1, . . . , ζm)
outside of some proper algebraic submanifold of Cm. Namely, we will suppose
that ζi 6= ζj for i 6= j and ζiζj 6= 1 for all i, j.

Then given a nonnegative integer k and ζ ∈ C we consider the following
vector

{ζ}k = (0, . . . , 0, 1, ζ, ζ2, . . . , ζm−k)> ∈ Cm+1, {ζ} ≡ {ζ}0.

Then substitution of x = {ζ}> in (16) gives

T ({ζ}) · y> = By(ζ) · {ζ−1}+
i=m−1∑

i=0

yi

({ζ}i − {ζ−1}i

)

and taking ζ−1 instead of ζ in the previous formula we arrive at

T ({ζ}+ {ζ−1}) · y> = By(ζ) · {ζ−1}+ By(ζ
−1) · {ζ}. (21)

Let ζ = ζi be a root of the polynomial By(ζ). Then it follows from (21) that

T ({ζi}+ {ζ−1
i }) · y> = By(ζ

−1
i ) · {ζi} (22)

and
T (e) · y> = By(1) · e>, (23)

where e = (2, . . . , 2) ∈ Cm+1. Applying (16) to (22) and (23) we obtain for all
i = 1, . . . , m

B(y)({ζi}+ {ζ−1
i }) = By(ζ

−1
i ) · {ζi},

and
B(y) · e> = By(1) · e>,

Combining the preceding expressions to the matrix identity we attain the
relation for determinants

detB(y) detW(1, ζ1, . . . , ζm) =

= 2By(1) det




1 1 . . . 1
1 ζ1 . . . ζm

1
...

...
. . .

...
1 ζm . . . ζm

m




m∏
j=1

By(ζ
−1
j ) =

= 2By(1)
m∏

k=1

By(ζ
−1
k ) ·

∏
i<j

(ζj − ζi) ·
m∏

i=1

(1− ζi),

(24)

where by W(α0, α1, . . . , αm) we denote Wij = ‖αi
j + α−i

j ‖m
i,j=0.

The determinant of W(α0, . . . , αm) can be easily evaluated similar to that for
the Vandermonians (see also [19, Part 4]):

det W(α0, . . . , α0) =
2

(α0 . . . αm)m

∏
i<j

(αj − αi) ·
∏
i<j

(αiαj − 1). (25)
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Thus, we have from (24), (25) and by virtue of

By(1) = ym ·
m∏

i=1

(1− ζi), ζ1 · · · ζm = (−1)m y1

ym

,

that

det B(y) · (−1)m

(ζ1 . . . ζm)m

∏
i<j

(ζj − ζi) ·
∏
i<j

(ζiζj − 1)
m∏

i=1

(1− ζi)
2 =

=
1

ym

·
m∏

k=1

By(ζ
−1
k ) ·B2

y(1)
∏
i<j

(ζj − ζi),

and after substitution

By(ζ
−1
k ) =

ym

ζm
k

m∏
i=1

(1− ζiζk),

we finally come to required relation (20). ¤
Now we are ready to establish our main result.

Proof of Theorem 1. We recall that in the previous notations dµ(P ) =
Φ . Then applying (19) and Theorem 4 to (18) we obtain

J(P ) ≡ det

[
∂Mk(P )

∂ai

]
= 2a

n(n−1)
2

n · bn
n−1

∏
i≤j

(ζiζj − 1),

where bn−1 = nan is the leading coefficient of B(z) ≡ P ′(z). Thus,

J(P ) = 2a
n(n−1)

2
n · an

nn
n
∏
i≤j

(ζiζj − 1)

which proves the theorem. ¤

4. Hurwitz determinants and Ullemar’s formula

Let us consider an arbitrary polynomial R(z) = r0 + r1z + . . . + rmzm of the
degree m ≥ 1. The m×m-matrix

G(R) ≡




rm−1 rm−3 . . . r1−m

rm rm−2 . . . r2−m
...

...
. . .

...
r2m−2 r2m−4 . . . r0




is said to be the Hurwitzian matrix of the polynomial R(z) [6]. One can easily
see that

Gij(R) = rm+i−2j (26)

where rp = 0 if p is a negative integer or p > deg R.
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We denote by the Hurwitz determinant of R, ∆(R), the main diagonal minor
of (m−1)th order of the matrix G(R). It is an easy consequence of the definition
of G(R) that

detG(R) = r0 ∆(R). (27)

Theorem 5. The Hurwitz determinant of R(z), deg R = m, has the following
form

∆(R) = (−1)
m2−m

2 rm−1
m

∏
1≤i<j≤m

(zi + zj), (28)

where zi are all the roots of R(z).

Before we give the proof of the theorem let us formulate some of its corollaries.
Let us consider the Möbius transformation of the polynomial R(z) given by

R̃(z) = (z + 1)mR

(
z − 1

z + 1

)
≡ r̃0 + r̃1z + . . . + r̃mzm.

It is clear that the polynomial R̃(z) have its roots as ζk = 1+zk

1−zk
where z1,

. . . zm are the roots of R(z). In particular, all roots of R(z) are contained in the

unit disk if and only if the roots of R̃(z) lie in the right half-plane.
Using the previous relations between the roots we get

∏
1≤i<j≤m

(ζi + ζj) = 2
m(m−1)

2

∏
1≤i<j≤m

(1− zizj)

(
m∏

i=1

(1− zi)

)1−m

.

Then the following identities
m∏

i=1

(1− zi) =
R(1)

rm

,

r̃m = lim
z→∞

z−mR̃(z) = R(1),

together with (28) yield

Corollary 2. In previous notations

∆(R̃) = 2
m2−m

2 rm−1
m

∏
1≤i<j≤m

(zizj − 1), (29)

where rm is the main coefficient of polynomial R(z) with zi to be its roots.

Now (29) and Theorem 1 immediately imply the Ullemar’s conjectured for-
mula (4)

Corollary 3 (Ullemar Formula). The Jacobian of the complex moment
mapping µ has the following representation

J(P ) ≡ det dµ(P ) = 2−
n(n−3)

2 a1

n(n−1)
2 P ′(1)P (−1)∆n(P̃ ′(z))

where n = deg P .
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Proof of Theorem 5. Similar to the proof of Theorem 1 we can also as-
sume that R(z) has no multiple roots.

Then we have from (26) for an arbitrary ζ ∈ C and integer i that
m∑

j=1

Gij(R)ζ2m−2j =
m∑

j=1

rm+i−2jζ
2m−2j = ζm−i

∑?

k
ζkrk,

where the kth index in the last sum has the form k(i, j) = m + i − 2j and
j = 1, . . . , m.

Now we consider a fixed integer i ∈ [1; m] and let ī = (m− i). It is clear that
k takes the only even (or only odd) values ranging between (−ī) and (2m−2− ī)
with changing j in [1; m]. Moreover, we notice that both k and ī have the same
evenness and

−ī ≤ k(i, j) ≤ 2m− 2− ī, ī = 0, 1, . . . ,m− 1.

Hence, for every fixed i the indices k(i, j) take all the values of ī from interval
{0, 1, . . . , n} when j ∈ [0; m]. By virtue of this property we conclude that

m∑
j=1

Gij(R)ζ2m−2j = ζm−iR[ ī ](ζ), (30)

where we denote by R[p](ζ) the even (or odd) part of R(ζ)

R[p](ζ) =
1

2

(
R(ζ) + (−1)pR(−ζ)

)
.

Let now ζ = ζk be kth root of the polynomial R(z). Taking into account that

R[p](ζk) = R(ζk)−R[p+1](ζk) = −R[p+1](ζk),

we have
R[p](ζk) = (−1)pRev(ζk).

Here Rev = R[0] is the even part of R(z) and we see from (30) that
m∑

j=1

Gij(R)ζ2m−2j
k = (−ζk)

m−iRev(ζk).

Combining the last identities for k = 1, 2, . . . , m into the matrix form we have
for the determinants

detG(R) detV(ζ2
1 , . . . , ζ

2
m) = (−1)

m(m−1)
2 detV(ζ1, . . . , ζm)

m∏

k=1

Rev(ζk). (31)

where V(a1, . . . , am) = ‖ak−1
j ‖m

j,k=1 is the Vandermonian matrix.
On the other hand, we have for the even part

Rev(ζk) =
1

2
R(ζk) =

rm

2

m∏
i=1

(ζi + ζk),
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and it follows from (31)

detG(R) ·
∏

1≤i<j≤m

(ζ2
j − ζ2

i ) =
(−1)mrm

m

2m

m∏
i,j=1

(ζi + ζj)
∏

1≤i<j≤m

(ζi − ζj).

Thus, using (27) we arrive at

∆(R) =
(−1)

m2+m
2 rm

m

2mr0

∏
1≤i≤j≤m

(ζi + ζj). (32)

Finally, writing the last product as

∏
1≤i≤j≤m

(ζi + ζj) =
∏
i=1

(2ζi)
∏

1≤i<j≤m

(ζi + ζj) =
(−2)mr0

rm

∏
1≤i<j≤m

(ζi + ζj),

we obtain the required identity (28) and the theorem is proved. ¤

5. Representations via resultants

We recall that given polynomials A(z) = An(z − α1) . . . (z − αn), B(z) =
Bn(z − β1) . . . (z − βn) the expression

R(A,B) = An
nB

n
n

n∏
i,j=1

(αi − βj)

is called the resultant of A and B.
If A(z) and B(z) are mutually reciprocal polynomials

B(z) = znA(1/z) ≡ A∗(z),

then Bn−j = Aj, j = 0, . . . n and the we have for their roots: βj = 1
αj

. Then the

corresponding resultant can be rewritten in the matrix form

R(A,A∗) = det




A0 A1 . . . . . . An

A0 A1 . . . . . . An

. . . . . . . . . . . . . . .
A0 A1 . . . . . . An

An An−1 . . . . . . A0

An An−1 . . . . . . A0

. . . . . . . . . . . . . . .
An An−1 . . . . . . A0




(33)

It is easy to see that the last matrix is of 2nth order and has as diagonal
elements A0. On the other hand,

R(A,A∗) = An
nA

n
0

n∏
i,j=1

(
αi − 1

αj

)
=

An
nA

n
0

(α1 . . . αn)n

n∏
i>j

(αiαj − 1)2
n∏

i=1

(α2
i − 1)



COMPLEX MOMENTS MAPPING 13

and by Viète formulae

α1 · · ·αn = (−1)n A0

An

, A(1)A(−1) = A2
n

n∏
i=1

(α2
i − 1),

we conclude that

R(A,A∗) = (−1)nA(−1)A(1)A2n−2
n

n∏
i>j

(αiαj − 1)2 =

=
(−1)nA2n+2

n

A(1)A(−1)

[
n∏

i≥j

(αiαj − 1)

]2

.

(34)

By introducing the following expression

Wn(A) = An+1
n

∏
i≤j

(αiαj − 1), (35)

we have from (34)

W 2
n(A) = (−1)nR(A,A∗)A(−1)A(1). (36)

As a consequence, we see that Wn(A) ≡ Wn(A0, A1, . . . , An) is a homogeneous
form of degree deg A = n. Moreover, it follows from simplicity of linear multipliers
A(±1) that actually Wn(A) has the following representation

Wn(A) = A(−1)A(1)Vn(A), Vn(A) = An−1
n

∏
i<j

(αiαj − 1) (37)

where Vn(A) is a homogeneous form of Ak of degree (deg A− 2).
It easily follows from the representation

Vn(A) = An−1
0

∏
i<j

(
1− 1

αiαj

)
, (38)

that the recursion hold

Vn(A0, A1, . . . , Ak, 0, . . . , 0) = An−k
0 Vk(A0, A1, . . . , Ak). (39)

To demonstrate the explicit form of Vk we list it for n = 3 and n = 4:

V3(A) = A2
0 − A0A2 + A1A3 − A2

3

V4(A) = A4(−A2
1 + A3A1 + A2

4 − A4A2 − A0A4 + 2A0A2 − A2
0)+

+ A0(A
2
0 − A0A2 + A1A3 − A2

3).

Theorem 6. The form Vn(A) ≡ Vn(A0, A1, . . . , An) ∈ C[A0, A1, . . . , An] is
irreducible polynomial over C.
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Proof. A simple analysis of the denominator of the right-hand side of (38)
shows that An can not be a divisor of Vn(A). On the other hand, we notice that
Vn(A) is symmetric function of the roots αk of A(z) = 0.

Let H1(A) and H2(A) be two nontrivial divisors of Vn(A). It is consequence
of homogeneity of Vn(A) that both of Hk(A) are homogeneous too. Moreover, in
our assumption hk = deg Hk ≥ 1.

Let σk is kth symmetric function of (α1, . . . , αn). Then substituting Viéte
formulae

Ak = Anσk(α1, . . . , αn)

in Hk(A) implies by virtue of homogeneity of Hk that

Hk(A) = Ahk
n Yk(α1, . . . , αn),

and it follows from (37) that h1 + h2 = n− 1 and Yk must be a divisor of
∏
i<j

(αiαj − 1).

But the last product consists of irreducible multipliers (αiαj−1) only. Moreover,
if one (αiαj − 1) come in Y1 as a divisor then by symmetry the others have to be
the divisors too.

It follows that one of Yk contains none αi, i.e. it has a form Ap
n. Thus,

applying the remark in the beginning of the proof we see that p = 0. But it
means that Yk must be a constant multiplier that contradicts to our assumption
and proves the theorem. ¤

Proof of Theorem 2. Substituting the derivative

P ′(z) = a1 + 2a2z + . . . + nanzn−1 ≡ b1 + b2z + . . . + bnzn−1,

instead of A(z) we have from (34) and (36) that

[
bn
n

n−1∏
i≥j

(ζiζj − 1)

]2

= (−1)n−1R(P ′, P ′∗)P ′(−1)P ′(1). (40)

By comparison of the relations obtained with the definition (35) we arrive at
the following formula

Wn−1(P
′)2 = (−1)n−1R(P ′, P ′∗)P ′(−1)P ′(1). (41)

The last identity with property (5) yields the required representation of J(P )

J2(P ) = 4bn2−n
1 W 2

n−1(P
′) = (−1)n−1R(P ′, P ′∗)P ′(−1)P ′(1) (42)

which completes the proof. ¤
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6. Proof of Theorem 3

Let P (z) = a1z + . . . anzn, P ∈ Pn
loc. As above we identify P ′(z) and the

vector of its coefficients b = (b1, b2, . . . , bn) ∈ Rn, where bk = kak. We write also
R(p, q) = R(P ′, Q′) for the corresponding vectors p and q. Moreover, in what
follows by S we denote the linear transform S(a) = b : Rn → Rn of the form
S(P ) = P ′(z).

Then the following equivalence is a simple consequence of (36) and (37)

b ∈ ker Wn−1 ⇔R(b, b∗) = 0, (43)

where b∗ = (bn, . . . , b1) corresponds to P ′∗.

Lemma 2. The set Pn
loc is an open subset of Rn which contains two compo-

nents. A polynomial P (z) is an element of the boundary ∂Pn
loc if and only if

1) P ′(z) contains no zeroes in D;
2) R(P ′, P ′∗) = 0.

Proof. The first statement obviously follows form the fact

inf
z∈D

|P ′(z)| > 0, ∀P ∈ Pn
loc (44)

Moreover, let P ∈ Pn
loc. Then the homotopy

aλ = (a1, a2t, . . . , ant
n−1), t ∈ [0; 1],

corresponds to the homothety Pt(z) = 1
t
P (tz) and connects P (z) and Q(z) = a1z

inside of Pn
loc because P ′

t(z) = P ′(tz) 6= 0 in D. This shows that all polynomials
P (z) with a1 > 0 are in the same open component of Pn

loc.
On the other hand, the function a1(P ) = a1 is continuous on Pn

loc and it
follows from a1 6= 0 on Pn

loc that Pn
loc consists of two components exactly and the

involution P → −P is a bijection between these components.
Property 1) easily follows form the continuity arguments and (44).
To prove the last assertion we assume that P ∈ ∂Pn

loc. Then we obviously
have that

inf
z∈D

|P ′(z)| = 0

and it follows that there exist a root ζk of P ′(z) such that |ζk| = 1. It follows from
the reality of P that ζk = 1/ζk is the root of P ′ as well. But it means that P ′(z)
and P ′∗(z) has common roots and by the characteristic property of resultant it
yields that R(P ′, P ′∗) = 0. ¤

Proof of Theorem 3. Now, let Pn
loc = P+ ∪ P− be the decomposition in

Lemma 2. Let us consider a real-valued continuous function

f(a) = R(S(a), S(a)∗) : Pn
loc → R.

Then it follows from (40) that f does not changes its sign on each component
P±. Really, given an arbitrary P (z) ∈ Pn

loc we have that all roots ζk of P ′(z) are
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outside of D. Thus,
|ζiζj| > 1, ∀ i, j.

and f(a) 6= 0. The last inequality together with (43) implies the claimed property.
Hence, P± ⊂ Λ± for some open components Λ± of f 6= 0. On the other hand,

by property 2) in Lemma 2 we have f(a) = 0 for all a ∈ ∂Pn
loc and it implies by

(43) that actually Λ± = Pn,±
loc .

Hence, we have obtained that P± coincide with open components of

Rn \ ker Wn−1 = Rn \ S−1(ker f).

To finish the proof we need to establish that all three algebraic surfaces in
the statement of Theorem 3 are actually realized as boundary components of
Pn

loc for n ≥ 3. To see it we notice that hyperplanes Π± in (7) correspond to the
polynomials P ∈ ∂Pn

loc which have the critical points on the real axe: P ′(±1) = 0.
On the other hand, A in (8) represents the component of ∂Pn

loc consisting of the
polynomials with complex roots ζ 6∈ R, |ζ| = 1, P ′(ζ) = 0. ¤
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