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Abstract

We compare certain infinite dimensional Lie algebras of conserved
quantities for the free Newton equation q̈ = 0, the free heat system and the
euclidean non-linear Schrödinger equation. There is a natural differential
operator defined for all polynomials of the conservation laws I0, I1, ... in
the NLS hierarchy. We discuss the invariant polynomials and point out
a connection to the free classical equation. The basic ingredient is the
presence of an extra ‘Heisenberg’ element in addition to I0, I1, ....

0. Introduction. This work is related to the studies of invariance properties
of Schrödinger (Bernstein) and related diffusion processes in [1]-[4], [8], [10], [14]
and [15], in particular, the case of Gaussian processes [1]-[2].

Going back to a paper [11] by Sophus Lie from 1881, we know that the Lie
algebra for the free heat equation in 1+1 dimensions is, except for a ‘trivial’
infinite dimensional part stemming from linearity, of dimension six. It is a
general fact, see [3], that this Lie algebra has a classical counterpart of constants
of motion. In fact, in a certain sense they differ at most by one element which
needs a ”quantum correction”. In particular, they have the same dimension. It
is shown in the papers referred to above, how to obtain martingales, or stochastic
constants of motion, from the heat Lie algebra.

The classical counterpart to the free heat equation is the free Newton equa-
tion q̈ = 0, which has a six dimensional Poisson-Noether Lie algebra generated
by the functions 1, p, pt − q, p2, p(pt − q) and (pt − q)2, where p := q̇. It may
also be described as all constants of motion in the variables t, q and p which
are of order at most two w.r.t. p. With In = pn we get an infinite sequence
of constants of motion in involution w.r.t. the usual Poisson bracket in two
dimensions.

In the case of the free heat Lie algebra, it is clear that partial derivation w.r.t.
the space variable q preserves the heat equation: ∂q is a recursion operator [6],
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[12]. We can express this in a more symmetric way by looking at the free heat
system u̇+ 1

2u
′′ = 0, −v̇+ 1

2v
′′ = 0. (Here and below u̇ = ut and u′ = uq.) Then

all the functionals In := 1
2 (u(n)v+(−1)nuv(n)), for n = 0, 1, ... are conservation

laws in involution w.r.t. a (well known) natural Lie bracket defined below. It is
an elementary but deep fact that

v
δIn
δv

− u
δIn
δu

= u(n)v − (−1)nuv(n) =
∂

∂q

(
u(n−1)v − u(n−2)v′ + ....

)
(1)

and that the expression u(n−1)v − u(n−2)v′ + .... between the parentheses on
the right is equivalent to nIn−1 = DIn, in the sense of conservation laws. The
operator D = D−1

(
v δ

δv − u δ
δu

)
can be extended to a derivation on the space of

polynomials obtained from In, n ≥ 0.
In the last part of the paper we compare this example with the classical case

and a non-linear system of heat equations, viz the Euclidean non-linear heat
equation

u̇+
1
2
u′′ = u2v, −v̇ +

1
2
v′′ = uv2. (2)

We also study more generally the structure on the polynomials obtained from
a derivation D. This is sketched below, details will appear elsewhere.

1. The heat Lie algebra in 1+1 dimensions. For u = u(t, q), t, q real, we
define the (backward) free heat operator by

Ku := u̇+
1
2
u′′. (3)

Consider all linear partial differential operators Λ of order at most one in (t, q):

Λ = T
∂

∂t
+Q

∂

∂q
+ U, (4)

where T , Q and U are functions of (t, q), and where U acts as multiplication
operator.

Definition: Λ belongs to the heat Lie algebra if, for some function Φ = ΦΛ(t, q)
it holds that

[K,Λ] = KΛ− ΛK = Φ ·K. (5)

Simple calculations lead to the following well-known facts: The heat Lie
algebra consists of two parts, of which the first is generated by the operators

Λ0 = 1 (the centre), Λ1 =
∂

∂q
, Λ∗ = Λ∗

1 = t
∂

∂q
− q, (6)

forming the Heisenberg algebra (since [Λ∗
1,Λ1] = 1), whereas the second, gener-

ated by

Ξ1 = Λ2 =
∂

∂t
, Ξ2 = t

∂

∂t
+

1
2
q
∂

∂q
(+

1
4
), Ξ3 =

t2

2
∂

∂t
+
t

2
q
∂

∂q
− 1

4
(q2− t) (7)
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form the Lie algebra sl2. (We remark that Λ∗ is not intended to suggest adjoint.)

2. The classical counterpart. Consider a two-dimensional phase space with
coordinates p and q, and the usual Poisson bracket

{φ, ψ} =
∂φ

∂p

∂ψ

∂q
− ∂φ

∂q

∂ψ

∂p
. (8)

Regarding t as a parameter, the functions

1, p and pt− q, (9)

form the Heisenberg algebra, whereas

p2, p(pt− q) and (pt− q)2 (10)

form sl2.
We now turn to the free Newton equation

q̈ = 0, (11)

in which case p := q̇ and pt − q are obvious constants of motion (CMs). The
functions 1, ..., (pt − q)2 is a basis for the CMs which are of order at most two
in the variable p. We call it the classical algebra.

The first five functions correspond to the same operators as in the heat case.
The sixth function corresponds to the operator

t2

2
∂

∂t
+
t

2
q
∂

∂q
− q2

4
(no t-term) (12)

The zero-order term q2 − t in the heat case is the “quantum version”,
q2 − t =: q2 : in physicist notation. Readers familiar with stochastic analysis
will no doubt recognise the extra term, e.g. from Ito’s formula.

The heat Lie algebra and the classical algebra satisfy the same commutator
relations. The Heisenberg algebra is an ideal.

Clearly
I0 = 1, I1 = p, I2 = p2, . . . (13)

all commute. With
I∗ = I∗1 = pt− q, (14)

we get

{I∗, In} = nIn−1 =
d

dp
In. (15)

We see that In → In+1 is the “creation operator” multiplication with p,
whereas In → In−1 is the “annihilation operator” d/dp.
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3. The free heat system. We consider the system of two equations

u̇+
1
2
u′′ = 0 and − v̇ +

1
2
v′′ = 0, (16)

obtained from the Lagrangian

L =
1
2
(uv̇ − u̇v) +

1
2
u′v′. (17)

The symmetry Lie algebra contains the vector fields

Λ0 = v
∂

∂v
− u

∂

∂u
, Λ1 =

∂

∂q
, Λ∗

1 = t
∂

∂q
− q

(
v
∂

∂v
− u

∂

∂u

)
, Λ2 =

∂

∂t
. (18)

By Noether’s theorem we get the conservation laws

I0 = uv, I1 = 1
2 (u′v − uv′), I∗ = tI1 − qI0, I2 = 1

2 (u′′v + uv′′), (19)

where I0, I1 and I∗ = I∗1 form a Heisenberg algebra with respect to the (field
theory) bracket

{F,G} :=
∫ (

δF

δu

δG

δv
− δF

δv

δG

δu

)
dq, (20)

t being looked upon as a parameter. Here, the variational derivative refers to
the space variable only:

δF

δu
=
∂F

∂u
− d

dq

∂F

∂u′
+

d2

dq2
∂F

∂u′′
− ...... (21)

with a corresponding expression for δF/δv.

There are two more vector fields associated with the remaining elements of
sl2, viz. Ξ2 = t ∂

∂t + q
2

∂
∂q , and Ξ3 = t2

2
∂
∂t + tq

2
∂
∂q −

q2

4 Λ0 − t
4

(
u ∂

∂u + v ∂
∂v

)
but

our main interest is with I0, I1, I
∗ and I2. We remark however, that in this

more symmetric setting the quantum correction disappears: the conservation
law corresponding to Ξ3 is 1/2 times t2I2 + tqI1 − 1

2q
2I0.

Now, defining

In := 1
2

(
u(n)v + (−1)nuv(n)

)
, n ≥ 0, (22)

i.e.
In+1 = CIn =

1
2
D · In (Hirota bilinear derivative) (23)

one finds

{Im, In} = 0 and {I∗, In} = nIn−1, m, n ≥ 0 (24)

(with I−1 = 0).
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Exactly as in the classical case, C is the creation and {I∗, ·} the annihilation
operator.

4. Constants of motion for the free heat system. Assume that u and v
satisfy (16) (we could add interaction terms here). Then

d

dt

∫
uv dq = 0, (25)

assuming, as always, sufficently rapid decrease at infinity, or the boundary, of u
and v. Let f = f(t, q). It is easy to show that

d

dt

∫
f uv dq =

∫
Df uv dq =

∫
D∗f uv dq, (26)

where

Df : =
1
u
K(fu) = ḟ + 1

2f
′′ +

u′

u
f, (27)

D∗f : = −1
v
K†(fv) = ḟ − 1

2f
′′ − v′

v
f. (28)

Then, if Λ = T∂t +Q∂q + U belongs to the heat Lie algebra, we have

uD(Λu/u) = KΛu = ([K,Λ] + ΛK)u = (ΦΛ + Λ)Ku = 0. (29)

This is an alternative way to express that Λu · v is the density of a conservation
law. In more detail, the preceding equation may be written

D(Λu/u) = T
u̇

u
+Q

u′

u
+ U = 0, (30)

very much as in the classical case. The coefficients u̇
u and u′

u are, respectively,
the energy density and the momentum density in a form that emphasises the
backward motion. The density is I0 = uv, and e.g. u′v = u′

u · I0 is an equivalent
form for I1.

5. Euclidean non-linear Schrödinger system. ENS may be looked upon
as an extension of the free heat system with a ‘potential’ V that depends on u
and v. Let us start somewhat more generally with

u̇+
1
2
u′′ = V u and − v̇ +

1
2
v′′ = V v, (31)

obtained from the Lagrangian

L =
1
2
(uv̇ − u̇v) +

1
2
u′v′ + Φ(uv), (32)

provided V = φ(uv), with φ = Φ′.
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The following are always conservation laws:

I0 = uv, I1 = 1
2 (u′v − uv′), I∗ = tI1 − qI0, (33)

I2 = 1
2 (u′′v + uv′′)− 2Φ(uv) (34)

for the same reasons as in the free heat case. They also commute.
One can prove that there is a third order conservation law,

1
2
(u′′′v − uv′′′) + terms of lower order, (35)

only when Φ′′′ = 0. Leaving the linear case (Φ′′ = 0) aside, we choose Φ(s) =
1
2s

2 so that our heat equations become

u̇+
1
2
u′′ = u2v and − v̇ +

1
2
v′′ = uv2, (36)

corresponding to V = uv. This can be seen as a two-dimensional field theory
with quartic interaction.

One can prove [8] , [16], that there is an operator C such that

In := CnI0, n ≥ 0, (37)

satisfy the same relations as in the free case:

{Im, In} = 0 and {I∗, In} = nIn−1, m, n ≥ 0. (38)

After I2, the next two are

I3 = 1
2 (u′′′v − uv′′′)− 3

2uv(u
′v − uv′), (39)

I4 = 1
2 (uivv + uviv) + u′2v2 + u2v′2 + 6uu′vv′ + 2u3v3. (40)

Since all In commute with I0, we have

v
δIn
δv

− u
δIn
δu

=
d

dq
an (41)

for some functional an. More generally, one sees that for each I that commutes
with I0, the operator

DI :=
(
d

dq

)−1 (
v
δI

δv
− u

δIn
δu

)
(42)

is well defined. One can show that for functions of I0, I1, I2, ..., D is a derivation
in that

D{f(I0, I1, ..., In)} =
n∑

µ=0

∂µf(I0, I1, ..., In)DIµ, (43)

for any C1 function f . This holds also in the free heat case.
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6. Invariant polynomials. We assume, without reference to the particu-
lar cases considered above, that we are given variables I0, I1, I2, ....., and an
operator D such that

DIµ = µIµ−1 for all µ = 0, 1, ........ (44)

We also assume that

D{f(I0, I1, ..., In)} =
n∑

µ=0

∂µf(I0, I1, ..., In)µIµ−1 (45)

for any n ∈ N and for any function f ∈ C1(Rn+1).

Definition: A function M = Mα of the form

M = Iα0
0 Iα1

1 · · · Iαn
n , α0, α1, ...., αn ∈ N, (46)

is a monomial of order
N =

∑
µαµ = ||α||. (47)

Definition: A function P of the form

P =
∑

||α||=N

cαMα, (48)

where cα are constants, is a polynomial of order N .
Definition: A polynomial P is invariant if

DP = 0. (49)

For N = 0 every polynomial, in fact, every differentiable function, of I0 is
invariant. These functions should be looked upon as scalars.

For N = 1 there are no invariant polynomials.
For N = 2,

K2 = I2
1 − I0I2 (50)

is invariant, and for N = 3,

K3 = 2I3
1 − 3I0I1I2 + I2

0I3 (51)

is invariant. Up to multiplication with functions of I0, K2 and K3 are unique.
For N = 4, of course K2

2 is invariant. There is another one, unique up to
multiplication with functions of I0, viz.

K4 = 4I1I3 − 3I2
2 − I0I4. (52)

K4 is irreducible.
For N = 5 we get the obviously invariant polynomial K2K3 and a new,

irreducible, invariant polynomial, K5. For N = 6 we get K3
2 , K

2
3 and K2K4 in

addition to the new, irreducible, invariant polynomial K6.
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Theorem: For each N ≥ 2 there is an irreducible invariant polynomial KN ,
unique up to multiplication with functions of I0.

Denote by P all polynomials, and by M the quotient space

M = P/(K2, K3, .....) (53)

That K2 ≡ 0 means that I0I2 ≡ I2
1 or

I2
I0
≡

(
I1
I0

)2

(54)

Using also K3 ≡ 0 we find I3/I0 ≡ (I1/I0)3, and so on:

In
I0

≡
(
I1
I0

)n

, n = 2, 3, ...... (55)

Note that

D
I1
I0

= 1, and D
In
I0

≡ D

(
I1
I0

)n

= n

(
I1
I0

)n−1

, n = 0, 1, ..... (56)

Hence I1/I0 correspond to p in our first example, the free equation q̈ = 0. We
remark that I1/I0 is the momentum density mentioned at the end of §4 above.
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