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1. Introduction

In this paper we continue and refine a discussion begun in [19] concerning the
continuation properties of the non-cyclic vectors for the backward shift operator

Bf =
f − f(0)

z

on a general Banach space X contained in Hol(D), the analytic functions on the
open unit disk D := {z ∈ C : |z| < 1}. Here we say f ∈ X is cyclic if

[f ] :=
∨
{Bnf : n = 0, 1, 2 · · · } = X

(
∨

denotes the closed linear span). As observed in several papers including [1, 2, 8,
16, 18], non-cyclic vectors have ‘continuations’ of one sort or another to functions
f̃ which are meromorphic on the extended exterior disk De := Ĉ \ D−. Here
D− := {|z| 6 1} is the closure of the disk and Ĉ := C∪{∞} is the Riemann sphere.

Perhaps the first to observe this continuation phenomenon was Nyman [16, Ch. 4,
p. 88 ff] who observed that if f ∈ `∞A (analytic functions on D with bounded Taylor
coefficients, endowed with the weak-∗ topology of the set of two sided bounded
sequences `∞) is non-cyclic and has an analytic continuation to a neighborhood of
an arc I of the unit circle T := ∂D, then f has an analytic continuation across I to
a meromorphic function on De.

When our Banach space X is the Hardy space

H2 :=
{

f =
∞∑

n=0

anzn ∈ Hol(D) :
∞∑

n=0

|an|2 = sup
0<r<1

∫ 2π

0

|f(reiθ)|2 dθ

2π
< ∞

}
,

there is a result of [8] which says the following: To each non-cyclic vector f ∈
H2, there is a unique meromorphic function f̃ of bounded type (quotient of two
bounded analytic functions) on De such that the non-tangential limits of f (from
D) and f̃ (from De) agree almost everywhere with respect to Lebesgue measure
on the unit circle T := ∂D. In language developed in [20], we say that f̃ is a
pseudocontinuation of f . In fact, the existence of such a pseudocontinuation f̃ of
bounded type completely characterizes the non-cyclic vectors of H2. Moreover,
f̃ = f̃L, where

(1.1) f̃L(w) := L
( f

z − w

)/
L

( 1
z − w

)
,

and L is any non-zero continuous linear functional on H2 for which L|[f ] = 0. That
f̃L is independent of L follows from the Lusin-Privalov uniqueness theorem [12, p.
62]: If g is meromorphic on D and has non-tangential limits equal to zero on a
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subset of T of positive measure, then g ≡ 0. The same pseudocontinuation results
hold for the Hardy spaces Hp

Hp :=
{

f ∈ Hol(D) : sup
0<r<1

∫ 2π

0

|f(reiθ)|p dθ

2π
< ∞

}
, p > 1.

When X = L2
a, the Bergman space

L2
a :=

{
f =

∞∑
n=0

anzn ∈ Hol(D) :
∞∑

n=0

1
n + 1

|an|2 =
∫

D
|f |2 dA

π
< ∞

}
,

where dA is area measure, a similar result is true: Each non-cyclic f ∈ L2
a is of

bounded type on D (Bergman space functions are, in general, not of bounded type)
and moreover, there is a unique f̃ of bounded type on De which is a pseudocontin-
uation of f [18]. However, there are inner functions ϕ, which are cyclic for B on
L2

a, and have pseudocontinuations given by

ϕ̃(z) :=
1

ϕ(1/z)

[5, p. 108]. Again, as is the case for the Hardy space, the pseudocontinuation f̃
of f is given by the formula in eq.(1.1) (and is independent of the annihilating L).
The same result is true for the more general weighted Bergman spaces

Lp
a(w) =

{
f ∈ Hol(D) :

∫
D
|f(z)|pw(|z|)dA(z) < ∞

}
, p > 1,

for suitable weights w, for example w(r) = (1− r)s, s > −1 [1, 2].
When X = D, the classical Dirichlet space

D :=
{

f =
∞∑

n=0

anzn ∈ Hol(D) :
∞∑

n=0

(n + 1)|an|2 =
∫

D
|(zf)′|2 dA

π
< ∞

}
,

or more generally the spaces

Dp :=
{

f ∈ Hol(D) :
∫

D
|(zf)′(z)|pdA < ∞

}
, p > 1,

Dα :=
{

f =
∞∑

n=0

anzn ∈ Hol(D) :
∞∑

n=0

(n + 1)α|an|2 < ∞
}

, α > 0,

the non-cyclic vectors f need not have pseudocontinuations across any arc of T
[1, Thm. 6.2]. Nevertheless, for non-cyclic f , the function f̃L in eq.(1.1) can be
thought of as a ’continuation’ of f . For example, in Dp,

L
( 1
z − w

)[
f̃L(w)− f(eiθ)

]
→ 0

for almost every eiθ as w → eiθ non-tangentially [1, Lemma 7.4]. So, for example,
if w → L((z − w)−1) has non-tangential limits almost everywhere on T, then f̃L is
a pseudocontinuation of f .

In this paper, we demonstrate both the ubiquity and the utility of the function
f̃L, which we shall call the L-prolongation of f . In the above discussion, we have
already seen the appearance of L-prolongations as ‘continuations’ of non-cyclic
vectors. L-prolongations also appear in the analysis of σ(B|M), the spectrum of B
restricted to one of its invariant subspaces M. This has been observed in [1] and
we review these results in § 2 of this paper. In § 3 we will show that for a wide
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class of Banach spaces X, that include Hp, Lp
a(w), Dα, and Dp, the L-prolongation

of f is compatible with analytic continuation in the sense that if f has an analytic
continuation (also denoted by f) to an open neighborhood Uζ of ζ ∈ T, then f

is equal to f̃L on Uζ ∩ De. For these spaces X, the proof presented here will be
simpler than the one presented in [19, p. 101]. From the other direction, we will
examine the question: If f̃L has an analytic continuation (also denoted by f̃L) to
an open neighborhood Uζ of ζ ∈ T, then is f̃L equal to f on Uζ ∩D? These results
yield interesting corollaries about the nature of non-cyclic vectors. For example, if
f ∈ X has an isolated winding point on the circle, then f is cyclic. This is a well-
known fact in the H2 setting [8]. These results also make connections to certain
convolution equations [4, 9] and to determining the orbit of an f ∈ X under both
the forward and backward shift operators, that is∨

{znf,Bnf : n = 0, 1, 2, · · · }.

Finally, in § 4 and § 5, we will show how L-prolongations relate to several questions,
originally asked in [21], about overconvergence of rational functions. We will also
show the relationship between L-prolongations and approximate spectral synthesis.

The authors wish to thank A. Borichev, Y. Domar, M. Putinar, and S. Shimorin
for valuable information.

2. Preliminaries

Let X be a Banach space of analytic functions on D which satisfies the following
properties:

(2.1) X ↪→ Hol(D)

(2.2) MzX ⊂ X, Mzf := zf

(2.3) 1 ∈ X

(2.4)
∨
{1, z, z2, · · · } = X

(2.5)
f − f(λ)

z − λ
∈ X whenever f ∈ X and λ ∈ D

(2.6) σ(Mz) = D−.

(2.7) ‖M(z−λ)−1‖ → 0, |λ| → ∞.

Remark 2.8. (1) In eq.(2.1), the inclusion map from X (with the norm topol-
ogy) to Hol(D) (with the topology of uniform convergence on compact sets)
is both injective and continuous. In particular, for each compact K ⊂ D,

(2.9) sup{|f(z)| : z ∈ K} 6 CK‖f‖ for all f ∈ X.

(2) Note that ∨
{1, z, z2, · · · } =

∨ { 1
z − λ

: λ ∈ De

}
= X

[1, Prop. 2.2].
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(3) For an operator T on a Banach space V , σ(T ), the spectrum of T , denotes
the set of complex numbers λ such that (λI − T ) is not invertible.

(4) For |λ| > 1, the operator M(z−λ)−1f := f/(z−λ) is well-defined by eq.(2.6).

Examples of such X include the spaces Hp, Lp
a(w) for suitable w, Dp, Dα (−∞ <

α < ∞) as well as spaces like

`p
A(w) :=

{
f =

∞∑
n=0

anzn ∈ Hol(D) :
∞∑

n=0

|an|pwn < ∞
}

, p > 1,

for suitable weight sequences w = (wn)n>0 [22].
If X ′ is the dual space of X and L ∈ X ′, the function

λ → L
( 1
z − λ

)
is analytic on De and vanishes at infinity. It follows from the Hahn-Banach theorem
and basic complex function theory that

(2.10) X =
∨ { 1

z − λ
: λ ∈ E

}
,

whenever E ⊂ De has a cluster point in De. Furthermore, for fixed |λ| > 1,

(2.11) X =
∨ { 1

(z − λ)n
: n = 1, 2, · · ·

}
.

We will say the dual pair (X, X ′) is an `2 dual pair if X ′ can be identified with
a Banach space of analytic functions on D such that the dual pairing is given by

(2.12) (f, g) :=
∞∑

n=0

anbn,

where the above series converges absolutely and (an)n>0 are the Taylor series co-
efficients of f ∈ X and (bn)n>0 are those of g ∈ X ′. In this case, X ′ also satisfies
the conditions eq.(2.1) through eq.(2.7) [1, Prop. 5.2]. Spaces like `p

A(w), for p > 1
and w = (wn)n>0, satisfy this condition since (`p

A)′ can be identified with `q
A(w′),

where q = p/(p− 1) and w′ = (1/wn)n>0. For example, (L2
a,D) is an `2 dual pair.

Note that for g ∈ X ′, λ ∈ D, and n = 0, 1, 2, · · · ,

(2.13)
( n!zn

(1− λz)n+1
, g

)
= g(n)(λ).

We will not require (X, X ′) to always be an `2 dual pair, but will impose it from
time to time as needed.

From the hypothesis on X, it follows that the operators Mzf = zf and

Bf =
f − f(0)

z

are continuous on X. In fact, if (X, X ′) is an `2 dual pair, then B on X is the
adjoint of Mz on X ′. We will denote the collection of (closed) B-invariant subspaces
by Lat(B,X). In this general setting, one can prove (see [1, §2]) that

σ(B) = D−

and that for w ∈ D,

(2.14) (I − wB)−1f =
zf − wf(w)

z − w
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(2.15) (I − wB)−1Bf =
f − f(w)

z − w
.

From the spectral radius formula, it follows that

(2.16) σ(B|M) ⊂ D− for all M∈ Lat(B,X).

Since, for a ∈ D,

B
1

1− az
= a

1
1− az

,

each a ∈ D is an eigenvalue of B (with geometric multiplicity one) with correspond-
ing eigenfunction (1− az)−1. Moreover,

(2.17) σap(B|M) ∩ D = σp(B|M) ∩ D =
{

a ∈ D :
1

1− az
∈M

}
.

Here σap is the approximate point spectrum and σp is the point spectrum (the set
of eigenvalues). Furthermore, by eq.(2.10), the set in eq.(2.17) is either a countable
subset of D with no cluster points in D, or all of D. Thus σp(B|M)∩D = D if and
only if M = X. Under a mild regularity condition on X,

(2.18) σap(B|M) ∩ T = σ(B|M) ∩ T

and this set is the complement (in the unit circle) of the set of points ζ ∈ T such
that every f ∈ M extends to be analytic in a neighborhood of 1/ζ. Furthermore,
since ∂σ(B|M) ⊂ σap(B|M), one can prove the following dichotomy: either

σ(B|M) ∩ D = σap(B|M) ∩ D

and is a countable subset of D with no cluster points in D, or σ(B|M) = D−.

For a set A ⊂ X, let A⊥, the annihilator of A, denote the set

A⊥ := {L ∈ X ′ : L|A = 0}.

For a non-cyclic vector f ∈ X and L ∈ [f ]⊥ \ {0}, define the L-prolongation of f
to be the meromorphic function on De defined by

(2.19) f̃L(w) := L
( f

z − w

)/
L

( 1
z − w

)
.

Observe from eq.(2.10) that the denominator of the above expression is not identi-
cally zero. One can show, when T = B|[f ] and σ(T ) ∩ D is discrete, that for each
non-trivial annihilating L and |w| > 1 with 1/w 6∈ σ(T ),

(I − wT )−1f =
zf − f̃L(w)

z − w
.

Compare this formula to the one in eq.(2.14). Furthermore, in this case, the mero-
morphic function f̃L is independent of L. In fact, if M is any B-invariant subspace,
T := B|M, and |w| > 1 with 1/w 6∈ σap(T ), then (I − wT )−1 exists if and only if
for each f ∈ M, f̃L(w) is independent of the L ∈ M⊥ with L((z − w)−1) 6= 0 [1,
Prop. 2.6].

When X is either Hp or Lp
a(w), f̃L is a function of bounded type and is a

pseudocontinuation of f . Thus, by the Lusin-Privalov uniqueness theorem, f̃L is
independent of L ∈ [f ]⊥ \{0}. For other spaces X such as the Dirichlet-type spaces
Dp or Dα (α > 0), f̃L need not be of bounded type nor be a pseudocontinuation
of f . Indeed, it might depend on L [19, p. 122]. For instance, there is a non-cyclic
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f ∈ D and L1, L2 ∈ [f ]⊥ \ {0} such that f̃L1 is a pseudocontinuation of f while f̃L2

is not.
The L-prolongation f̃L can also be thought of as a ‘continuation’ via formal

multiplication of series as in [19, Chap. 8]. In cases where (X, X ′) is an `2 dual
pair, then

L
( 1

z − w

)
f(w) = L

( f

z − w

)
,

where we understand the above equation (which is not technically defined since
L((f/(z − w)) and L(1/(z − w)) are defined on De while f is defined on D) as a
formal multiplication of Laurent series. That is to say, if

f =
∞∑

n=0

anwn, |w| < 1

L
( f

z − w

)
=

∞∑
n=0

An

wn
, |w| > 1,

L
( 1

z − w

)
=

∞∑
n=0

Bn

wn
, |w| > 1,

then a formal computation with Laurent series, along with the fact that

0 = L(BNf) =
∞∑

k=0

aN+kBk, N = 0, 1, 2, · · · ,

yields (
B0 +

B1

w
+ · · ·

)(
a0 + a1w + · · ·

)
= A0 +

A1

w
+ · · · .

3. Compatibility with analytic continuation

In this section, we will prove two results about the compatibility of L-prolongations
with ordinary analytic continuation. The first is the following.

Theorem 3.1. Let X satisfy eq.(2.1) through eq.(2.7) along with the following
additional condition: If f ∈ X extends analytically to an open neighborhood of a
point ζ ∈ T, then

(3.2)
f − f(w)

z − w
→ f − f(ζ)

z − ζ
in the norm of X as w → ζ.

Suppose that f ∈ X extends analytically, to a function also denoted by f , to an
open neighborhood Uζ of a boundary point ζ ∈ T. Then any L-prolongation f̃L

agrees with f on Uζ ∩ De.

Proof. Let T = B|[f ]. Since, by eq.(2.16), σ(T ) ⊂ D−, then (I − wT )−1 exists for
all w ∈ D. Moreover, by eq.(2.15),

(I − wT )−1Tf =
f − f(w)

z − w
.

So for any L ∈ [f ]⊥ \ {0},

L
(f − f(w)

z − w

)
= 0 for all w ∈ D.



PROLONGATIONS AND CYCLIC VECTORS 7

By eq.(2.6),
f

z − w
and

1
z − w

∈ X for all w ∈ Uζ ∩ De

and moreover, since f is analytic on Uζ , we can use our hypothesis in eq.(3.2) to
observe that

w → f − f(w)
z − w

is an analytic X-valued function on Uζ . Thus,

H(w) := L
(f − f(w)

z − w

)
is analytic on Uζ . But since H is zero on Uζ ∩ D, it is zero on all of Uζ . It follows
now that

L
( f

z − w

)
= f(w)L

( 1
z − w

)
for all w ∈ Uζ ∩ De

and so f̃L = f on Uζ ∩ De. �

The hypothesis in eq.(3.2) seems a bit mysterious. Nevertheless, spaces X with
a norm satisfying

(3.3) ‖f‖p �
K∑

k=0

∫
D
|f (k)(z)|pw(|z|)dA(z)

satisfy this hypothesis. Indeed, if f ∈ X continues analytically to B(ζ, 2r) := {w :
|w − ζ| < 2r} and C = {w : |w − ζ| = 3

2r}, then for a, b, z ∈ B(ζ, r),

f(z; a) :=
f(z)− f(a)

z − a
=

1
2πi

∫
C

f(t)
(t− z)(t− a)

dt.

For each k = 0, 1, · · · ,K,

dk

dzk

[
f(z; a)− f(z; b)

]
=

k!
2πi

(a− b)
∫

C

f(t)
(t− z)k+1(t− a)(t− b)

dt.

Thus

sup
z∈B(ζ,r)

∣∣∣ dk

dzk

[
f(z; a)− f(z; b)

]∣∣∣ 6 C(k, r)

and is independent of the points a and b. Now estimate ‖f(z; a) − f(z; b)‖ by
computing the integrals in eq.(3.3) separately over D ∩B(ζ, r) and D \B(ζ, r) and
use the dominated convergence theorem.

Certainly all the Bergman-type spaces Lp
a(w) or even Dp satisfy the extra con-

dition of eq.(3.2). The Dirichlet-type spaces Dα (−∞ < α < ∞) also satisfy the
extra hypothesis of Theorem 3.1 since

(3.4)
∞∑

n=0

(n + 1)α|an|2 �
∫

D
|f |2(1− |z|2)−1−αdA, α < 0,

[24, Lemma 2] and for any α ∈ R, f ∈ Dα if and only if f ′ ∈ Dα−2. For other spaces
such as `p

A(w), the condition in eq.(3.2) seems difficult to verify, though, for a wide
class of weight sequences w = (wn)n>0, there is an alternate proof of Theorem 3.1
which is more involved [19, p. 101].

Since L-prolongations must be single-valued, the following useful corollary fol-
lows.



8 WILLIAM T. ROSS AND HAROLD S. SHAPIRO

Corollary 3.5. Any f ∈ X which has an isolated winding point on the circle, must
be cyclic.

For example, the function log(1−z), whenever this belongs to X, is cyclic. Other
functions such as

exp
( 1
z − 2

)
and ez

are also cyclic since they have analytic continuations across T but are not mero-
morphic on De. Note that ∞ lies in the interior of De (the extended exterior disk)
and so ez is not meromorphic on De.

Now we come from the other direction and start with the L-prolongation f̃L. If f̃L

has an analytic continuation across a boundary point ζ ∈ T, must this continuation
be equal to f? For a general Banach space X, this question seems difficult so
let us first focus on the important special case when f̃L is identically zero. We
restrict ourselves to spaces X which satisfy our usual properties eq.(2.1) through
eq.(2.7) along with the following two additional conditions: First we assume that
(X, X ′) is an `2 dual pair. Second, we assume that if f =

∑
n anzn ∈ X \ {0} and

g =
∑

n bnzn ∈ X ′, then

(3.6)
∞∑

l=0

al−kbl = 0 for all k ∈ Z ⇒ (bn)n>0 ≡ (0),

(where as := 0 when s < 0). The sequence defined by the left-hand side of the
above is the convolution (a−n)∗ (bn) of the sequences (a−n)n∈Z and (bn)n∈Z (where
bn := 0 for n < 0). In a moment, we will discuss examples of these spaces.

Theorem 3.7. Let X satisfy the conditions eq.(2.1) through eq.(2.7) along with the
additional assumptions that (X, X ′) is an `2 dual pair and the condition in eq.(3.6)
holds. If f ∈ X is a non-cyclic vector and f̃L ≡ 0 for some L ∈ [f ]⊥ \ {0}, then
f ≡ 0.

Assuming the condition in eq.(3.6) holds, here is the proof of the theorem: If
f̃L is the zero function, that is to say, in our `2 pairing notation (equating L ∈ X ′

with g =
∑

n bnzn), ( f

z − λ
, g

)
/

( 1
z − λ

, g
)
= 0, |λ| > 1,

then ( f

z − λ
, g

)
= 0, |λ| > 1

and a computation with power series shows that for all |λ| > 1,

0 =
( f

z − λ
, g

)
= −

∞∑
k=0

1
λk+1

∞∑
l=k

al−kbl

and so

(3.8) (Mk
z f, g) =

∞∑
l=k

al−kbl = 0, k = 0, 1, 2, · · · .
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But g annihilates the B-invariant subspace generated by f and so

(3.9) 0 = (Bkf, g) =
∞∑

l=0

al+kbl, k = 0, 1, 2, · · · .

Combining eq.(3.8) and eq.(3.9) we see that the convolution (a−n)∗ (bn) is the zero
sequence (where we understand that an, bn = 0 when n < 0). But if (an)n>0 is not
the zero sequence, then, by our assumption on the space X, (bn)n>0 must be the
zero sequence, which we are assuming is not the case. Thus f ≡ 0.

Remark 3.10. Theorem 3.7 was stated in a slightly different way in [19, p. 134] for
the spaces Dα, α ∈ R, but the proof was deficient. This proof corrects this.

As it turns out, the spaces Dα with α > 0, and many others as well, sat-
isfy eq.(3.6) (see remark below). For the Hardy and weighted Bergman spaces, a
stronger result than Theorem 3.7 is true (see Proposition 3.13 below) and so we
focus our efforts here on the Dirichlet-type spaces, or more generally, spaces of
analytic functions on D which are ‘smooth up to the boundary’. For the sake of
completeness, and to give the reader a flavor of what goes on here, we will show
that spaces like `1A(w) with, for example, wn = (1 + n)s, s > 0, satisfy eq.(3.6).
The following argument was kindly communicated to us by Yngve Domar.

To do this, let w = (wn)n∈Z be a (two-sided) weight sequence such that

wn = w−n

w0 = 1, wn > 1

wn+m 6 wmwn

(3.11)
∑
n∈Z

log wn

1 + n2
< ∞.

Weights like wn = (1 + |n|)s, with s > 0, satisfy these conditions. Let `1(w) be the
space of sequences x = (x(n))n∈Z with∑

n∈Z
|x(n)|wn < ∞.

The dual space of `1(w) can be identified with `∞(w), the space of sequences y =
(y(n))n∈Z with

sup
n∈Z

|y(n)|
wn

< ∞

via the pairing

〈x, y〉 :=
∑
n∈Z

x(n)y(−n).

One can check that `1(w) is a Banach algebra with respect to the operations of
pointwise addition and convolution: For x1, x2 ∈ `1(w),

(x1 + x2)(n) := x1(n) + x2(n)

(x1 ∗ x2)(n) :=
∑
m∈Z

x1(n−m)x2(m).
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The Banach algebra `1(w) is also regular: Given any open arc I ⊂ T, there is
an x ∈ `1(w) whose Gelfand transform

x̂(ζ) :=
∑
n∈Z

x(n)ζn, ζ ∈ T

(which is continuous on T since its coefficients are absolutely summable) has support
in I. In fact, given N ∈ Z, we can even choose x to satisfy the extra condition
that x(N) 6= 0. For weight sequences like wn = (1 + |n|)s with s > 0, sequences
like (x(n))n∈Z, where x(n) is the n-th Fourier coefficient of a C∞ function whose
support is contained in I, are contained in `1(w). For general weights wn satisfying
the ‘non-quasianalyticity condition’ in eq.(3.11), the problem is a bit more delicate
[7].

The result here is the following: Suppose x ∈ `1(w) \ {0}, y ∈ `∞(w) with
y(n) = 0 for all n > 0, and 〈x(· −m), y〉 = 0, that is,∑

n∈Z
x(n−m)y(−n) = 0

for all m ∈ Z. Then y = 0. In other words, `1A(w) satisfies the condition in eq.(3.6).
To see this, note that since x is non-trivial and x̂ is continuous on T, there is an

arc I ⊂ T so that x̂(ζ) 6= 0 for all ζ ∈ I. Fix N > 0 and choose v ∈ `1(w) with v̂
supported in I so that v(N) 6= 0 (regularity of `1(w)). For real t, define ut ∈ `1(w)
by

ut(n) := v(n)eint

and observe that for small positive c, ût is again supported in I provided |t| < c.
The quotient ût/x̂ is the Gelfand transform of an rt ∈ `1(w) with ut = rt ∗x. Thus
since 〈x(· −m), y〉 = 0 for all m ∈ Z, then 〈ut(· −m), y〉 = 0 for all m ∈ Z, |t| < c,
or equivalently, ∑

n∈Z
y(−n)v(n−m)einte−imt = 0 m ∈ Z, |t| < c.

Letting m = 0 and noting that y(−n) = 0 for all n < 0, we conclude
∞∑

n=0

y(−n)v(n)eint = 0, |t| < c.

But since the sequence (y(−n)v(n))n>0 is absolutely summable,

h(z) :=
∞∑

n=0

y(−n)v(n)zn

is analytic on D, continuous on D−, and is zero on an arc of T. Thus h ≡ 0 and so
y(−n)v(n) = 0 for all n > 0. But we are assuming v(N) 6= 0 and so y(−N) = 0.
Since N was arbitrary, y(n) = 0 for all n 6 0. But we are already assuming y(n) = 0
for all n > 0 and so y = 0.

Remark 3.12. (1) There are some spaces which are not of the form `1A(w) which
satisfy the condition in eq.(3.6), for example, Dα (α > 0) [4].

(2) Recently, Jean Esterle [9, Thm. 4.10] showed there are `2A(w) spaces with
weights wn increasing to infinity as slowly as desired, containing nontrivial
functions whose orbit under all backward and forward shifts fails to span
`2A(w), or in our terminology, using eq.(3.8) and eq.(3.9): A noncyclic vector
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f for the backward shift for which some L-prolongation is identically zero
(both f and L of course being nontrivial). The crucial feature of this
example is that the weights, while monotone, lack finer regularity properties
like convexity which are needed in the theorems of [4].

For our three spaces Hp, Lp
a(w) with a suitable weight, and Dp, the following

stronger compatibility result is true. Note that the Dirichlet-type spaces Dα (α < 0)
can be included in this list since L2

a((1−|z|)−1−α) ∼= Dα for α < 0 (recall eq.(3.4)).

Proposition 3.13. Suppose that X is one of the three spaces mentioned above. If
f ∈ X is a non-cyclic vector and f̃L has an analytic continuation, also denoted by
f̃L, to an open neighborhood Uζ of ζ ∈ T, then f̃L agrees with f on Uζ ∩ D.

Proof. For the Hardy and Bergman spaces, f̃L is of bounded type on De and is
a pseudocontinuation of f . Thus if f̃L has an analytic continuation F across an
arc I ⊂ T, then f̃L will have two pseudocontinuations across I, f and F . By the
Lusin-Privalov uniqueness theorem f and F must be the same.

For the Dirichlet spaces Dp, the proof is somewhat similar. In [1, Lemma 7.4],
the authors show, using very special calculations with the local Dirichlet integral,
that

L
( 1
z − w

)[
f̃L(w)− f(eiθ)

]
→ 0

for almost every eiθ as w → eiθ non-tangentially. If f̃L has finite non-tangential
limits on an arc I ⊂ T, then since

L
( 1
z − w

)
cannot go to zero as w → eiθ (non-tangentially) on a subset of I of positive measure
(Lusin-Privalov uniqueness theorem), it must be the case that

f̃L(w) → f(eiθ)

as w → eiθ non-tangentially for almost every eiθ ∈ I. Thus f̃L must be a pseu-
docontinuation of f across I. So if f̃L has an analytic continuation across an arc
I ⊂ T, then, by combining the above along with the Lusin-Privalov uniqueness
theorem, f̃L must be an analytic continuation of f across I. �

To prove the analog of Proposition 3.13 for a wide class of Banach spaces X,
say even something like `p

A(w), remains an open problem. As pointed out in Re-
mark 3.12 (Esterle’s example), Proposition 3.13 does not hold for certain patholog-
ical `2A(w) spaces since there are non-cyclic f ∈ `2A(w) \ {0} and L ∈ [f ]⊥ \ {0} for
which f̃L ≡ 0.

4. Overconvergence and spectral synthesis

Let T be a bounded linear operator on a Banach space V . Given t ∈ C and
r ∈ N, we say that t is an eigenvalue of algebraic multiplicity r, and the non-zero
vector v ∈ V is a root vector of order r corresponding to t if

(T − tI)rv = 0 but (T − tI)r−1v 6= 0.

The subspace ∨
{(T − tI)jv : j = 0, 1, · · · , r − 1}
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is called a root space of V and one can show it has dimension r. An invariant
subspace M of T has the spectral synthesis property if M is the closed linear span
of the root spaces it contains, where the root spaces are of the type ker(T − tI)r

as above. From elementary linear algebra, every finite dimensional M has the
spectral synthesis property. When M is infinite dimensional, this is no longer the
case, though there is a reasonable substitute to spectral synthesis (see below).

For example, if T is the backward shift operator B on our Banach space X of
analytic functions on D, observe that for a ∈ De and r(a) ∈ N,

(4.1) ker(aI −B)r(a) =
∨ { 1

(z − a)s
: s = 1, · · · , r(a)

}
.

Note, from eq.(2.10) and eq.(2.11), that if M 6= X has the spectral synthesis
property, there is a sequence (an)n>1 ⊂ De with no cluster points in De and r(an) ∈
N so that

(4.2) M =
∨ { 1

(z − an)s
: s = 1, · · · , r(an)

}
.

Moreover, if λ 6∈ (an)n>1, then (z − λ)−1 6∈ M.

Remark 4.3. To avoid needless technicalities, we will assume the eigenvalues of B
do not lie on the unit circle. If they do, what was stated above, and what follows
below can be suitably altered.

Since (H2,H2) is an `2 dual pair, we can use eq.(2.13) to see that M = (ϕH2)⊥

does not have the spectral synthesis property whenever ϕ is an inner function
with a non-constant singular inner factor. A thorough discussion of the spectral
synthesis property can be found in [13]. An interesting fact worth pointing here is
the following.

Proposition 4.4. Let A = (an)n>1 be a sequence of distinct points of D and let
(cn)n>1 be a sequence of non-zero complex numbers for which

lim
n→∞

|dn|1/n < 1,

where dn = cn‖(1− anz)−1‖X . If

f :=
∞∑

n=1

cn

1− anz
,

then f ∈ X and

(4.5) [f ] = M(A) :=
∨ { 1

1− anz
: n = 1, 2, · · ·

}
.

That is to say, the spectral synthesis invariant subspace M(A) is singly generated.

To prove this, we begin with a theorem of Beurling [3].

Lemma 4.6. Suppose (zj)j>1 is a sequence of distinct points of D and V is a matrix
of Vandermonde type, that is to say, the j-th column of V is 1, zj , z

2
j , z3

j , · · · . If
w = (wn)n>1 is a column vector of complex numbers such that

lim
n→∞

|wn|1/n < 1

and V w is the zero vector, then w is the zero vector.



PROLONGATIONS AND CYCLIC VECTORS 13

Proof of Proposition 4.4. Suppose that L ∈ [f ]⊥, that is to say L(BNf) = 0 for all
N = 0, 1, 2, · · · . Then, using the identity

BN 1
1− anz

= aN
n

1
1− anz

,

wee see that

0 = L(BNf) =
∞∑

n=1

cnaN
n L

( 1
1− anz

)
for all N = 0, 1, 2, · · · .

By our hypothesis and Lemma 4.6,

L
( 1
1− anz

)
= 0 for all n.

But this means that L ∈ M(A)⊥ and so [f ] ⊃ M(A). The other inclusion is
obvious. �

Remark 4.7. For a general bounded operator T on a Banach space V for which
the eigenvectors (corresponding to distinct eigenvalues) of T span V , Nordgren and
Rosenthal [15], in an unpublished paper brought to our attention by M. Putinar,
prove the existence of a vector v ∈ V such that

V =
∨
{Tnv : n = 0, 1, · · · } = V.

In other words, T has a cyclic vector. We suspect that the same is true when V is
spanned by root vectors (corresponding to distinct eigenvectors, which we assume
all have one dimensional eigenspaces) and, under certain technical conditions, this
is indeed the case.

Our next observation here concerns the backward shift B. If (fn)n>1 ⊂ M is a
sequence of finite linear combinations of root vectors of X (which in this case are
rational functions whose poles lie in De) which converge in norm to f , then certainly
fn → f uniformly on compact subsets of D (see eq.(2.9)). This next result says
that this sequence of rational functions ‘overconverges’. This result is found in [21]
but we include a proof anyway, both for completeness and since the version stated
here is slightly more general. We will also be using some of the techniques of the
proof in the next section.

Theorem 4.8. Let M ∈ Lat(B,X), M 6= X have the spectral synthesis property
and (fn)n>1 be a sequence of finite linear combinations of root vectors in M with
fn → f in norm. Then there is a meromorphic function Sf on De such that
fn → Sf uniformly on compact subsets of De \ (an)n>1.

Proof. Let λ ∈ De \ (an)n>1 and L ∈M⊥ \ {0} with

L
( 1
z − λ

)
6= 0.

This is possible since (z − λ)−1 6∈ M. Since L((z − λ)−1) is analytic, there is an
open neighborhood Uλ of λ so that

L
( 1
z − w

)
6= 0 for all w ∈ Uλ.
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Fix w ∈ Uλ, a = an, and k 6 r(a) (see eq.(4.2)). Select constants cj = cj(a,w)
(independent of z) so that

1
z − w

+
c1

z − a
+ · · ·+ ck

(z − a)k
=

(w − a)k

(z − w)(z − a)k
.

Thus, since

L(
1

(z − a)j
) = 0, j = 1, · · · , k,

then
L

( 1
z − w

)
= (w − a)kL

( 1
(z − w)(z − a)k

)
and so

L
( 1
(z − w)(z − a)k

)
=

1
(w − a)k

L
( 1
z − w

)
.

It follows now, if f is a finite linear combination of root vectors in M, that for
w ∈ Uλ,

(4.9) L
( f

z − w

)
= f(w)L

( 1
z − w

)
.

Thus for any w ∈ Uλ,

|f(w)| 6
‖L‖‖M1/(z−w)‖‖f‖
|L((z − w)−1)|

6 Cλ‖f‖.

The result now follows. �

Remark 4.10. (1) We actually get a bit more here. Indeed if fn → f in norm
as above, then for any L ∈ M⊥ \ {0} (note that L ∈ [fn]⊥ \ {0}) eq.(4.9)
shows that

fn = f̃nL

on De. Using the norm convergence of fn → f and the definitions of f̃nL

and f̃L (from eq.(2.19)), one can show that

f̃L = lim
n→∞

f̃nL

pointwise on De (minus appropriate poles). Thus the limit function Sf in
Theorem 4.8 is f̃L, the L-prolongation of f .

(2) Since Sf = f̃L for any L ∈ M⊥ \ {0}, then f̃L is independent of the
L ∈ M⊥ \ {0} and so, using the results mentioned in § 2 (see also [1,
Prop. 2.6]),

σ(B|M) ∩ D = (1/an)n>1.

(3) As a small technical matter, notice that fn = f̃nL for all L ∈ M⊥ \ {0}.
It is true that fn = f̃nL for all L ∈ [fn]⊥ \ {0}. To see this, one can use a
variant of the proof of Proposition 4.4 to show that if {b1, · · · bk} ⊂ (an)n>1,
and

h =
k∑

j=1

cj

(z − bj)s(j)
,

then
[h] =

∨ { 1
(z − bj)s

: 1 6 j 6 k, 1 6 s 6 s(j)
}
.
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Thus, by replacing M with [fn] in eq.(4.9), we see that fn = f̃nL for all
L ∈ [fn]⊥ \ {0}. When X satisfies the condition in eq.(3.2), this follows
directly from Theorem 3.1.

(4) We know, for f ∈ M, that f̃L is independent of L ∈ M⊥ \ {0} and that
f̃nL is independent of L ∈ [fn]⊥ \ {0}. One might be tempted to say that
f̃L is independent of L ∈ [f ]⊥ \ {0}. However, this is not the case. By a
construction in [11], there are two sequences A1, A2 contained in D so that

I(Aj) := {f ∈ L2
a : f |Aj = 0} 6= {0}

and the Mz-invariant subspace I := I(A1)
∨
I(A2) has index equal to two,

that is to say dim(I/MzI) = 2. It is well-known [17, Thm. 4.5] that the
B-invariant subspace (of the Dirichlet space D) I⊥ satisfies σ(B|I⊥) = D−.
Using the `2 dual pairing between L2

a and D, one can show, using eq.(2.13),
that

I(A1)⊥ =
∨ { 1

1− az
: a ∈ A1

}
and thus has the spectral synthesis property. By using [1, Prop. 2.6], there
is an f ∈ I⊥ and annihilating L1, L2 of I⊥ (and hence L1, L2 ∈ [f ]⊥ \ {0})
so that f̃L1 6= f̃L2 . Notice that f ∈ I⊥ ⊂ I(A1)⊥.

(5) If X ′ has the property that every (non-zero) Mz-invariant subspace has
index equal to one (for example H2, D, and many others [1, Cor. 5.10]),
then σ(B|[f ])∩D, where f is any non-cyclic vector, is a countable subset of
D with no accumulation points in D and so [1, Prop. 2.6] f̃L is independent
of L ∈ [f ]⊥ \ {0}.

(6) For the above Borel series f , in eq.(4.5), that generates M(A) (which we
shall assume is not all of X), there are two functions defined on De that,
in some sense, can be associated with f . There is the function

∞∑
n=0

cn

1− anw

which is just the Borel series defined on De \ (1/an)n>0 and then there is
an L-prolongation of f for any L ∈ [f ]⊥ \ {0}. By Theorem 4.8, these are
the same.

(7) In a way, the function Sf can be thought of as a ‘continuation’ of f across
T, though not necessarily an analytic continuation. At the end of the
paper [21], the author posed the following compatibility questions about
this continuation Sf : (i) If Sf ≡ 0, must f ≡ 0? (ii) If f has an analytic
continuation across eiθ, must this analytic continuation be equal to Sf

near eiθ? (iii) If Sf has an analytic continuation across eiθ, must Sf equal
f near eiθ? The identity f̃L = Sf , along with Theorem 3.1, Theorem 3.7,
and Proposition 3.13, give answers to these questions.

(8) When the space X satisfies certain mild technical conditions, which spaces
like H2, Lp

a(w), Dα,Dp do, then the sequence (fn)n>1 converges uniformly
on compact subsets of Ĉ \ (an)−n>1 (see [21] or Remark 5.11 below).

5. Overconvergence and approximate spectral synthesis

As we have seen earlier, there are invariant subspaces which do not have the
spectral synthesis property. The following reasonable substitution was proposed by
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Nikolskii [14] (see also [23] for a nice exposition): If T is a bounded operator on a
Banach space V and (Mj)j>1 is a sequence of T -invariant subspaces of V , define

(5.1) M = lim
j→∞

Mj := {v ∈ V : lim
j→∞

dist(v,Mj) = 0}.

The above ‘liminf’ space is closed and T -invariant. It is important to note here
that Mj need not lie in M. We say a T -invariant subspace M has the approxi-
mate spectral synthesis property if M can be written as in eq.(5.1) for a sequence
(Mj)j>1 of T -invariant subspaces with dim(Mj) < ∞. In this case, Mj is a linear
span of root spaces (and thus satisfies the approximate spectral synthesis property),
and hence the name ‘approximate spectral synthesis’. Note that if Mj ⊂Mj+1 for
all j > 1, then M has the spectral synthesis property.

When T is the backward shift operator B on X, two important questions are: (i)
When is this ‘liminf space’ all of X?; (ii) Can every B-invariant subspace of X be
written as a ‘liminf space’? For the first question, there are theorems of [10, 25, 26]
and others that give specific conditions for this to happen. For the second question,
the answer is yes when X = H2 (the Hardy space) [25] and when X = D (the
Dirichlet space) [23]. For other spaces, question (ii) remains unanswered.

In the previous section, we showed that if (fn)n>1 is a norm-convergent sequence
of root vectors in some non-trivial B-invariant subspace satisfying the spectral
synthesis property, then this sequence overconverges on De (minus the appropriate
poles). In a moment, we will show an analogous result for B-invariant subspaces
satisfying the approximate spectral synthesis property.

Our set up is as follows: For each n = 1, 2, · · · , choose a sequence

En := {zn,1, · · · , zn,N(n)}

of points of D (multiplicities are allowed) to create the tableau S

z1,1, z1,2, · · · , z1,N(1)

z2,1, z2,2, · · · , z2,N(2)

...

For each n, create the finite dimensional subspace B-invariant subspace (see eq.(4.1))

Rn :=
∨ { 1

(1− zn,jz)s
: 1 6 j 6 N(n), 1 6 s 6 mult(zn,j)

}
,

where mult(zn,j) is the number of times zn,j appears in En, the n-th row of the
tableau. One can now form the ‘liminf space’

R(S) := lim Rn

associated with this tableau S. When X = H2, there is a condition that determines
when R(S) 6= H2 [25, 26]: If

γ(En) :=
N(n)∑
j=1

(1− |zn,j |),

then

(5.2) R(S) 6= H2 ⇔ lim
n→∞

γ(En) < ∞.
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There are analogous results for other spaces [13] where the quantity γ(En) is re-
placed by another ‘capacity’ suitable for the particular Banach space X. Recall
also the results of [23, 25] that say, when our Banach space is either H2 or the
Dirichlet space D, that every B-invariant subspace can be written as an R(S) for
some tableau S.

We say a tableau S is ample if R(S) = X, deficient if R(S) 6= X, and uniformly
deficient if

lim
n→∞

dist
( 1
z − λ

,Rn

)
> 0

for some λ ∈ De. These uniformly deficient tableaux will be the focus of our
attention. Before stating our overconvergence theorem, we make a few remarks.

Remark 5.3. (1) Assuming (X, X ′) is an `2 dual pair, recall from eq.(2.13) that
for g ∈ X ′, λ ∈ D, and n = 0, 1, 2, · · · ,( n!zn

(1− λz)n+1
, g

)
= g(n)(λ).

Thus g belongs to R⊥n if and only if g vanishes on En (up to appropriate
orders).

(2) With our `2 dual pairing, we equate a functional L with an analytic function
g. With this set up, the L-prolongation f̃L of a non-cyclic vector f looks
like

(5.4) f̃L(w) =
( f

z − w
, g

) /
− 1

w
g(

1
w

).

(3) If

dn(λ) := dist
( 1
1− λz

,Rn

)
(note from eq.(2.13) that dn(λ) = 0 if and only if λ ∈ En) and

d(λ) := lim
n→∞

dn(λ),

then S is uniformly deficient if and only if d(λ) > 0 for some λ ∈ D. It is
well-known, and easily shown, that the distance d(x,A) from a point x in a
metric space to some fixed set A satisfies |d(x, A)− d(y, A)| 6 d(x, y). So,
for z, w ∈ D,

|dn(w)− dn(z)| 6 |w − z|
and so

(5.5) d(λ) > 0 ⇒ d(w) > 0 for all w ∈ Uλ,

where Uλ is some open neighborhood containing λ. Therefore, the set

Q := {λ ∈ D : d(λ) > 0}

is an open subset of D which is non-empty whenever the tableau S is uni-
formly deficient.

(4) The liminf subspaces arising from uniformly deficient tableaux need not
satisfy the spectral synthesis property. For instance, if φ is a singular inner
function, then the B-invariant subspace (φH2)⊥ does not satisfy the spec-
tral synthesis property. Indeed φ(λ) 6= 0 for any λ ∈ D and so by eq.(2.13),
(φH2)⊥ contains no eigenvectors of B. However, it arises as a liminf space
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from a uniformly deficient tableau. One can see by using Frostman’s the-
orem [12, p. 85] to obtain a sequence (Bn)n>1 of finite Blaschke products
with Bn → φ weakly in H2 (equivalently Bn → φ pointwise in D). From
here, it is routine to prove that

lim
k→∞

(Bnk
H2)⊥ = (φH2)⊥

for any subsequence (Bnk
)k>1. Since, for fixed λ ∈ D
1

1− λz
6∈ (φH2)⊥,

then
dist

( 1
1− λz

, (Bnk
H2)⊥

)
> t > 0

for some subsequence. Thus the tableau

Ek = B−1
nk

({0}), k = 1, 2, · · ·
is uniformly deficient.

Our overconvergence will take place on the set W−1 = {1/w : w ∈ W} (see
Theorem 5.9), where

W = D \
∞⋂

n=1

Sn,

Sn :=
( ∞⋃

k=n

Ek

)−
.

However, unlike Theorem 4.8, where the overconvergence took place on the set
De \ (an)n>1 and the removed sequence does not have any cluster points in De,
the overconvergence will take place on a much smaller set. In fact, without the
hypothesis of uniformly deficient, the overconvergence need not take place at all.
For example, let (λn)n>1 ⊂ D be a Blaschke sequence, that is

∞∑
n=1

(1− |λn|) < ∞,

and (an)n>1 be a countable dense subset of D. Letting

(5.6) E2n+1 := {λ1, · · · , λn}, E2n := {a1, · · · , an},
we see that

γ(E2n+1) =
n∑

j=1

(1− |λj |)

is uniformly bounded and so by eq.(5.2), R(S) 6= H2. Note that R(S) 6= {0} since
(1 − λjz)−1 ∈ R(S) for all j. Indeed choose a subsequence of (an)n>1 converging
to λj and use that fact that the sets E2n+1 and E2n are increasing.

Before proceeding, we also mention that overconvergence in the liminf setting
will not come as smoothly as it did in the spectral synthesis case (Theorem 4.8).
In that case, f was the norm limit of the rational functions fn and for any chosen
L ∈M⊥ \{0}, one saw that f̃L was the pointwise limit of the functions f̃nL. What
made that work was the fact that fn ∈ M and so whenever L ∈ M⊥ \ {0}, then
L ∈ [fn]⊥, making f̃nL a bone fide L-prolongation of fn. When R(S) = lim Rn
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and f is the norm limit of fn ∈ Rn, then fn may not belong to R(S) and so
L ∈ R(S)⊥ \ {0} may not annihilate [fn], making the expression

L
( fn

z − λ

) /
L

( 1
z − λ

)
a meromorphic function on De but not an L-prolongation of fn. The rub here is to
judiciously choose Ln ∈ [fn]⊥ \ {0} converging weak-* to L ∈ R⊥ \ {0}.

Using the definitions of the sets Q, W , and the function d(λ), one can show that

Q ⊂ W.

Indeed, if d(λ) > 0, then |dk(λ)| > t > 0 for all k > n. This certainly means that

λ 6∈
⋃
k>n

Ek.

If λkj
∈ Ekj

converges to λ, then
1

1− λkj z
→ 1

1− λz

in X norm (since by eq.(2.6), M(1−az)−1 = (I − aMz)−1 is an operator-valued
analytic function on D). But this says that d(λ) = limj→∞ dkj (λ) = 0 which is a
contradiction. Thus λ 6∈ Sn for some n and so λ ∈ W .

Lemma 5.7. If Q is non-empty, i.e., S is uniformly deficient, and W is connected,
then Q = W .

Proof. Suppose b ∈ Q, that is d(b) > 0. We need to show that

d(c) = lim
n→∞

dn(c) > 0

for each c ∈ W . By the Hahn-Banach theorem, there is, for each (large) n, some
gn ∈ R⊥n (equivalently, by eq.(2.13), gn vanishing on En up to appropriate orders),
‖gn‖ = 1, and gn(b) = dn(b). The hypothesis of the theorem say that for large
enough n, |gn(b)| > t′ > 0.

Assume the conclusion of the theorem is false, in that there is a subsequence
n1, n2, n3, · · · so that

dnk
(c) → 0.

Join the points b and c with a smooth arc in W (note that W is connected) and let
V be an open neighborhood containing that arc and with V − ⊂ W . Let V ′ be an
open set with V − ⊂ V ′ ⊂ V ′− ⊂ W . Since ‖gnk

‖ = 1, gnk
is uniformly bounded

on compact subsets of D (Since (X, X ′) is an `2 dual pair, then X ′ also satisfies
eq.(2.1) through eq.(2.7) [1, Prop. 5.2]) and so there is a subsequence (still denoted
by gnk

) converging uniformly on compact subsets of V ′ to an analytic function g
on V . Since |gnk

(b)| > t′ > 0, g is not identically zero on V ′.
Observe that the number of zeros of gnk

in V is uniformly bounded for all k.
Indeed, since g is not identically zero, there is a Jordan curve C ⊂ V ′ surrounding
V on which g is non-vanishing. So, for large k, gnk

is also non-vanishing on C and
its change in argument as one goes around C is equal to that of g. Thus for all
large k, gnk

has the same number of zeros, say r, in V .
Let Bnk

denote the Blaschke product formed from these r zeros of gnk
in V and

let
Gnk

=
gnk

Bnk

.
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One can check that Gnk
∈ X ′ and is uniformly bounded in norm. To see this, note

again that X ′ satisfies eq.(2.1) through eq.(2.7) and so, in particular, the spectrum
of B on X ′ is D−. Thus from eq.(2.15),

f

z − λ
= (I − λB)−1Bf

whenever f ∈ X ′ with f(λ) = 0. Since ‖(I − λB)−1B‖ is continuous on D, one can
argue, using the fact that for each k, Bnk

has only r zeros on V , that gnk
/Bnk

is
uniformly bounded in norm.

So, by eq.(2.9), Gnk
is uniformly bounded in V ′ and thus has a subsequence (also

denoted by Gnk
) converging uniformly on V to G which, since |Gnk

(b)| is bounded
away from zero, is not identically zero. By Hurwitz’s theorem, G vanishes nowhere
in V since all the Gnk

are zero free. Hence G(c) 6= 0.
Since Gnk

vanishes on Enk
(up to appropriate orders), Gnk

belongs to R⊥nk
. For

any f ∈ Rnk
,

|Gnk
(c)| =

∣∣( 1
1− cz

+ f,Gnk

)∣∣ 6
∥∥ 1

1− cz
+ f

∥∥
X
‖Gnk

‖X′ .

Now use that fact that Gnk
is norm-bounded and the definition of dnk

(c) to conclude

|Gnk
(c)| 6 Cdnk

(c) → 0 as nk →∞.

Thus G(c) = 0 which is a contradiction. �

Remark 5.8. If W is disconnected, the above argument can be adjusted to show
that if Q meets any component of W , it contains that whole component.

Our overconvergence theorem is the following.

Theorem 5.9. Let X be a Banach space satisfying the conditions eq.(2.1) through
eq.(2.7) and such that (X, X ′) is an `2 dual pair. For a uniformly deficient tableau
S such that W is connected, and f ∈ R(S) with

f = lim
n→∞

fn, fn ∈ Rn,

there is an analytic function Sf on W−1 := {1/w : w ∈ W} such that fn → Sf

uniformly on compact subsets of W−1.

Proof. Let b ∈ W (which equals the set Q) and note that d(b) > 0. By eq.(5.5),
dn(λ) > t′ > 0 on an open neighborhood Ub of b with Ub ⊂ W for all large enough
n.

By the Hahn-Banach theorem, there is, for each (large) n, some gn ∈ R⊥n (equiv-
alently gn vanishing on En up to appropriate orders), ‖gn‖ = 1, and gn(b) = dn(b).
In fact,

lim
n→∞

|gn(λ)| > t′

for all λ ∈ Ub. Proceed as in the proof of Theorem 4.8 (using the `2 dual pairing
and equating L with g, see eq.(5.4)) to see that for all λ ∈ Ub,

|fn(
1
λ

)| 6
‖gn‖‖M(1−λz)−1‖‖fn‖

|gn(λ)|
6 Cb‖fn‖.

The result now follows. �
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If
f = lim

n→∞
fn, fn ∈ Rn,

then fn → Sf uniformly on compact subsets of W−1 when W−1 is a connected
subset of De.

Corollary 5.10. Let X satisfy the conditions of Theorem 5.9. For f ∈ R(S),
Sf = f̃L for some L ∈ R(S)⊥ \ {0}.

Proof. Since W−1 is connected, it suffices to show that Sf = f̃L for some L ∈
R(S)⊥ \ {0} on some open set U ⊂ W−1. For b ∈ W , let (gn)n>1 ⊂ X ′ be as in the
proof of Lemma 5.7. By Remark 4.10,

fn = (̃fn)Ln
.

Here we equate gn with Ln. Since gn is norm-bounded, gnk
→ g weak-∗ for some

subsequence and in fact, g ∈ R(S)⊥. Indeed for any

h = lim
n→∞

hn, hn ∈ Rn,

|(h, g)| = lim
nk→∞

|(h− hnk
, gnk

)| 6 lim
nk→∞

‖h− hnk
‖X‖gnk

‖X′ = 0.

Furthermore, also by weak-∗ convergence, gnk
→ g pointwise on D (see eq.(2.13))

and since |gnk
(b)| is bounded away from zero, g 6≡ 0. Using eq.(5.4), it is easy to

show that
(̃fnk

)Lnk
→ f̃L

pointwise on U−1
b . Again, we are equating L with g. By Theorem 5.9,

(̃fnk
)Lnk

= fnk
→ Sf

pointwise on U−1
b and so f̃L = Sf on U−1

b . �

Remark 5.11. (1) When W is disconnected, one can make the obvious changes
to the above results to show that given a connected component W ′ of W ,
there is an L ∈ R(S)⊥ \ {0} so that fn → f̃L uniformly on compact subsets
of W ′−1.

(2) For general deficient (but not necessarily uniformly deficient) tableaux,
there is a weaker result [19, Thm. 8.7.6]: If f = limn fn, fn ∈ Rn, and
w ∈ W (note that W might be the empty set), then there is an open
neighborhood Uw of w, an L ∈ R(S)⊥ \ {0}, and a subsequence (fnk

)k>1

converging uniformly compact subsets of U−1
w to f̃L.

(3) A theorem of Beurling (see [6]) says that if F is a family of analytic functions
on a domain H and there exists a function ρ(z) on H such that |f(z)| 6 ρ(z)
for all f ∈ F , where for some r > 1,∫

H

[
log+ log+ ρ(z)

]r
dA(z) < ∞,

then F is a normal family on H. One can show that (under certain technical
conditions) if

U = Ĉ \
∞⋂

n=1

Sn,
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and fn → f in norm (as in either Theorem 4.8 or Theorem 5.9), then fn

converges uniformly on compact subsets of U . This means that if
⋂

n Sn

does not meet T, then functions from M (in Theorem 4.8) or R (in The-
orem 5.9) have analytic continuations across parts of the circle. What are
these ‘certain technical conditions’? We just need to check, for all rational
f ∈M (or R), that

|f(z)| 6 ρ(z), |z| < 1

|f̃L(z)| 6 ρ(z), |z| > 1
for a ρ defined as above on some open neighborhood of a point of the circle.
For the standard spaces, Lp

a(w) (with reasonable weights), Dp, Dα, `p
A(w)

(with reasonable weights), one can often take ρ to be something like

ρ(z) =
1

|1− |z||s
.

Such ρ easily satisfy the hypothesis of Beurling’s theorem. See [21] where
this was done for M as in Theorem 4.8.

6. A final Comment

The example of Esterle in Remark 3.12 of an f ∈ `2A(w)\{0} with f̃L ≡ 0 for some
L ∈ [f ]⊥ \ {0} inspires several intriguing questions. Assuming that (X, X ′) is an `2

dual pair, we know from eq.(3.8) and eq.(3.9) that f̃L ≡ 0 for some L ∈ [f ]⊥ \ {0}
if and only if Of , the orbit of f , satisfies

Of :=
∨
{Snf,Bmf : m,n > 0} 6= X,

where S = Mz. For a set E ⊂ X, let

[E]B :=
∨
{Bnh : n > 0, h ∈ E}

[E]S :=
∨
{Snh : n > 0, h ∈ E}.

It is easy to show that for any non-trivial f ∈ X,

[[f ]B ]S = X.

Indeed, [f ]B contains a g with g(0) 6= 0 (look at Bnf for a suitable choice of n).
Then SBg = g − g(0) ∈ [[f ]B ]S and so 1 ∈ [[f ]B ]S . Thus Sn1 = zn ∈ [[f ]B ]S for
all n. What is more interesting is that

[[f ]S ]B = Of .

To see this, first notice that the containment ⊃ is obvious (since clearly Bnf and
Snf belong to [[f ]S ]B). For the other direction, let g ∈ [[f ]S ]B and ε > 0 be given.
Then there is an h ∈ [f ]S and a polynomial p such that ‖p(B)h−g‖ < ε. Moreover,
there is another polynomial q such that h = q(S)f + k, where ‖p(B)k‖ < ε. Hence

‖p(B)(q(S)f + k)− g‖ < ε,

which implies that
‖p(B)q(S)f − g‖ < ε.

But p(B)q(S)f ∈ Of , since every monomial BmSn reduces to either Bm−n or to
Sn−m (because BS = I).
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So, f̃L ≡ 0 for some L ∈ [f ]⊥B if and only if

[f ]B ⊂ [[f ]S ]B 6= X.

Of course, for many spaces this never happens. But when it does, the question is
the following: If f̃L ≡ 0 for some L ∈ [f ]⊥B \ {0}, does f̃L ≡ 0 for all L ∈ [f ]⊥B \ {0}?

If the answer to the above question is yes, then [f ]⊥B ⊂ O⊥f and so

[f ]B = [[f ]S ]B .

Conversely, if [f ]B = [[f ]S ]B , then [f ]S ⊂ [f ]B and so
f

z − λ
∈ [f ]B , for all |λ| > 1.

Hence f̃L ≡ 0 for all L ∈ [f ]⊥B \ {0}.
It seems rather odd at this point that either a ‘yes’ or ‘no’ answer to our question

gives us interesting information. If, in fact, there is an f ∈ X with f̃L ≡ 0 for all
L ∈ [f ]⊥B \ {0}, then this f has the very peculiar property (which certainly does
not hold with our ‘usual’ Hardy, Bergman, Dirichlet spaces) that Of = [f ]B , or in
other words, the vectors Snf , n > 0, do not add anything new to the closed linear
span of the vectors Bnf , n > 0. Furthermore, by [1, Prop. 2.6], σ(B|[f ]) ⊂ T. In
fact, using eq.(2.18) and Theorem 3.1, σ(B|[f ]) = T. If, on the other hand, f̃L1 ≡ 0
but f̃L2 6≡ 0, for different L1, L2, then, again by [1, Prop. 2.6], σ(B|[f ]) = D−. But
from here, it follows [17, Thm. 4.5], that the S-invariant subspace [f ]⊥B has index
greater than one. This would be an example of a Hilbert space of analytic functions
which is only ‘slightly’ bigger than H2 (remember that one can choose the weights
in Esterle’s example to increase to infinity as slowly as desired) for which there is
an S-invariant subspace with index two. For spaces which are ‘much bigger’ than
H2, for example the Bergman space, this is fact is well known.
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