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ANALYSIS ON LEMNISCATES AND HAMBURGER’S MOMENTS

KUZNETSOVA O.S. AND TKACHEV V.G.

Abstract. We study the metric and analytic properties of generalized lemniscates
Et(f) = {z ∈ C : ln |f(z)| = t} where f is an analytic function. Our method involves
the integral averages W (t) =

∫
Et(f)

|w(z)|2|dz|, w(z) is a meromorphic function. The
present basic result states that the length of the generalized lemniscates as the function
of t is just bilateral Laplace transform of a certain positive measure. It follows that
W (t) is a positive kernel, i.e. the Hankel matrix ‖W (i+j)(x)‖∞i,j=0 is positively definite
and the sequence W (k)(t), k = 0, 1, . . . forms a Hamburger moments sequence. As a
consequence, we establish convexity of ln |Et(f)| outside of the set of critical values
of ln |f |. In particular, in the polynomial case this implies various extensions of some
results due to Eremenko, Hayman and Pommerenke concerning one Erdös conjecture.
As another application, we develop a method which gives explicit formulae for certain
length functions. Some other applications to analysis on lemniscates are also discussed.
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1. Introduction

We consider a generalized lemniscates

ln |f(z)| = t

where f(z) is an arbitrary analytic function provided that the level sets contain compact

components (it is the case when ker f 6= ∅). As the main result of the present paper we
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regard a discovery of a surprising connection between the problem of level sets length

evaluating and the classical Stieltjes moments theory (actually, the Hamburger moments

in our context). In fact, we also consider the general case of Riemannian surfaces foliating

by harmonic level sets.

We show that the average of any meromorphic function over the generalized lemniscates

as the function of t is just bilateral Laplace transform of a certain positive measure. To

establish this fact we develop a special technique of differentiating over the harmonic level

sets and embed the initial problem to an appropriate formalism of M -systems on vector

bundles.

Our starting point is the polynomial lemniscates.

1.1. Erdös conjecture. Let P (z) = zn +a1z
n−1 + . . .+an, n ≥ 2 be an arbitrary monic

polynomial. In [EHP] Erdös, Herzog and Piranian have considered series of problems

concentrated around the metric properties of t-lemniscates

Et(P ) = {z ∈ C : |P (z)| = et}
(see Figure 1). One of them is

Erdös Conjecture [EHP, Problem 12],[Erd] For fixed degree n of P , is the length

of the lemniscate |P (z)| = 1 greatest in the case where P (z) = zn − 1? Is the length at

least 2π, if E0(P ) is connected?

Concerning the first part of Erdös conjecture, which is still unsolved in present, Thomas

Erdelyi cites that ”this problem seems almost impossible to settle” [Erl]. We can add

that even a more particular problem of evaluating |Et(P )| seems to us to be very hard.

It is worth to say that there is principal difference between two following problems:

evaluating of length of a fixed lemniscate (the well-known example is the Bernoulli lem-

niscate) and the problem of studying the length as a function of t.

The first problem essentially answers for rather algebraic than analytic aspects and is

closely related to the algebraic geometry and number theory. We also have to mention

that it very related to the periods theory [KZ].

On the other hand, the second problem can only be viewed at first sight as a problem

from the special functions area. Nevertheless, we think that this problem (to be almost

undeveloped at present) should also lead to important intermediate results. Here we are

making an attempt to demonstrate this point by showing that the length function problem

is in tight connection with such areas as Hamburger’s moments, (log)convex functions,

hypergeometric functions and potential theory.

One of the sources for this problem in the proper sense is due to one paper by Piranian

[Pr]. At the same time, the main obstacle for the exploration is almost missing of any

explicit formulae for |Et(P )| (excluding the trivial polynomials P (z) = (z − a)n). The

only completely studied ones are the rose-type polynomials Qn ≡ zn − 1 [Bu] (see also

[El]). It is interesting to note that their role in the metric polynomial theory is similar

to that one of the Köbe function in the theory of univalent functions.

The second part of Erdös conjecture is related to the lower estimate of the length

|E0(P )| for so-called K-polynomials, i.e. polynomials with connected lemniscate E0(P ).

This problem was solved in affirmative by Pommerenke in [Pm1] by establishing that

min
P∈Kn

|E0(P )| = |E0((z − a)n)| = 2π. (1)
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Figure 1. Typical lemniscates for D-polynomials: P (z) = z3− 3
42/3 z+ i

√
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and Q3(z) = z3 − 1

To state our main results we remind some recent results and related standard termi-

nology. We say that T ∈ R is the critical value (of ln |P |) if there is a root ζ ∈ ker P ′

of the first derivative such that |P (ζ)| = eT ; the corresponding lemniscate ET (P ) is then

called to be singular. On the other hand, it is a simple consequence of Morse theory that

Et(P ) is a finite collection of smooth closed curves provided that t is a regular value. We

also refer to (α; β) as a regular interval if it contains no critical values of ln |P |.
1.2. Basic definitions. By |Et(P )| ≡ H1(Et(P )) we denote the Hausdorff one-dimensional

measure of Et(P ) which is a continuous function of all t ∈ R (see also section 4). Some-

times, instead of Et(P ) we use the special notation for the non-reduced level set

Eτ (P ) = {z : |P (z)| = τ},
whence Eτ (P ) = Et(P ), t = ln τ. Given a domain D we write Et,D(P ) = Et(P ) ∩D.
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Figure 2. The length functions |Eτ (ϕ)| for ϕ = Q3 = z3 − 1 and ϕ = sin z

The actual breakthrough in the Erdös conjecture has been done by Alexander Eremenko

and Walter Hayman in recent paper [EH]. They proved that an extremal polynomial

P ∗(z) does exist for an arbitrary degree n and also the following linear estimate

cn ≡ max
deg P=n

|E0(P )| ≤ An,
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with A = 9, 173 . . . holds. One can easily show that the conjectural value is |E0(Qn)| =

2n + O(1). Other upper estimates were due to Pommerenke [Pm2]: cn ≤ 74n2 and

P. Borwein [Br]: cn ≤ 8πen.

We call P (z) a D-polynomial if the equality |P (ζk)| = 1 holds for all critical points

P ′(ζk) = 0, i.e. ker P ′ ⊂ E0(P ). One can easily prove that monic D-polynomials are

contained in algebraic surface of constant discriminant

|Dis P | = nn.

By using quasiconformal mappings methods in [EH] the following important property of

the extremal polynomials has been established: the lemniscate E0(P
∗) is always connected

(in other words, P ∗ is always a K-polynomial); moreover, there exists an extremal D-

polynomial for any degree n. Then the fact that Q2(z − a), a ∈ C, are just only D-

polynomials for n = 2 implies the affirmative answer in Erdös conjecture for this degree.

In this paper we refine the last property by showing that the lemniscate E0(P
∗) of

every extremal polynomial P ∗ is always singular (see Corollary 1.3).

As it was mentioned above, we propose here an alternative approach to study the

metrical properties of lemniscates. Roughly speaking, instead of variation of polynomials

with fixed level set, we consider the variations of the level heights for a fixed polynomial.

As we see below, in a sense both view points are dual to each other.

The another key idea we exploited is that the lemniscates of polynomials are level sets

of harmonic functions. This fact is well known and frequently used, but nobody seems

to have studied the arc-length behavior by using the fact. In this connection we have

to mention the Green function method which is described in Marden’s monograph [Mr].

On the other hand the notions of lemniscate and ribbon domains we are using below

are borrowed from theory of zero-mean curvature surfaces [Mk1], [MkT1], [MkT2] (their

authors use a terminology of relativistic bands instead of a ribbon).

The way how we are using the arc-length function can be explained as follows. Let us

introduce the indicator of a polynomial P (z), deg P = n, by

ΦP (t) = ln |Et(P )| − t

n
.

Then the geometrical sense of ΦP (t) as the reduced length of a level set is very clear.

Really, the homothetic polynomial

Pt(z) ≡ e−tP (ze
t
n ) = zn + a1e

− t
n zn−1 + . . . + an−1e

− t(n−1)
n z + ane

−t (2)

is also monic with coefficients continuously depending on t ∈ (−∞; +∞], P0(z) ≡ P (z)

and, what is more

Ex(Pt) = {z ∈ C : |Pt(z)| = ex} = {z ∈ C : |P (ze
t
n )| = et+x} = e−

t
n Et+x(P ). (3)

Hence, we have the following equivariant with respect to action of (2) identity

ΦPt(x) = ln |Ex(Pt)| − x

n
= ln(e−

t
n |Et+x(P )|)− x

n
= ΦP (x + t). (4)

Thus, we can regard the reduced arc-length function, or indicator, as a slice of variation

of the lemniscates lengths through a specific direction. In particular,

Proposition 1.1. Let if P ∗(z) be an extremal polynomial of degree n then t = 0 is a

global maximum point of ΦP ∗(t).
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Proof. Clearly, it follows from (4) that

ΦP ∗(t) = ΦP ∗t (0) = |E0(P
∗
t )| ≤ |E0(P

∗)| = ΦP ∗(0).

¤

Unfortunately, it implicitly follows from Theorem 1.2 below that the extreme points of

both the length function and the indicator function are never smooth because these func-

tions turn out to have cusp points at the corresponding critical values Tk (see Figure 2).

That is why the direct classical variational methods do not work properly near of Tk.

1.3. Main results. An important feature of our approach is the fact that the most

of results we establish for the level sets of arbitrary holomorphic functions. The only

requirement we need in that case is compactness of the corresponding level sets (or at

least their components).

Let f(z) be an arbitrary analytic function with ker f 6= ∅ (e.g. f is a monic polyno-

mial or sin z). To avoid extra explanations we assume here (nevertheless, see the exact

definitions in the text below) that f(z) is an entire analytic function. We refer to f as

to a foliating function and by Ef (t) we denote the lemniscate set ln |f(z)| = t provided

that it contains compact components. Let w0(z) be a meromorphic function such that

all its poles are contained in the singular t-lemniscates only.

We consider the following first-order differential operator

Gf [w0] ≡ w1 = 2g(z)w′(z) + g′(z)w(z), wk = Gk
f [w0],

where g(z) = f(z)/f ′(z) and wk(z) are the iterations of w0 under Gf . Let

s0(t) =

∫

Et(f)

|w0(z)|2 |dz|.

Then we show (Theorem 4.3) that the Hankel matrix



s0(t) s′0(t) s′0(t) . . .
s′0(t) s′′0(t) s′′′0 (t) . . .

s′′0(t) s′′′0 (t) s
(4)
0 (t) . . .

...
...

...
. . .




of kth derivatives of the initial term s0(t) has the form of the Gram matrix in a suitable

Hilbert space:

sk(t) = s
(k)
0 (t) =

∫

Et(f)

Re wk−jwj |dz|, 0 ≤ j ≤ k, (5)

which implies that the sequence

sk(t) ≡
∫

Et(f)

|wk(z)|2 |dz|

forms a Stieltjes moments consequence for all regular t (this corresponds to Hamburger

problem in classical analysis). This observation, in turns, leads us to the Bernstein-

Widder bilateral representation
5



Theorem 1.1. Let f and w0 be as above. Then the following representation holds

∫

Et(f)

|w0(z)|2 |dz| =
+∞∫

−∞

ext dσf,w0(x), (6)

where σf,w0 is a non-negative measure on (−∞; +∞) and t ranges in an arbitrary regular

interval.

We use this fact implicitly in our evaluating method of the length functions for various

functions f in Section 5.

We notice that another equivalent to (6) property is that function s0(t) is an exponen-

tially convex (e.c.) function, i.e. the associated with s0(t) stationary kernel s0(x + y) is

positive. The last property in turn means that the Hankel matrix (see (14))
[
s0

(
ti + tj

2

)]m

i,j=1

is positively defined for all m ≥ 1 and any ti in the regular interval (α; β).

This class of e.c. functions s0(t) was firstly studied by Bernstein [Ber] and Widder [Wd]

in connection with the so-called completely (or absolutely) monotonic analytic functions.

We should mention a deep penetration of the both classes of functions into complex

analysis, inequalities analysis, special functions, probability theory, radial-function in-

terpolation, harmonic analysis on semigroups (Schoenberg theory [BCR]), combinatoric

analysis and economics (see recent survey [AB] for further discussion and references).

Another useful consequence of representation (6) is the theorem due to Bernstein [Ber],

saying that function s0(t) admits an analytic continuation in the complex plane C except

of finite number of lines orthogonal critical values Tk.

In the most interesting for us particular case when the foliating function f(z) is just a

monic polynomial P (z) and w0(z) ≡ 1.

Corollary 1.1. In every regular interval I = (α; β) the following representation holds

length(Et(P )) ≡ |Et(P )| =
+∞∫

−∞

ext dσP (x),

with a positive measure σP . In particular, the length function |Et(P )| is exponentially

convex.

We are indebted to Serguei Shimorin for suggesting the another method of proving

of Corollary 1.1 (see Theorem 6.1). One of the benefit of this kind of representation is

that it shows the explicit form of measure σP . It turns out that σP is supported at a

enumerate set.

Another consequence of preceding results is that ln |Et(P )| (as well as the indicator

function ΦP (t)) is convex on every regular interval (α; β). More precisely,

Theorem 1.2. The function ΦP (t) is continuous for all t ∈ R. Moreover, if the polyno-

mial P (z) is non-trivial (i.e. is different from (z − a)n) then

A) ΦP (t) is strongly convex on each regular interval I;
6



B) the following asymptotic holds

lim
t→+∞

ΦP (t) = ln 2π. (7)

The proof of this assertion is given in Section 4 and essentially based on the gen-

eral result (Theorem 3.1 below) concerning the differentiating of smooth functions over

harmonic level sets on arbitrary Riemannian manifold.

An immediate consequence of Theorem 1.2 is the mentioned above lower estimate (1)

due to Pommerenke.

Corollary 1.2. Let P be a monic K-polynomial, i.e. its lemniscate E0(P ) is connected.

Then

|E0(P )| ≥ 2π,

with equality only in the case P (z) = (z − a)n.

Proof. Really, in the case P (z) = (z − a)n one can readily check that |E0(P )| = 2π. So,

we can assume that P (z) is different from (z − a)n. Then by according to the definition

of K-polynomial its critical values are non-positive: tk ≤ 0, and by virtue of Theorem 1.2

it follows that ΦP (t) is strongly convex on the semi-axe [0; +∞). Moreover, by (7)

the function ΦP (t) is bounded on [0; +∞) and as a consequence of convexity ΦP (t) is

actually strongly decreasing. Because of ΦP (0) = ln |E0(P )| we have ΦP (0) > ln 2π, or

|E0(P )| > 2π which completes the proof. ¤
By the mentioned above Eremenko-Hayman theorem, we know that for all integer

n ≥ 2 extremal polynomials P ∗, deg P = n, do exist.

Corollary 1.3. If P ∗(z) is an extremal polynomial of nth degree then the lemniscate

E0(P
∗) is singular, i.e. it contains at least one critical point:

ker P ∗′ ∩ E0(P
∗) 6= ∅.

Proof. By Proposition 1.1, t = 0 is an absolute maximum of the indicator function ΦP ∗(t)

and it follows that it can not be a regular value of ln |P (z)| because of strong convexity

of ΦP ∗(t) in a neighborhood of the regular values. ¤
Some problems being initially posed by Piranian in [Pr] and dealing with the mono-

tonicity and convexity of the length function |Eτ (Qn)| in the rose-case Qn(z) = zn−1 have

been studied in papers [Bu], [El]. In section 5 we obtain formula for |Eτ (Qn)| (originally

due to Butler [Bu]) as an easy consequence of (5) by reducing to certain hypergeometric

differential equation. We point out that most of properties which have been established

for polynomials Qn(z) in [Bu] could be essentially extended for the general case by using

our results.

We also mention that property (6) allows us to interpret the indicator ΦP (t) as the

Bernstein function. The last notion plays an important role in mathematical finance and

study of the self-similar Markov processes (we refer for details to [BF], [BD]).

Now we return to the case of arbitrary analytic foliating function f . For instance, we

consider examples of the level sets: | tanh z| = et or | sin z| = et, which are compact in a

neighborhood of each zero (see Figure 3).

Then another benefit of formulae (5) is that they can be involved to a linear differential

equation on the corresponding length function H(t) provided the foliating function f

satisfies certain additional properties.
7
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Figure 3. Generalized lemniscates: | sin z| = et and | tanh z| = et

For example, using this observation we obtain an explicit form of the length function

for f = sin z

|Eτ,2π(sin z)| = 2π

{
τ 2F1

(
1
2
, 1

2
; 1; τ 4

)
, τ ∈ [0, 1];

τ−2
2F1

(
1
2
, 1

2
; 1; 1/τ 4

)
, τ ∈ [1, +∞)

(8)

(see Section 5). Here Eτ,2π(sin z) denotes the level set | sin z| = τ modulo 2π (we emphasize

that for τ > 1 the entire level set is already non-compact). The second string of the glue-

function in (8) follows from our results on the ribbon domains. Really, in the ribbon case

we allow the level sets to have non-empty boundary by compensation of the corresponding

Neumann condition. It turns out that for the periodic functions the same formulae as for

the pure lemniscate case hold.

We show in Section 5 that the previous results are valid for a whole family of generalized

lemniscates. Moreover, three previous functions: Qn, sin z and tanh z are D-functions in

our terminology, i.e. they are solutions of the following equation

ϕ′ = (1− ϕν)
k+1

ν . (9)

It is worth to say here that the previous solutions are analogues of D-polynomials

because its critical values have the same magnitude: |ϕ(zk)| = 1, zk ∈ ker f .

The paper is organized as follows. Because the most results which we establish below

can be extended in rather general situation we only indicate our main method, postponing

the other details beyond of context of the present paper. In Section 2 we introduce

the auxiliary formalism of general λ-moments systems which are the key ingredient in

our arguments. This notion is a bridge between our technical assertions concerning the

harmonic level set analysis on Riemannian manifolds (which is discussed in Section 3)

and the generalized lemniscates. In Section 4 we prove the main results for generalized

lemniscates and polynomial ones as well. Therein we establish the exponential convexity

property of the arc length function. In Section 5 we demonstrate some applications and

obtain explicit formulae for the arc length function in special case (9).

Acknowledgements. The authors are grateful to Alexander Eremenko, Bjorn Gustafs-

son, Henrik Shahgholian, Harold Shapiro and Serguei Shimorin for valuable and fruitful
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2. Preliminaries: moments systems

2.1. M-systems. We introduce here an auxiliary abstract notion of M -system and its

modifications which make further analysis more clear and gives a deeper explanation of

how our method is working. The simplest case which is described below concerns trivial

bundles, but it can be considerably extended on the general vector bundles as well.

Let I ⊂ R be an open interval and (V, I, π) be a trivial smooth vector bundle over

I with total space V and projection map π. We shall denote the bundle by the same

letter V and assume that each fibre vector space π−1(t) is equipped with a smooth inner

(scalar) product 〈u; v〉V where u, v ∈ Sec(V) are smooth sections of V. It is clear that

〈u; v〉V is a smooth function of t.

Definition 2.1. Let G : V → V be a smooth linear morphism (here it means that

π(G(u)) = π(u)). We say that (V, G,D, I) is an M -system (actually, a moment system) if

the first derivative operator D = d
dt

agrees to G, i.e. for all pairs of sections u, v ∈ Sec(V)

2D〈u; v〉V = 〈Gu; v〉V + 〈u; Gv〉V (10)

and

D2 ‖u‖2
V = ‖Gu‖2

V. (11)

Remark 2.1. The first identity can be interpreted as the covariant gradient property.

Really, the operator ∇ defined as 2D on C∞(R) and as G on V does satisfy the formal

Leibnitz rule with respect to the inner product

∇〈u; v〉V = 〈∇u; v〉V + 〈u;∇v〉V.

As for the second identity (11), it is more specific but it will be shown in the proof of

Theorem 2.1 below that this property is equivalent to

〈u; G2u〉V = 〈Gu; Gu〉V, ∀u ∈ Sec(V)

provided (10) holds. Nevertheless, we use axiom (11) because it arises more naturally in

our consequent analysis.

We also use the following brief notations for the kth iteration of a section u:

uk = Gk(u) = G ◦ . . . ◦G︸ ︷︷ ︸
k

(u),

with an obvious agreement that u = u0. So, relations (10) and (11) can be rewritten as

the following ones

2D〈u0; v0〉V = 〈u0; v1〉V + 〈v0; u1〉V (12)

and, moreover,

D2‖u0‖2
V = ‖u1‖2

V. (13)
9



Further, we need the following well-known definitions (see [Ak, Definition 2.6.3]). Given

an interval I ⊂ R, a sequence (sk), k = 0, 1, . . . is said to be strictly I-positive if for any

polynomial P (z) = a0 + a1z + . . . + amzm which is positive on I we have

a0s0 + a1s1 + . . . + amsm > 0.

We omit the word ”strictly” if the inequality sign is only semi-defined.

In what follows, by Han[s0, s1, . . . , s2n] we denote a Hankel matrix of the form

Han[s0, s1, . . . , s2n] =




s0 s1 s2 . . .
s1 s2 s3 . . .
s2 s3 s4 . . .
...

...
...

. . .


 . (14)

Because the most interesting for the sequel is the case I = R we formulate here the

well-known corresponding characteristic property due to H. Hamburger.

Hamburger Theorem, [H]. A sequence (sk) is strictly R-positive if and only if the

following equivalent assertions hold:

(A) all the Hankel forms
∑m

i,j=0 si+jxixj are strictly positive;

(B) there exists decreasing function σ(ξ) on R with infinitely many growth points such

that the Stieltjes integrals produce sequence (sk):

+∞∫

−∞

ξk dσ(ξ) = sk, k = 0, 1, . . . (15)

Now we are ready to formulate the main result of this section.

Theorem 2.1. Let (V, G, D, I) be an M-system and w0 ∈ Sec(V) be an arbitrary smooth

section. Then

〈wj; wn−j〉V = 〈w0; wn〉V = Dn‖w0‖2
V, t ∈ I, 0 ≤ j ≤ n. (16)

Moreover, the sequence

sk,w0(t) = Dk‖w0‖2
V, k = 0, 1, . . .

is an R-positive sequence for all admissible t ∈ I. Moreover, it is strictly positive if and

only if the system w0, w1, . . . is not linear dependent.

Proof. First we notice that by (12) we have

D〈w0; w0〉V = 〈w0; w1〉V (17)

which coincides with (16) for n = 1. Moreover, from (17) and (12) we find

2D2〈w0; w0〉 = 2D〈w0; w1〉V = 〈w1; w1〉V + 〈w0; w2〉V, (18)

whence taking into account (13) we obtain

〈w1; w1〉V = 〈w0; w2〉V.

The last relation together with (18) shows that (16) is fulfilled for n = 2.

At the remaining part of the proof we apply induction by index n. Namely, we assume

that (16) holds for all sections w0 ∈ Sec(V) and all non-negative integers j such that

0 ≤ j ≤ n where n ≥ 2 is a step of induction.
10



Then applying the induction assumption to n− 1 we obtain for u0 = w1 ∈ Sec(V)

Dn−1 D2‖w0‖2
V = Dn−1‖w1‖2

V = Dn−1‖u0‖2
V = 〈u0; un−1〉V = 〈uj; un−j−1〉V,

for all 0 ≤ j ≤ n− 1. Thus, we have

Dn+1‖w0‖2
V = 〈w1; wn〉V = 〈w2; wn−1〉V = 〈wj+1; wn−j〉V

for the same range of j. This proves required induction conclusion for all 1 ≤ j ≤ n.

On the other hand, applying again the induction assumption to n we can write

〈w0; wn〉V = 〈w1; wn−1〉V
whence applying 2D to both sides of the last relation we arrive at

〈w1; wn〉V + 〈w0; wn+1〉V = 〈w2; wn−1〉V + 〈w1; wn〉V,

or 〈w0; wn+1〉V = 〈w2; wn−1〉V which yields the rest of cases j = 0 and j = n + 1. Hence,

the required property is proved.

To establish the positivity property we observe that the Hankel matrix Han[s0, s1, . . .] is

just the Gram matrix of sections wj, and hence, it has to be positively semi-definite. The

case when the Gram matrix is non-strictly positively definite corresponds to vanishing

of some diagonal determinant Han[s0, s1, . . . , s2k] for some index k that obviously yields

linear dependence of the system {wj}. ¤

Now we can apply the theorem due to S.Bernstein [Ber, §. 15] to conclude the following

important property of M -systems.

Corollary 2.1 (Bernstein-Widder representation). Let (V, G, D, I) be an M-system and

w0 be a smooth section in Sec(V). Then ‖w0‖2 is an exponentially convex function and

there exists (unique in essential) a positive measure σw0(x) on R such that the following

representation holds

‖w0‖2 =

+∞∫

−∞

ext dσw0(x), t ∈ I. (19)

2.2. λ-moments systems. Now we consider more general situation which corresponds

in sequel to so-called ribbon domains. Let {a, b} be anti-commutative braces

{a, b} = −{b, a}
which are defined for any pair of smooth sections of V.

Definition 2.2. Given λ ∈ R we call (V, G, D, I) a λ-moments system if

(i) it satisfies (12),

(ii) instead of (13) the modified identity holds

D2‖u0‖2
V = ‖u1‖2

V + λ{u0; u1}, (20)

(iii) the braces satisfy

2D{u0; v0} = {Gu; v}+ {u; Gv} ≡ {u0; v1}+ {u1; v0}.
One obviously sees that in the case λ = 0 we have an M -system.

11



Lemma 2.1. Given u0, v0 ∈ Sec(V) the following identities hold

〈u2; v0〉V − 2〈u1; v1〉V + 〈u0; v2〉V = 2λ

(
{u0, v1}+ {v0, u1}

)
. (21)

In particular,

〈un+2; un〉V − ‖un+1‖2
V = 2λ{un, un+1}, ∀n ≥ 0. (22)

Proof. By (20) we have

D2‖u0 + v0‖2
V = ‖u1 + v1‖2

V + λ{u0 + v0, u1 + v1} = ‖u1‖2
V + 2〈u1; v1〉V+

+ ‖v1‖2
V + λ{u0, u1}+ λ{u0, v1}+ λ{v0, u1}+ λ{v0, v1}.

(23)

On the other hand, we can simplify the left side of the last identity by using linearity

of D

D2‖u0 + v0‖2
V = D2‖u0‖2

V + 2D2〈u0; v0〉V + D2‖v0‖2
V =

= ‖u1‖2
V + λ{u0, u1}+ 2D2〈u0; v0〉V + ‖v1‖2

V + λ{v0, v1},
and, what is more, by (12)

2D2〈u0; v0〉V = D
(〈u0; v1〉V + 〈u1; v0〉V

)
=

1

2

(
〈u2; v0〉V + 2〈u1; v1〉V + 〈u0; v2〉V

)
.

After comparing the expressions obtained with (23) we arrive at (21). ¤

It follows form (22) that unlike the case of M -systems, for λ 6= 0 does not in general hold

coincidence of scalar products in (16) but it is still true some analogue of Theorem 2.1.

Lemma 2.2 (Leibnitz Rule). Given an arbitrary integer n ≥ 1 the following identity

holds

2nDn〈u0; v0〉 =
n∑

k=0

Ck
n〈uk; vn−k〉.

In particular,

2nDn‖u0‖2
V =

n∑

k=0

Ck
n〈uk; un−k〉.

Proof. For n = 1 the desired identity follows from (12) and by induction similar classical

Newton binomial theorem, for other n ≥ 2 (though in our context this lemma rather

relates to the Leibnitz rule). ¤

3. Averages over harmonic level sets

3.1. Lemniscate domains. Below we establish the basic technical results. We arrange

the arguments in the general case of arbitrary Riemannian manifolds. Methods developed

here allow us to consider the whole spectrum of problems concerning the analysis along

harmonic level sets. For one of such applications, namely theory of tubes and relativistic

bands with zero-mean curvature, we refer to [Mk1], [MkT2]. Some other generalizations

can be found in [Tk].

Let M be a p-dimensional Riemannian manifold equipped by the inner scalar product

〈X; Y 〉 and covariant derivative ∇; by div X we denote the divergence operator generated

by ∇. A function u(x) : M → R is called harmonic if ∆u ≡ div∇u(x) = 0 and we denote

by Et(u) the level set {x ∈ M : u(x) = t}.
12



Definition 3.1. A triple (D, u, I) where D ⊂ M is an open subset with compact closure,

u(x) is C2-smooth function and I = (α; β) is said to be an lemniscate domain if for all

t from (α; β) the set Et(u) ∩ D is compact in D. The function u used to be called an

foliating function of the lemniscate domain (cf. with [Mk1]).

Theorem 3.1. Let (D, u, I) be a lemniscate domain with harmonic function u(x). Let

h(x) be a C2-smooth function on D and

H(t) =

∫

Et(u)

h(x)|∇u(x)| dHp−1(x), (24)

where by dHp−1 we denote (p− 1)-dimensional Hausdorff measure on E(t).

Then H(t) is a C2-function in a neighborhood of arbitrary regular value τ ∈ I. More-

over,

H ′(τ) =

∫

Eτ (u)

〈∇h(x);∇u(x)〉
|∇u(x)| dHp−1(x), (25)

and

H ′′(τ) =

∫

Eτ (u)

∆h(x)

|∇u(x)| dH
p−1(x). (26)

Proof. Because of regularity there exists an ε-neighborhood of τ such that all the level

sets Et(u) are embedded submanifolds in M and everywhere along Et(u) the vector field

ν(x) ≡ ∇u(x)

|∇u(x)| (27)

represents the fields of unit normals in Dt(u) = {x ∈ D : u(x) < t} to E(t). Hence

〈ν(x);∇u(x)〉 = |∇u(x)|. (28)

Then we claim that for arbitrary C1-vector field v defined in a neighborhood of Et0(P )

and

F (τ) ≡
∫

Et(u)

〈v; ν〉 dHp−1(x)

the following auxiliary formula holds at every regular value τ :

F ′(τ) =

∫

Eτ (u)

div v

|∇u| dHp−1(x). (29)

Really, let t ∈ (τ − ε; τ + ε) different from τ be chosen arbitrary. Then by virtue of

(28) and harmonicity of u(x) we have by Stokes’ formula

F (t)− F (τ) =

∫

Et(u)−Eτ (u)

〈v; ν〉 dHp−1(x) =

∫

∂D(τ,t)

〈v; ν〉 dHp−1(x) =

∫

D(τ,t)

div v dx, (30)

where D(τ, t) = D(t)−D(τ) (here and what follows we consider D(t) and Eu(t) as chains

to avoid extra signs if t < τ).
13



We recall the co-area formula (see [F, § 3.2] and [BZ]) which in our case takes the form

∫

D(τ,t)

g(x) dx =

t∫

τ

dξ

∫

Eξ(u)

g(x) dHp−1(x)

|∇u(x)| , (31)

where g(x) is an arbitrary Borel function. By applying of (31) to (30) we obtain

F (t)− F (τ)

t− τ
=

1

t− τ

t∫

τ

dξ

∫

Eξ(u)

div v

|∇u| dHp−1(x). (32)

The last limit does exist at every regular point τ (even if u is only locally Lipschitzian in

D) by Kronrod-Federer theorem whence by regularity of τ we conclude that the derivative

H ′(τ) does exist and (32) yields (29).

Thus, applying (29) to v = h∇u we have from harmonicity of u and (24) that (25)

holds.

Now we observe that by using of (27) the relation (25) can be written in the following

form

H ′(τ) =

∫

Eτ (u)

〈∇h(x); ν〉 dHp−1(x).

Again applying (29) to the last relation with v = ∇h(x) we obtain

H ′′(τ) =

∫

Eτ (u)

div∇h(x)

|∇u| dHp−1(x)

which implies (26) and the theorem is proved. ¤

Remark 3.1. Actually, the previous assertion is still true with suitable arrangements if

instead of harmonic function we consider harmonic forms. But a more interesting feature

of the latter method is that in the holomorphic case we can already evaluate all higher

derivatives (see the following section in partial case when u(x) = ln |P | with P to be a

polynomial).

We should also mention that the harmonic lemniscate domains are typical for the

minimal tubes in the Euclidean space. This type of surfaces admit a harmonic coordinate

function which level sets are compact (the well-known example is catenoid). Moreover,

the closely related objects, the so-called maximal tubes in the Minkowski space can be

interpreted as closed relativistic strings (we refer to [Mk2] for other details).

3.2. Ribbon domains. Another simple but helpful extension of Theorem 3.1 can be

treated if we consider a slightly changed notion of lemniscate domains.

Definition 3.2 (cf. [Mk1]). We call a triple (D, u, I) a ribbon domain with respect to a

smooth function u(x) and an foliating interval I = (α; β) if

(i) the open domain D b M has piecewise smooth boundary ∂D;

(ii) at every regular point of x ∈ ∂D one holds either (u(x) − α)(u(x) − β) = 0 or

〈∇u; µ〉 = 0 where µ is the unit normal to ∂D in M .
14



Γ

τΣ
u(x)

Figure 4. A ribbon domain with Σ and Γ components of ∂D (arrow shows
the direction of growth of u)

The last definition essentially says that the boundary of a ribbon domain consists of a

finite number of smooth surfaces which are either the level sets or gradient-sets of u(x)

(in sequel we define them as E and Γ components respectively). We recall that a smooth

embedded submanifold Γ is a gradient-set of a function u if the gradient field of u is

tangent to Γ.

A typical example of a ribbon domain is a precompact domain on a two-dimensional

Riemannian surface with boundary consisting of alternating pairs of level and gradient

curves of a smooth function (see the general situation of Riemannian surfaces in [Sp]) or

minimal and maximal bands in [MkT2], [KM].

Theorem 3.2. Let (D, u, I) be a ribbon domain with respect to a harmonic function u(x).

Let Σt(u) = Et(u)∩D be the corresponding t-level set and h(x) be a C2-smooth function

on D. If

HD(t) =

∫

Σt(u)

h(x)|∇u(x)| dHp−1(x),

then HD(t) is a C2-function in a neighborhood of arbitrary regular value τ ∈ I and

H ′
D(τ) =

∫

Στ (u)

〈∇h(x);∇u(x)〉
|∇u(x)| dHp−1(x), (33)

H ′′
D(τ) =

∫

Στ (u)

∆h

|∇u| dH
p−1(x)−

∫

∂DΣτ (u)

〈∇h; µ〉
|∇u| dHp−2(x). (34)

Here ∂DΣξ(u) denotes the relative to D boundary of Σξ(u).
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Proof. We use the notations of the previous proof. First we establish the modified formula

(29) for

F (τ) ≡
∫

Σt(u)

〈v; ν〉 dHp−1(x).

Let τ be a regular value from I (or an arbitrary value such that the closure Στ (u)

contains no critical points). Then by the ribbon domain definition the boundary set

D(τ, t) contains two level sets components Σt(u) and Στ (u), and the gradient set Γ(τ, t)

(which one in general may be empty). Let µ be the unit outward normal field along

∂D(τ, t) and assume for determinacy that t > τ . Then choosing as above the gradient

normal field ν = ∇u
|∇u| along Σt(u) and Στ (u) we obtain for the chains

∂D(τ, t) = Σt(u)− Στ (u) + Γ(τ, t)

which implies by Stokes and co-area formulae that

F (t)− F (τ) =

∫

Σt(u)−Στ (u)

〈v; ν〉 dHp−1(x) =

∫

∂D(τ,t)

〈v; ν〉 dHp−1(x)−

−
∫

Γ(τ,t)

〈v; µ〉 dHp−1(x) =

∫

D(τ,t)

div v dx−
∫

Γ(τ,t)

〈v; µ〉 dHp−1(x) =

=

t∫

τ

dξ

∫

Σξ(u)

div v

|∇u| dHp−1(x)−
t∫

τ

dξ

∫

∂DΣξ(u)

〈v; µ〉
|∇u| dHp−2(x).

Here we use the co-area formula for the last integrals assuming that Γ(τ, t) is an embedded

submanifold of M and apply the fact that the gradient ∇u is actually tangent to Γ(τ, t).

Arguing as in previous proof we find that

F ′(τ) =

∫

Στ (u)

div v

|∇u| dHp−1(x)−
∫

∂DΣτ (u)

〈v; µ〉
|∇u| dHp−2(x). (35)

Let now consider v = h∇u which yields by harmonicity of u and (35) that

H ′
D(τ) =

∫

Στ (u)

〈∇h;∇u〉
|∇u| dHp−1(x)−

∫

∂DΣτ (u)

h(x)
〈∇u; µ〉
|∇u| dHp−2(x).

As according to the ribbon domain definition (ii) the last integral vanishes we arrive at

(33).

Similarly, substituting v = ∇h into (35) we have by virtue of (33) that (34) holds and

the theorem is proved. ¤

4. Proofs of main results

4.1. Averages of meromorphic functions. Let f(z) be a holomorphic function such

that there exists a bounded open component D b C of the set

Df (α, β) = {z ∈ C : α < ln |f(z)| < β}.
The most typical examples of f are the polynomials with an arbitrary choice of interval

I = (α, β) ⊂ R.
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Actually, a rather large store of others admissible f ’s does exist. In particular, given

a holomorphic function f(z) with non-empty zeroes set there exists a small sufficiently

ε > 0 such that Df (a; b) does contain bounded components, a < b < ln ε.

In any case, we assume that a triple (D, ln |f |, I) forms a lemniscate domain. Moreover,

let

Et(f) = {z ∈ C : ln |f(z)| = t}
and denote by

Et,D(f) = Et(f) ∩D

a t-lemniscate of f , t ∈ I. This lemniscate is called singular if it contains a zero of the

derivative f ′(z) (or what is the same, a null of the gradient field ∇ ln |f |) and by T we

denote the corresponding critical value of ln |f |. A value t is said to be regular if it is

different from critical ones.

On the other hand, similar constructions lead us to the ribbon domain examples. Nev-

ertheless, we should emphasize that a ribbon domain construction is considerably simpler

because we need no special topological restrictions on f in this case. Roughly speaking,

a typical ribbon domain can be viewed as an appropriate “tubular neighborhood” of

some gradient curve of u = ln |f(z)|. In standard hydrodynamical terminology gradient

curves are just flow lines of the corresponding harmonic function u and there is a vast

mathematical area (e.g. related to the Green functions) which covers these facts.

Let us fix a function f(z) and associate with it the function

g(z) = gf (z) =
f(z)

f ′(z)
.

and the following differential operator

Gf [w0](z) ≡ w1(z) = 2w′
0(z)g(z) + w0(z)g′(z) =

1

w0

(w2
0g)′, (36)

acting on an arbitrary meromorphic in D function w0(z).

We say that w0(z) is admissible for D = (D, ln |f |, I) if its poles ζ are contained in the

singular lemniscates of f and define

W (t) =

∫

Et,D(f)

|w0(z)|2 |dz|.

In general, if the poles set of w0 is non-empty, W (t) can occur to be infinite at critical

values Tk of ln |f |.
Theorem 4.1. Let D = (D, ln |f |, I) be a lemniscate domain and w0(z) be admissible for

D. Then the function W (t) is of C∞ in a neighborhood of every regular t ∈ I and the

following identities hold

W (2ν+1)(t) =

∫

Et,D(f)

Re wν(z)wν+1(z) |dz|,

W (2ν+2)(t) =

∫

Et,D(f)

|wν+1(z)|2 |dz|,
(37)

where W (ν) is ν-derivative, ν ≥ 0.
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Proof. We coordinate the notations of Theorem 3.1 by Et(u) = Et,D(f) and identify a

complex number z = x+ iy with the point (x, y) ∈ R2 so the the gradient of a real-valued

function h(x, y) takes the form h′x + ih′y. Then by Cauchy-Riemann theorem we have for

an arbitrary holomorphic function F (z)

∇Re F (z) ≡ (Re F (z))′x + i(Re F (z))′y = F ′(z), (38)

whence

∇u(z) = ∇Re ln f(z) =
f ′(z)

f(z)
=

1

g(z)
. (39)

Because of local character of our evaluations below we can choose without loss of gener-

ality the logarithm branch such that ln 1 = 0.

Let now t be an arbitrary regular value. Then by admissibility condition the function

w0(z) is well-defined and regular at a neighborhood of the lemniscate Et,D(f). Applying

(39) for W (t) we arrive at

W (t) =

∫

Et,D(f)

|w0(z)|2
|∇u(z)| |∇u(z)| |dz| =

∫

Et,D(f)

|w2
0(z)g(z)| |∇u(z)| |dz|.

Hence, if we write h(z) = |w2
0(z)g(z)| the following derivative exists by (25) and

W ′(t) =

∫

Et,D(f)

〈∇h(x);∇u(x)〉
|∇u(x)| |dz|. (40)

To evaluate ∇h(z) we note that

ln h(z) ≡ Re ln w2
0(z)g(z),

and it follows from (38)

∇h(z) = h(z)
d

dz
(ln w2

0(z)g(z)) =
|w2

0g|
w0g

w1 = w0w1
|g|
g

. (41)

On the other hand, using the standard representation of scalar product in R2 = C by

the real part we obtain from (39) and (41)

〈∇u;∇h〉 = Re
(
∇u∇h

)
=

1

|g| Re w0w1. (42)

Substituting (42) and (39) into (40) we get the needed formula

W ′(t) =

∫

Et,D(f)

Re w0w1 |dz|. (43)

To find the second derivative W ′′(t) we notice that ln h(z) is a harmonic function as

the real part of ln(w2
0g). It follows then

0 = ∆ ln h(z) =
∆h(z)

h(z)
− |∇h(z)|2

h2(z)
,

and by (41) we arrive at

∆h(z) =
1

h(z)
|∇h(z)|2 =

|w0w1|2
|w2

0g|
=
|w1|2
|g| .
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Substituting the found relations in (26) and taking into account that ∇u = 1/|g| we

obtain from (39)

W ′′(t) =

∫

Et,D(f)

|w1|2 |dz|. (44)

Now we observe that, by virtue of its definition, w1 and the consequent iterations wν

for ν ≥ 2 are meromorphic too. On the other hand, the singularities of wν can only be

enlarged at the expense of the poles of g(z), i.e. zero set ker f ′(z). It follows that w1(z)

and wν will be admissible too.

It is clear now that (37) can be obtained by recurrence of (43) and (44) for higher

derivatives and theorem is proved. ¤

4.2. Simple ribbon domains. To state the corresponding assertion for the ribbon do-

main we recall notation of the corresponding level set Σt(f) = Et(f) ∩ D. Unlike the

pure lemniscate case the boundary of Σt(f) is non-empty in general. Moreover, Σt(f)

can contain more than one component.

Below we restrict ourselves by the case when D is a simple ribbon domain which means

that

• D is a simply-connected domain;

• f(z) analytic in a neighborhood of D;

• both f(z) and f ′(z) have no zeroes in D

• the Γ-boundary of D (see definition in 3.2) contains two distinct non-empty com-

ponents, we denote them by ΓA ∪ ΓB.

One can readily show that more complicated ribbon domains can be splitted into a

union of the simple ones. This fact follows from the standard topological properties of

the gradient and flow lines of harmonic functions (on a Riemannian surface in general

case), see e.g. [Ms]. Some simple domains can admit boundary components Στ being

degenerated in a point (so-called, apexes). We refer to the typical situation on the

Figure 5.

Taking into account orthogonality of ∇u and the outward normal µ to Γ we can choose

a natural orientation of Γ by the normal field µΓ outside of points ζk ∈ ker f ′ such that

〈µΓ ∧∇u; e1 ∧ e2〉 > 0 (45)

where e1 = 1, e2 = i is the standard basis of C. By the B-component of Γ we call that

component which outward (with respect to D) normal µ agrees with µΓ and another one

we call the A-component.

Theorem 4.2. Let D be a ribbon domain with interval I = (α; β) and w0(z) be admissible

for D. Then the function

W (t) =

∫

Σt

|w0(z)|2 |dz|.
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Figure 5. Two sin-ribbon simple domains are produced by f(z) = sin z:
ABDC and OAB (with degenerate apex O). The Γ components are solid
lines: OA, OB for OAB, and AC, BD for ABDC. AB is Σ0-level set
which separates two domains.

satisfies

W ′(t) =

∫

Σt

Re w0(z)w1(z) |dz|,

W ′′(t) =

∫

Σt

|w1(z)|2 |dz|+ |g| Im w0w1

∣∣∣∣
∂Σt(f)

(46)

Proof. The first identity can be immediately obtained by the same way as in the previous

proof (see the corresponding property (33) in Theorem 3.2).

To prove the second relation we need only to simplify the last term in (34). We notice

that in our notations this integral can be rewritten as
∫

∂DΣτ (u)

〈∇h(x); µ〉
|∇u| dH0(x) =

〈∇h; µΓ〉
|∇u|

∣∣∣∣
Bt

− 〈∇h; µΓ〉
|∇u|

∣∣∣∣
At

where ∂Σt = Bt − At is understood as a 0-dimensional chain. By virtue of (45) we have

in complex variables

µΓ = −i∇u

which implies by (39) and (41)

〈∇h; µΓ〉 = Re∇h µΓ = Im∇h ∇u = |g| Im w0w1

It yields the required identity and the theorem is proved. ¤
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4.3. M-systems formalism. To study further properties of |Et(f)| for both lemniscate

and ribbon domains we adopt the obtained results to the formalism of M -systems and

λ-moments systems by an appropriate formalism of Hilbert spaces.

At first we remark that the expressions in (37) can be well interpreted if we consider

the Hilbert space scale H(t) = H2[Et(P )] of all complex value functions integrable with

squared on Et(P ) (actually, we need only the subspace of admissible meromorphic func-

tions) with canonical scalar product

〈f1; f2〉H(t) =

∫

Et(P )

Re(f1(z)f2(z)) |dz|.

In this case W (t) = ‖w0‖2
H(t) and by virtue of (37) we have for lemniscate domains

W (2k)(t) = ‖wk‖2
H(t), W (2k+1)(t) = 〈wk; wk+1〉H(t). (47)

For any admissible functions v0 and u0 let w0 = v0 + u0. Then by (47) we have

D‖u0 + v0‖2
H(t) = 〈u0 + v0; u1 + v1〉H(t) = 〈u0; u1〉H(t) + 〈v0; v1〉H(t) + 〈u0; v1〉H(t)+

+ 〈u1; v0〉H(t) = D‖u0‖2
H(t) + D‖v0‖2

H(t) + 〈u0; v1〉H(t) + 〈u1; v0〉H(t)

and it follows from linearity of D that

D〈u0; v0〉H(t) = 〈u0; v1〉H(t) + 〈u1; v0〉H(t).

So, we have

Proposition 4.1. The operator D = d
dt

agrees with Gf in the sense of Definition 2.1.

Moreover, we introduce the anti-commutative braces for two meromorphic functions v

and w by

{v, w}H(t) = |g| Im vw|∂Σt(f) . (48)

Then the second identity in (46) can be rewritten as

W ′′(t) = 〈w0; w1〉H(t) + {w0, w1}H(t). (49)

Lemma 4.1. The braces (48) satisfy (iii) in Definition 2.2.

Proof. Let v(z) and w(z) be meromorphic functions and t a regular value of f . At first

we notice that D = d
dt

is just a restriction of the gradient-like operator ∇u/|∇u|2 on the

Γ-components because

DF ∗(t) =
dF ∗(t)

dt
= 〈∇F ;

∇u

|∇u|2 〉
for every smooth function F (z), where F ∗(t) = F (z) |Γ.

Then taking into account (38) we obtain

D|g| = |g|D ln |g| = |g|3 Re
g′

g

1

g
= |g|Re g′.

On the other hand, we have (by using usual notations z = x + iy)

〈∇ Im vw;∇u〉 = u′x Im(v′xw + vw′
x) + u′y Im(v′yw + vw′

y) =

= Im(v′xu
′
x + v′yu

′
y)w + Im v(u′xw

′
x + u′yw

′
y).

But for an arbitrary analytic function w one holds

w′
x = w′(z), w′

y = iw′(z)
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whence we conclude by (39) that

〈∇ Im vw;∇u〉 = Im wv′(u′x − iu′y) + Im w′v(u′x + iu′y) = Im wv′∇u + Im w′v∇u =

= Im(wv′ − w′v)∇u = Im
wv′ − w′v

g
.

Hence, we have

D Im vw = |g|2 Im
wv′ − w′v

g
= Im g(wv′ − w′v)

and it follows

D{v, w} = D(|g|) Im vw + |g|D Im vw = |g| [Re g′ Im vw + Im g(wv′ − w′v)
]
. (50)

Here and in what follows we omit for convenience of writing the restriction notation

|∂Σ(t) (due to linearity of the restriction operator we obviously avoid a confusion). Now

we can similar evaluate by the definition of Gf

{v1, w}+ {v, w1} = |g| (Im v1w + Im vw1) = |g| Im (vw1 − wv1) =

= |g| Im [
v(2gw′ + g′w)− w(2gv′ + g′v)

]
= |g| Im [2g(vw′ − wv′) + g′(wv − vw)] =

= 2|g| Im g(vw′ − wv′) + |g|Re g′ Im vw

which completely agrees to (iii) and finishes the proof. ¤

Thus, denoting by a total bundle space V = H = ∪t∈IHt and letting D = d/dt we

obtain by comparing with Theorems 3.1 and 3.2 the following important property

Theorem 4.3. In our notations, (H, Gf , D, I) forms a λ-moments system. In fact, we

have λ = 0 in the case of lemniscate domains and λ = 1 for ribbon domains.

Now, let us denote by Aα the operator

Aα(w) = fαw.

Then the following useful in further considerations immediate consequences of the

definition hold:

Gf ◦ Aα − Aα ◦Gf = 2αAα, (51)

and

〈Aα(u); Aα(v)〉H(t) = e2αt〈u; v〉H(t). (52)

In particular, the latter identity shows that multiplication on a power of f up to a

homothety is just an isometric operator. This simple but helpful property allows us to

establish explicit formulae for W (t) in the next section.

From other benefits of the previous interpretations we especially remark the following

consequences

Corollary 4.1. Let f(z) be an analytic function and (D, ln |f |, I) be a lemniscate domain.

By H(t) = |Et(f)| we denote the arc length function. Then the sequence of consequent

derivatives H(k)(t) is positive (see Section 2). In particular, ln H(t) is a convex function.
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Corollary 4.2. Let f(z) be an analytic function and (D, ln |f |, I) be a lemniscate domain.

Then given an arbitrary admissible meromorphic function w0 there exist a unique positive

measure σf on R such that the following representation holds

∫

Et(f)

|w0|2 |dz| =
+∞∫

−∞

ext dσf,w0(x), t ∈ I. (53)

Let D = (D, ln |f |, I) be now a simple ribbon domain produced by an R-periodic

function f(z), f(z+R) = f(z). Below we use the notations of Γ-components of paragraph

4.2.

Definition 4.1. We call a domain D fundamental if ΓB ≡ ΓA mod R.

Corollary 4.3. Let D be a fundamental domain corresponding to a periodic function f .

Then for any R-periodic meromorphic functions u and v one holds

{u, v}H(t) ≡ 0. (54)

In particular, for an R-periodic function w0 the function W (t) satisfies all the conclusions

of Theorem 4.1

Proof. First, we notice that for every non-empty level arc

Σt = Et(f) ∩D

is a single component curve with the end-points At and Bt which are equal modulo R.

To prove this claim we observe that along Σt the harmonic function u(z) = ln |f(z)| is

a constant. On the other hand, by virtue of the definition of a simple ribbon domain the

function u(z) is strictly monotonic along ΓA and ΓB components. Because of u(At) =

u(Bt) and a point ζ ∈ ΓB does exist such that At = ζ mod R (by Definition 4.1) we

conclude that ζ = Bt.

Thus, it follows that the braces {·, ·} vanish for every pair of two meromorphic R-

periodic functions which implies (54). In turn, this means that (H, Gf , D, I) forms in

fact a 0-moments system and the required assertion is proved. ¤

4.4. Polynomial lemniscates. Here we study the polynomial case in more details. By

P (z) we denote a monic polynomial. Then the closure of the set

D = D(t1, t2) = {z ∈ C : t1 < ln |P (z)| < t2}
is compact for arbitrary choice of tj. It follows that (D, ln |P |, I) is a lemniscate domain

for every interval I.

Corollary 4.4. Let w0(z) be admissible for P (z). Then ln W (t) is strongly convex on

every regular interval provided that w0(z) is not a solution to

w2
0(z) = AP k−1(z)P ′(z) (55)

for some k ∈ R and A ∈ C.

Proof. Let t be a regular value. Then applying (37) we have from Cauchy inequality

W ′′(t)W (t)−W ′2(t) =

∫

Et(P )

|w1|2
∫

Et(P )

|w0|2 −




∫

Et(P )

Re w0w1




2

≥
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≥
∫

Et(P )

|w1|2
∫

Et(P )

|w0|2 −




∫

Et(P )

|w0||w1|




2

≥ 0.

This implies convexity of ln W (t).

Assume now that the last inequality turns into equality at a regular point t0. Then

it is easy to see that by Cauchy inequality property everywhere on Et0(P ) the identity

holds

|w1(z)| = λ|w0(z)|, Re(w0(z)w1(z)) = ±|w1(z)w0(z)| (56)

with suitable choice of a real λ ≥ 0.

The case λ = 0 gives w1 = 0 whence w2
0(z) = A/g(z) = AP ′(z)/P (z) with a certain

A ∈ C.

By virtue of (56) the remaining case λ > 0 similarly implies that the fraction w1/w0(z)

is a real constant everywhere along the lemniscate Et0(P ). By the uniqueness theorem

for analytic functions the fraction has to be a constant. We denote it by k ∈ R. Then

w0(z) is an eigenfunction of GP [w0] = (w2
0g)′/w0 whence after integration we arrive at

(55). ¤

Remark 4.1. If we assume that the degenerate case (55) in Corollary 4.4 occurs then the

corresponding function is just an exponent function

W (t) = 2πn|A|ekt

Really, one should only notice that the integral∫

Et(P )

|P ′(z)| |dz| = 2πnet

can be reduced to the flow of harmonic function u(z) = ln |P (z)| through over the curve

Et(P ) and taking into account independence of the flow of a choice of t, we pass to limit

as t →∞.

Proof of Theorem 1.2. Using the previous notations we take a test function to be w0(z) ≡
1 which produces the lemniscate length W (t) = H(t). Hence, the log-convexity of H(t)

immediately follows from Corollary 4.4.

To establish the strong convexity of ln H(t) we suppose converse and consider an arbi-

trary regular point t0 such that H ′′(t0) = 0. Then by (55) we arrive at

AP ′(z)P k−1(z) = 1.

Simple arguments show that the last relation holds for a polynomial if and only if it has

the form P (z) = (z − z0)
n.

Hence, we can decide that P (z) is different from (z−z0)
n which implies strong convexity

of ln H(t) = ln |Et(P )| and what is more, of the function ΦP (t), on any regular interval.

Continuity of |Et(P )| can be established as follows. We observe that by virtue of (3)

the following relation holds

|Et(P )| = e
t
n |E0(Pt)| (57)

for all t ∈ (−∞; +∞].

On the other hand, we can apply Eremenko-Hayman lemma [EH, Lemma 4] which

states that the lemniscate length E0(P ) is a continuous function of its coefficients. Taking
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into account that the coefficients of Pt (see their explicit form in (2)) are continuous

functions of t ∈ (−∞; +∞] we have from (57) the required property.

Finally, it remains to us to prove (7). Again, applying to the Eremenko-Hayman lemma

and (3) we notice that limt→+∞ Pt(z) = zn whence

lim
t→+∞

|Et(P )|e−t/n = |E0(z
n)| = 2π.

which completes the proof of (7). ¤
In conclusion of this paragraph we mention a useful asymptotic property of the length

of Et(P ) as t → −∞ for polynomials P without any multiple roots. This is the case

when P is a D-polynomial. Really, it follows from easy characterization of multiple root

z of P as z ∈ ker P ∩ ker P ′. Then in the D-polynomial class all the roots of P ′(z) are

situated on the same lemniscate E0(P ) which yields |P (ζk)| = 1 6= 0 where ζk ∈ ker P ′.
We regard the following assertion as a math folklore which is repeatedly cited (see, i.e.

[Bu]) but have not found any rigorous proof of that fact.

Lemma 4.2. Let P (z) has no multiple roots. Then

lim
t→−∞

H(t)e−t =
n∑

j=1

2π

|P ′(zk)| , (58)

where {zk} = ker P .

Proof. We denote by T the minimal value among all ln |P (ζj)| where ζj ∈ ker P ′. Since

P (z) has no multiple roots then |P (ζj)| 6= 0 and moreover, T > −∞. It follows from

Theorem 1.2 that both ln H(t) and ln(H(t)e−t) are strongly convex on the ray (−∞; T ].

Let

M = max
|P (z)|≤eT−1

|P ′′(z)/P ′2(z)|.
Then in view of the choice of T the last quantity is well-defined. On the other hand,

taking into consideration w0(z) ≡ 1 we find that

w1(z) =

(
P

P ′

)′
= 1− PP ′′

P ′2 ,

whence

|w1(z)− 1| ≤ |P (z)|, t ∈ (−∞; T − 1].

Hence, by virtue of (43) (with application to w0 ≡ 1) we arrive at

|H ′(t)−H(t)| =

∣∣∣∣∣∣∣

∫

Et(P )

Re(w1(z)− 1) |dz|

∣∣∣∣∣∣∣
≤ MetH(t),

as t ∈ (−∞; T − 1]. It is equivalent to |(ln H(t)e−t)′| ≤ Met.

Thus, it follows that the limit of (ln H(t)e−t)′ as t → −∞ does exist and is equal to 0

which implies after convexity of ln H(t)e−t that

lim
t→−∞

ln H(t)e−t

does exist as well. Now the exact value of the last limit is easy to obtain by taking into

account the asymptotic behavior

|P (z)| = |z − ζk| (|P ′(ζk)|+ o(1)), z → ζk
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and convexity property of Et(P ) for large negative t’s. ¤

4.5. Strictly positive functions. As we have seen before, in the lemniscate case the

matrix

Han[W (t),W ′(t), . . . , W (2n)]

generated by average of a meromorphic function w0(z) is actually the Gram matrix of

the vector system wk in H(t):

si+j(t) = 〈wi; wj〉H(t), i, j = 0, 1, . . . . (59)

We say that given a meromorphic function w0(z) is strictly positive if it is admissible

for P and the corresponding Gram matrix (59) is strictly positively defined. It is clear,

that the last property is equivalent to positivity of the main minors ‖si+j(t)‖N
i,j=0 for all

N ≥ 1.

Otherwise, to realize the fact what is a non-strictly positive function w0(z) we observe

that in this case one can find a not-trivial sequence of reals λi such that

‖λ0w0 + λ1w1 + . . . + λNwN‖H(t) = 0.

By virtue of the uniqueness theorem for analytic functions we have that the last equality

being held on Et(P ) implies identity

λ0w0 + λ1w1 + . . . + λNwN = 0 (60)

everywhere in general set of definition of wi (essentially, C excluding of both poles w0

and zeroes of P ′).
It is worth to notice also that in this case the function W (t) = ‖w0‖2

H(t) has to satisfy

the differential equation with not-trivial set of coefficients

λ0W (t) + λ1W
′(t) + . . . + λNW (N)(t) = 0

on any regular interval. One easily sees that the inverse statement is also true: if w0(z)

satisfies (60) with
∑j=N

j=0 |λj|2 6= 0 then it is a non-strictly positive function.

Lemma 4.3. If polynomial P (z) is different from (z − a)n then the constant function

w0 ≡ 1 is necessarily strictly positive.

Proof. Let z1 ∈ ker P ′(z) be chosen in an arbitrary way such that z1 6∈ ker P (z). By ν ≥ 1

we denote its algebraic multiplicity. Since P (z) 6= (z − a)n, by Gauss-Lucas theorem

[Mr] such a root does exist. In this case the leading term of Laurent decomposition of

g(z) = P (z)/P ′(z) in the neighborhood of z1 has the form

[g(z)]z1 = α(z − z1)
−ν

where α 6= 0. We claim that

[wk(z)]z1 = Akα
k(z − z1)

−k(ν+1), Ak 6= 0 (61)

for all k ≥ 1. Really, for n = 1

[w1(z)]z1 = [g′(z)]z1 = −αν(z − z1)
−ν−1.

Hence, A1 = −ν 6= 0 and we assume by induction that (61) holds for all k, 1 ≤ k ≤ n for

some n ≥ 1. Then one can readily obtain from (36) that

[wn+1(z)]z1 = −Anα
n+1 2n(ν + 1) + ν

(z − z1)(n+1)(ν+1)
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which implies An = (−1)n
∏n−1

j=0 (ν + 2j(ν + 1)) 6= 0 and the claim is established.

By virtue of decomposition (61) held at a neighborhood of z1 relation (60) yields

that the set {λj} can only be trivial. The last property proves the required statement

completely. ¤

5. Applications

5.1. D-functions. In this section we consider examples of evaluation of the length func-

tion in some special cases. Our main idea is to involve the first derivatives of H(t) into

a certain differential equation by using the following simple observation. Here we outline

the method only for the second order differential equations though it can be suitably

extended for the higher derivatives in the similar way.

First we recall that by the maximum principal for an analytic function f(z) the level

set |f(z)| = τ for some τ contains compact curves if and only if

ker f 6= ∅. (62)

Then for some sufficiently small τ > 0 the level set |f(z)| = τ (or Eln τ (f) in our standard

notations) is a collection of compact Jordan curves enclosing zeroes zk ∈ ker f .

Let w0 be a meromorphic function which satisfies the relation

(αw0 + βw1)f
ν = γw0 + δw1, g(z) =

f(z)

f ′(z)
, (63)

where we exclude the trivial case by assuming that

det

(
α β
γ δ

)
6= 0 (64)

and ν > 0. Here we write as above

w1 = Gf [w0] = 2gw′
0 + g′w0.

It turns out that (63) leads us to the simplest case for evaluation of the averages

H(t) =

∫

E′t(f)

|w0|2 |dz|,

where E ′
t(f) is an arbitrary finite union of curves in Et(f).

Really, in this case everywhere on E ′
t(f) the following identity holds

e2νt|αw0(z) + βw1(z)|2 = |γw0(z) + δw1(z)|2

that after simplification and integration over E ′
t(f) arises to the differential equation of

the following kind

(β2e2νt − δ2)H ′′(t) + 2(αβe2νt − γδ)H ′(t) + (α2e2νt − γ2)H(t) = 0. (65)

We consider in more details the main case w0 = 1 with H(t) = |E ′
t(f)|. Then (63) can

be rewritten as

f ν =
γ + δg′(z)

α + βg′(z)
.

Moreover, by (62) we can find a zero z1 ∈ ker f . Then f(z) is well-defined in a neighbor-

hood of z1 and g′(z1) = 1. We have from (63)

γ + δ = 0,
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whence γ = −δ, moreover it follows from (64) that δ 6= 0. After changing of notations

a = α/δ and b = β/δ we arrive at

g′(z) =
af ν + 1

1− bf ν
.

Taking into account that

d(ln(f/f ′)) =
dg

g
=

af ν + 1

1− bf ν
· df

f
=

af ν + 1

1− bf ν
· df ν

νf ν

and after integration and choosing an appropriate constant ϕ(z) = cf(z) we obtain

ϕ′ = C(1− ϕν)
k+1

ν , (66)

where k = a/b.

Definition 5.1. A meromorphic function ϕ (possibly a multivalued one) is said to be a

D-function if it satisfies (66).

In fact one can notice by the definition (66) that for any D-function ϕ holds

|ϕ′(ζk)| = 1, ∀zk ∈ ker ϕ′

which means that the D-functions are analogues of D-polynomials because their critical

values have the same magnitudes.

Combining the previous facts we arrive at

Theorem 5.1. Let ϕ(z) be a solution to (66). Then the length arc function

L(τ) = H1{z : |ϕ(z)| = τ}
satisfies

τ 2(τ 2ν − 1)L′′(τ) + [1 + (2k + 1)τ 2ν ]τL′(τ) + (k2τ 2ν − 1)L(τ) = 0. (67)

Proof. Really, we notice that ϕ(z) gives

g′ϕ(z) =
1 + kϕν

1− ϕν
,

hence ϕ(z) satisfies (63) with

α = k, β = 1, γ = −δ = −1,

whence by virtue of (65) and taking into account that

τL′(τ) = H ′(ln τ), L′′(τ)τ 2 + τL′(τ) = H ′′(ln τ)

we obtain the required differential equation. ¤

For further analysis it is helpful to reduce equation (67) to the hypergeometric canonic

form. To do this we write

L(τ) = τS(τ 2ν), x = τ 2ν .

Then after easy transformations we arrive at the equivalent form of (67)

x(1− x)S ′′(x) +

[
1− x(1 +

k + 1

ν
)

]
S ′(x)−

(
k + 1

2ν

)2

S(x) = 0. (68)
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The function ϕ defined by (66) can be multi-valued in general and ζ = ϕ(z) is the

inverse to the hypergeometric function

z = ζ 2F1

(
1 + k

ν
,
1

ν
;
1 + ν

ν
, ζν

)
.

By using the main results in Section 3 one can deduce that the arc length function of

multi-valued functions satisfy the similar properties as single-valued ones. We omit here

the proof of this assertion.

On the other hand, there is a large store of single-valued functions ϕ and among them

we distinguish the following three types:

Type ϕ(z) k ν p = k+1
ν

C

(i) 1− zn − 1
n

1 1− 1
n

−n

(ii) sin z 0 2 1
2

1

(iii) tanh z 1 2 1 1

(iii)
z − 1

z
1 1 1 1

These functions represent the solutions of (66) which have the following behavior:

(i) all the level sets |ϕ(z)| = τ are collections of compact Jordan curves;

(ii) all the level sets |ϕ(z)| = τ , τ < 1 are collections of compact Jordan curves (while

for τ > 1 the level sets are non-compact), ker ϕ′ 6= ∅;
(iii) all the level sets |ϕ(z)| = τ , τ ∈ R+ \ {1}, are collections of compact Jordan

curves, moreover ker ϕ′ = ∅ (the length function is unbounded near τ = 1).

Really, we observe that the first derivative of ϕ(z) vanishes at ζ if and only if

ϕν(ζ) = 1,

which corresponds to τ = |ϕ(ζ)| = 1. We call such a point ζ the critical point of ϕ (this

completely agrees to our terminology in the beginning of the paper).

By the Morse theory this fact implies that all closed components of |ϕ(z)| = τ are

compact for all 0 ≤ τ < 1. Moreover, by its definition the function ϕ(z) has critical

points if and only if the integral
∫

dξ

(1− ξν)
k+1

ν

converges at ξν = 1. It in turns is equivalent to k+1
ν

< 1.

In the case k+1
ν
≥ 1 the function ϕ does not admit critical points at all, hence the

components of |ϕ(z)| = τ are compact curves for τ ≥ 0.
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5.2. Explicit formulae. Let us now assume that Eτ be an arbitrary compact component

of Eln τ (ϕ) (such that it forms a continuous family of curves for 0 ≤ τ < 1) surrounding

zeroes zj of ϕ, j = 1, . . . , N . Then using the formulae for the general solution to (68) in

interval [0; 1) we obtain for some λ and µ in R (see [HTF, item 2.3.1])

|Eτ | = τS(τ 2ν) = τ
(
2F1(p, p; 1; τ 2ν) λ + 2F1(p, p; 2p; 1− τ 2ν) µ

)
,

here we write for brevity

p =
k + 1

2ν
.

Arguing as in Lemma 4.2 we easily see that the length |Eτ | has linear growth at τ = +0

(because zeroes of ϕ are never the critical points). Thus the multiplier

2F1(p, p; 1; τ 2ν) λ + 2F1(p, p; 2p; 1− τ 2ν) µ (69)

should be bounded at τ = +0. Now applying the Euler formula for hypergeometric

function [HTF, item 2.1.3])

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

we see that the first term in (69) is bounded on [0; 1] while the second one has unbounded

behavior as τ → +0. Hence, we have µ = 0 and

|Eτ | = λτ 2F1(p, p; 1; τ 2ν).

Finally, the exact form of λ can be found by using of asymptotic behavior (see a remark

above) as τ → +0

|Eτ | = 2πτ

N∑
j=1

1

|ϕ′(zj)| .

We find that |ϕ′(zj)| = |C| and hence, we arrive at

Corollary 5.1. Let ϕ be an arbitrary analytic function satisfying (66). Then in our

notations we have

|Eτ | = 2πNτ

|C| 2F1(p, p; 1; τ 2ν), 0 ≤ τ < 1,

where N is the number of components of Eτ .

In the case (iii) we can extend (70) for τ > 1. Really, we notice first that S(τ) should

be bounded at a neighborhood of τ = 1. Then arguing as above we conclude by virtue

of the Kummer transformation [HTF, item 2.3.1] that x−p
2F1(p, p; 1; 1/x) is a unique

bounded (in a neighborhood of x = 1) solution to hypergeometric equation on the ray

[1, +∞). It follows that arc length can be represented as continuous glue-function

|Eτ | = τS(τ 2ν) = µ

{
τ 2F1(p, p; 1; τ 2ν), τ ∈ [0, 1];
τ−k

2F1(p, p; 1; 1/τ 2ν), τ ∈ [1, +∞)

for appropriate constant µ. Taking into account again the behavior of |Eτ | at τ = +0 we

obtain

Corollary 5.2. Let ϕ be an analytic function satisfying (66) of (i)-type. Then

|Eτ | = 2πN

|C|
{

τ 2F1(p, p; 1; τ 2ν), τ ∈ [0, 1];
τ−k

2F1(p, p; 1; 1/τ 2ν), τ ∈ [1, +∞)
, (70)

where N is the number of components of Eτ .
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Figure 6. Circles family |z − 1| = τ |z|.

We demonstrate it by some explicit formulae:

|Eτ (z
n − 1)| = 2π





τ 2F1(
n−1
2n

, n−1
2n

; 1; τ 2), τ ∈ [0, 1];

τ 1/n
2F1(

n−1
2n

, n−1
2n

; 1; 1/τ 2), τ ∈ [1, +∞)
, (71)

Further we consider the level sets of sin z and tanh z. Because of their periodicity we

choose Eτ as an arbitrary closed component. Then for all τ ∈ [0, 1]

|Eτ (sin z)| = 2πτ 2F1

(
1

4
,
1

4
; 1; τ 2

)
, (72)

and

|Eτ (tanh z)| = 2πτ 2F1

(
1

2
,
1

2
; 1; τ 4

)
, |E1/τ (tanh z)| = |Eτ (tanh z)|.

In fact, formula (72) is still true if we extend it by the general low (71) for p = 1/4.

Really, it is sufficient to notice that by Corollary 4.3 the ribbon domain D with D =

[0; π/2] × [0; +∞) and f(z) = sin z can be obviously regarded as union of two simple

ribbon fundamental domains with separate E1-level arc. Thus, we obtain (8).

Finally, we consider the simplest for the analysis case when ϕ(z) = z−1
z

which satisfies

(66) with k = ν = C = p = 1. In this case lemniscates Eτ (ϕ) are the circles with centers

at zτ = 1/(1− τ 2) and of radius rτ = τ/(1− τ 2) (see Figure 6). The direct computations

show

|Eτ (ϕ)| = 2πrτ =
2πτ

1− τ 2

which completely agrees with the hypergeometric expression

2F1(1, 1; 1; x) =
1

1− x

for p = 1 and the general formula (70)

Remark 5.1. Excluding trivial case P (z) = (z − a)n, the explicit formulae in the polyno-

mial case for |Eτ | are only established for the rose type polynomials f(z) = Q(z) = zn−1

[Bu], [El]. In those papers the authors use direct computations and further analysis of

two different from topological point of view cases τ < 1 and τ > 1. We emphasize that
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the main benefit of our method is that it gives the total description in both cases by

virtue of reducing to unique differential equation.

We recall also that the length function |Eτ | can be continued for analytic function

defined in the entire complex plane with one line Re τ = 1 removed (Bernstein result in

[Ber] concerning exponentially convex functions). So, we can interpret the glue-function

formula (70) as a consequence of the monodromy action around of the singular point

τ = 1. The similar situation but of deeper nature and related to the ramified integrals

in higher-dimensional complex spaces is studied by Vassiliev in his recent books [Vs1],

[Vs2].

Remark 5.2. It follows from (70) the following symmetry property for the type (i) func-

tions ϕ (e.g., for rose type polynomials)

|E1/τ | = τ k−1|Eτ |, τ ∈ R+.

6. Measure σP

6.1. Representation of σP . Here we establish the exponential convexity of the length

function for polynomials by using the another approach which has been suggested to

us by Serguei Shimorin. We have to mention that the related arguments were used by

Pommerenke in [Pm1, Pm2] but the only stationary case |P (z)| = 1 was treated there.

Nevertheless, that the below approach can not be extended on the Riemannian manifolds

case (as well as on ribbon case in two-dimensional complex plane).

One of the main benefit of this method is that it produces the explicit form of measure

σP (x) and shows, e.g., that this measure is actually discontinuous and supported on

the specific discrete set consisting of equidistance points on the real axe. It allows us

to establish the completely monotonic character of e−t/n|Et(P )| in (T, +∞) where T

is equal to the maximal singular value of P . Another helpful consequence is that the

explicit form of the measure constructed implies examples of the length functions for

certain polynomials and analytic functions (cf. with our constructions in paragraphs 5.1

and 5.2).

We demonstrate the main idea of the mentioned method in the partial case only when

the lemniscate is a simple curve (i.e. for t > T ) and postpone the other considerations

for a forthcoming paper. But the reader can see that the arguments we use below can be

directly extended as well in the case t < Tmin where Tmin is the minimal critical value of

P . In the general case the results will be true in an appropriate form, but we need some

more delicate arguments dealing with ramified coverings.

Theorem 6.1. Let P be a monic polynomial of degree n and

eT = max
P ′(ζk)=0

|P (ζk)|
is the greatest singular value of P . Then for all t ≥ T the following representation holds

|Et(P )| =
∫ +∞

−∞
ext dσP (x), (73)

where σP (x) is a positive discrete measure supported at 2
n
Z− + 1

n
. Moreover,

|Et(P )| = 2πet/n

(
1 +

+∞∑

k=2

|c−k|2e−2kt/n

)
, (74)
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where ck are a sequence of the Laurent’s coefficients of n
√

P expanded near infinity and
∑

k≥2

|c−k|2e−2kT/n < +∞. (75)

Proof. Let t > T be an arbitrary value. Then Et(P ) is a simple Jordan curve which

encloses a simply-connected domain Dt = {z ∈ C : |P (z)| < et}. Let D∗
t = C \ Dt be

considered as a simply-connected domain with the infinity included.

Then P (z) maps D∗(t) onto Ut = {ζ ∈ C : |ζ| > et} in such a way that index of P

is just its degree n and the auxiliary mapping F (z) = P 1/n(z) is well defined in D∗(t).
Moreover, F (z) is univalent in D∗(t) and has no critical points there. It is still true for

some neighborhood of D∗(t) since t > T . We denote by ϕ(ζ) the inverse mapping which

is clearly also univalent conformal mapping of Ut/n (and even of a neighborhood of Ut/n)

onto D∗(t) and

ϕ′(ζ) 6= 0, ζ ∈ U t/n. (76)

Then Et(P ) is a curve with the natural parametrization

Et(P ) : z = ϕ(ζ), θ ∈ et/nT,

where T is the unit circle. So, we have for the length of Et(p):

|Et(P )| =
∫

et/nT
|ϕ′(ζ)| |dζ|. (77)

We notice that due to (76) (and (82) below) the square root
√

ϕ′(ζ) is a well-defined

holomorphic function in U t/n (which need not be univalent in U t/n) and it follows that it

can be expanded in the Laurent series

√
ϕ′(ζ) =

+∞∑

k=−∞
ckζ

k (78)

Thus, by virtue of orthogonality of ζk on et/nT, (77) can be rewritten as the following

|Et(P )| =
∫

et/nT
|
√

ϕ′(ζ)|2 |dζ| =
∫

et/nT

+∞∑

k=−∞
|ck|2|ζ|2k |dζ| =

=
+∞∑

k=−∞
|ck|2

∫

et/nT
|ζ|2k |dζ| = 2π

+∞∑

k=−∞
|ck|2e(2k+1)t/n.

(79)

So, we can define a measure σP (x) by
∫ +∞

−∞
h(x) dσP (x) = 2π

+∞∑

k=−∞
|ck|2h

(
2k + 1

n

)
(80)

which actually a singular measure with support at 2
n
Z + 1

n
points. Then (79) becomes

|Et(P )| =
∫ +∞

−∞
ext dσP (x).

Now we describe the support of the measure in more detail. To do it we consider the

representation (78) and observe that P (z) = ζn yields that

ϕ′(ζ) =
nP

n−1
n (z)

P ′(z)
=

nζn−1

R(ζ)
,
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where R(ζ) is a well-defined holomorphic function in Ut/n such that P ′(z) = R(ζ).

On the other hand, we have in Ut/n

ζ = z
(
1 +

a1

z
+ . . . +

an

zn

)1/n

= z +
a1

n
+

b1

z
+ . . . , (81)

whence

P ′(z) = zn−1

(
n +

(n− 1)a1

z
+ . . . +

an−1

zn−1

)
= ζn−1 n + (n−1)a1

z
+ . . . + an−1

zn−1(
1 + a1

z
+ . . . + an

zn

)(n−1)/n
.

Taking into account that

(
1 +

a1

z
+ . . . +

an

zn

)−(n−1)/n

= 1− (n− 1)a1

nz
+

(
(2n− 1)(n− 1)a1

2n2
− (n− 1)a2

n

)
1

z2
+. . .

we find

R(ζ) = nζn−1

[
1 +

(n− 1)a2
1 − 2na2

2n2

1

z2
+ . . .

]
.

Finally, we notice that near infinity the following decomposition follows from (81)

z = ζ − a1

n
+ B1

ζ
+ . . . which implies

ϕ′(ζ) =
1

1 +
(n−1)a2

1−2na2

2n2
1
z2 + . . .

= 1− (n− 1)a2
1 − 2na2

2n2

1

ζ2
+ . . . (82)

Thus, the required expression is the following

√
ϕ′(ζ) = 1− (n− 1)a2

1 − 2na2

4n2

1

ζ2
+ . . .

and we have in our notations (see (78))

c0 = 1, c−2 = −(n− 1)a2
1 − 2na2

4n2
, . . . and ck = 0 for all k ≥ 1.

It follows now from (79) that

|Et(P )| = 2πet/n

(
1 +

+∞∑

k=2

|c−k|2e−2kt/n

)
, t > T

and it follows that |Et(P )| is decreasing in (T ; +∞).

We notice that due to continuity of |Et(P )| on [T, +∞) (it follows from mentioned above

Eremenko-Hayman result) the right hand side of the last equality is at most |ET (P )|.
Because of positivity of the terms and continuity of the length function we have that the

previous formula is still true for t = T which proves (75) and completes the proof. ¤

Corollary 6.1. In the notations of Theorem 6.1 we have the following lower estimate

|Et(P )| ≥ 2πet/n

(
1 +

∣∣∣∣
(n− 1)a2

1 − 2na2

4n2

∣∣∣∣
2

e−4t/n

)
, t ≥ T. (83)
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6.2. Complete monotonicity. We recall (see [Wd, p. 145]) that the function f(t) is

completely monotonic (or c.m.) in (a, b) if it has non-negative derivatives of all orders

there:

(−1)kf (k)(t) ≥ 0. (84)

The function f(t) is c.m. in [a, b) if it is continuous there and satisfies (84) in (a, b).

Corollary 6.2. The function |Et(P )|e−t/n is completely monotonic in [T, +∞). In par-

ticular, it can be extended to be analytic in the right half-plane Re ζ > T , ζ = t + is.

Proof. One easily sees that the relation (75) implies the uniform convergence of series

(74) in [T, +∞) as well as their successive derivatives in any ray [T + ε, +∞), ε > 0.

The analytic property is a sequence of Bernstein theorem on c.m. functions [Ber] (see

also [Wd] and [Ak, Chap. V, § 5]). But in our case it can be established directly by the

following natural continuation

F (t + is) = 2πe(t+is)/n

(
1 +

+∞∑

k=2

|c−k|2e−2k(t+is)/n

)
, (85)

where t > T and s ∈ R. Then it follows from (75) that F (ζ) is an analytic function in

Re ζ > T and

|Et(P )| = F (t), t ∈ R.

¤
A interesting feature of (85) is that the function F (t + is) is 2πn-periodic, n = deg P .

Thus, λ(z) = F (n ln z) is an single-valued analytic function defined in |z| > eT and such

that

λ(z) = 2πz

(
1 +

+∞∑

k=2

|c−k|2
z2k

)
.

The last formula shows that λ(z) is an odd function and due to the previous remarks

λ(ent) = |Et(P )| (86)

is the length function lemniscate which is continuous at t = T + 0. Moreover, it follows

from (75) that λ(z) can be continuously extended onto the whole circle eTT and what is

more,

|λ(z)| ≤ λ(|z|), |z| ≥ eT

with equality in positive real points z > eT only.

Example 6.1. Let P (z) = zn−1, n ≥ 2, be a rose-type polynomial. Then in the previous

notations we have P (z) = zn − 1 = ζn and everywhere in |ζ| > 1

√
ϕ′(ζ) =

√
nζn−1

nzn−1
=

(
1 +

1

ζn

)−(n−1)/2n

= 1− p

1!

1

ζn
+

p(p− 1)

2!

1

ζ2n
− . . .

Thus, we obtain for λ-function:

λ(z) = 2πz

(
1 +

p2

1!

1

z2n1!
+

p2(p− 1)2

2!

1

ζ4n2!
+ . . . +

(p)2
k

k!

1

ζ2knk!
+ . . .

)

where

(p)k = p(p− 1) · · · (p− k + 1) =
Γ(p + k)

Γ(p)
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is Pochhammer’s symbol.

The expression in the braces can be easily recognized as the hypergeometric function

property:

λ(ζ) = 2πζ2F1(p, p; 1,
1

ζ2n
), p =

n− 1

2n

and it follows that for the length function (see (86)) we have

|E1/n
τ | = λ(τ 1/n) = 2πτ 1/n

2F1(p, p; 1,
1

τ 2
), τ ≥ 1,

where Eτ (P ) = Eln τ (P ) (cf. these formulas with those in the next section and (71)).

Remark 6.1. It is clear that the previous example can be directly extended on the class

of D-functions (see 5.1).

Remark 6.2. The similar arguments imply that in the case t < Tmin we obtain absolute

monotonicity property |Et(P )| (i.e. |Et(P )| and its succeeding derivatives are increasing

functions in (−∞; Tmin]).
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