
On the symmetry group of perfect 1-error

correcting binary codes

Olof Heden

January 24, 2003

Abstract

It is shown that for any rank r with n− log(n+1)+4 ≤ r ≤ n−4
and any length n, where n = 2k − 1 and k ≥ 8, there is a perfect
code with these parameters and with a trivial group of symmetries.

1 Introduction

We consider the direct product Zn
2 of n copies of the ring Z2. The elements

of Zn
2 will be called words. The distance, d(c, v), between two words c and v

is the number of positions in which they differ. A perfect 1-error correcting
binary code is a subset C of Zn

2 , satisfying the following condition:

to any word v of Zn
2 there is a unique word c of Csuch that d(c, v) ≤ 1.

Below we will write perfect code instead of perfect 1-error correcting binary
code.

Perfect codes of length n exist if and only if n = 2k − 1 where k ≥ 2
is an integer. If n = 3 or n = 7 they are unique and linear subspaces
of the vector space Zn

2 . In case n ≥ 15 there are both linear and non
linear perfect codes. There are now many different constructions of non
linear perfect codes, see [11]. Many constructions are given by switching
processes, see [1], and many by concatenations, see [10].

Let the rank, r(C), of a code C be the dimension of the linear span,
< C >, of the words of C. The linear perfect code H of length n has rank
n − log(n + 1) and is unique. (If n = 2k then log(n) = k.) This code will
be called the Hamming code of length n.

Let the symmetry group of C, Sym(C), be defined as the set of permu-
tations π of the coordinate set that fixes C, that is for any c ∈ C, π(c) ∈ C.
The purpose of this note is to show the following theorem:
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Theorem 1 For any possible length n = 2k − 1, where k ≥ 8, and rank r
with

n− log(n + 1) + 4 ≤ r ≤ n− 4,

there is a perfect code with these parameters and with a trivial symmetry
group.

It is well known that the number of different perfect codes of length n is
extremely large, more than 22n/2−log(n+1)

. So there is a need for some kind
of classification or a tool to distinguish perfect codes.

Beside the rank and symmetry group mentioned above, the kernel of a
perfect code has also been studied and seems to be of great importance for
the classification of perfect codes.

A word p is a period of the code D if

p + D = {p + d | d ∈ D} = D.

The set of periods of a code D will be called the kernel of D, ker(D). We
note that the kernel is a linear subspace of Zn

2 .
All possible pairs (r, k), for which there is a perfect code of length n,

rank r and with a kernel of dimension k have been determined, see e.g.
[5]. Theorem 1 above is perhaps a little step on the way to see which the
possibilities are for the symmetry group of a perfect code. It has already
been proved that there are perfect codes with a trivial symmetry group.
Phelps [9] proved that any finite group is the symmetry group of some
perfect code. Avgustinovich and Solov’eva [2] showed that for any length
≥ 255 there is a perfect code of rank n, with a trivial symmetry group and
a trivial kernel. This result was extended to perfect codes of length ≥ 31 by
Malyugin [7] and of length 15, also by Malyugin [8], by using a computer
search. Theorem 1 shows that this is true for any length n and any rank r
as stated in the theorem.

2 Preliminaries

We will let N denote the set {1, 2, . . . , n}.
The weight of a word c, w(c), is the number of non zero positions of c.

We denote by ei the word of weight one with the only one in the position
i. We denote by eI the word

∑
i∈I ei.

In [3] we showed that to any perfect code of rank r with

n− log(n + 1) + 2 ≤ r ≤ n− 1

there is a partition of the set N :

I0 ∪ I1 ∪ I2 ∪ ... ∪ It = N,
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where t = 2n−r − 1, Ii ∩ Ij = ∅ for i 6= j and |I0| + 1 = |I1| = |I2| = ... =
|It| = (n + 1)/(t + 1), such that each of the words eIi , i = 0, 1, 2, . . . , t, are
periods. This partition is called the fundamental partition of N associated
with C.

With the support of a word c = (c1, ..., cn) we mean the set

supp(c) = {i | ci 6= 0}.
The set of vectors v of Zn

2 satisfying supp(v) ⊆ Ii is a subspace of the
vector space Zn

2 that we denote by ZIi
2 .

For words c of Zn
2 , we sometimes write c = (c0|c1| . . . |ct), where ci, for

i = 0, 1, 2, . . . , t, is the projection of c on the subspace ZIi
2 .

If c is a word of Zs+1
2 then c∗ denotes the word of Zs

2 obtained from c
by deleting the last coordinate of c. If c = (c1, c2, . . . , cs), then we denote
by ce the word (c1, c2, . . . , cs, c1 + c2 + . . . + cs) of Zs+1

2 . For any code D
we denote by De the set {ce | c ∈ D}.

If π is a permutation of the coordinate set of Zn
2 then π induces in the

most natural way a map on the subsets of Zn
2 . If under this map a set D

is mapped on a set D′ we denote D′ by π(D).
We denote by 1 and 0 the words (1, 1, . . . , 1) respectively (0, 0, . . . , 0).
Let, for x ∈ (Zs

2)t, σi(x) =
∑s

j=1 xij and σ′j(x) =
∑t

i=1 xij . Let
σ(x) = (σ1(x), . . . , σt(x)) and σ′(x) = (σ′1(x), . . . , σ′s(x)).

3 Proof of the Theorem 1

We consider Zn
2 where n = (s+1)(t+1)− 1. The words of Zn

2 are denoted
by

(x01, . . . , x0s|x11, . . . , x1,s+1|x21, . . . , x2,s+1| . . . |xt1, . . . , xt,s+1)

where xij ∈ Z2.
Let H be a Hamming code of length t. We define τ to be the following

map from H to Zn
2 :

τ((h1, h2, . . . , ht)) = (0|0 . . . 0h1|0 . . . 0h2| . . . |0 . . . 0ht).

We will use a construction similar to the Krotov construction [6] to define
a perfect code CH,F of length (s + 1)(t + 1)− 1, where s ≥ 15 and t ≥ 15,
with the desired properties. The code CH,F will be the disjoint union of
codes Ch, h ∈ H.

Let C0 be a perfect code of length s and with Sym(C0) = {id} and
such that 0 ∈ C0. For the existence of such codes, see the introduction.
For h = 0 ∈ H we let

C0 = {(c∗1 + . . . + c∗t + C0|c1|c2| . . . |ct) | c1, c2, . . . , ct ∈ Zs+1
2 }.

3



Let C1 be a perfect code of length s with a trivial kernel, see [4], and
containing the zero word 0. Trivially h = 1 ∈ H and we define C1 to be
the code

τ((1, 1, . . . , 1)) + {(c∗1 + . . . + c∗t + C1|c1|c2| . . . |ct) | c1, c2, . . . , ct ∈ Zs+1
2 }.

To describe the codes Ch, for h ∈ H \ {0,1} we need a notation: For any
integer i = 1, 2, . . . t, fi0 denotes the zero word (0|0| . . . |0) and fik, for
i = 1, 2, . . . , t and k = 1, 2, . . . , s, the word ei,k + ei,s+1.

Denote the dimension of the dual space of H by p. Let {d1, d2, . . . , dp}
be a set of base vectors for the dual code of H. Let G be a non linear
perfect code of length s. Below we will use the extended codes He and Ge.

Define, for h = (h1 . . . , ht) ∈ H \ {0,1}, Ch to be the code

(∪(k1,...,kt)∈St (σ(f1k1 + . . .+ftkt
)+Ch,0|f1k1 +Ch,1| . . . |ftkt

+Ch,t))+τ(h)

where S = {0, 1, 2, . . . , s} and Ch,l, for l = 1, 2, . . . , t, are extended perfect
codes that we will describe below.

The weight spectrum of the Hamming code H of length n ≥ 15 contains
n−3 integers. Thus we may define Ch,l, for h ∈ H, with 3 ≤ w(h) ≤ p+2,
to be

Ch,l =
{

He if l ∈ supp(dw(h)−2);
Ge if l 6∈ supp(dw(h)−2);

and for p+2 < w(h) < t−2, Ch,l, l = 1, 2, . . . , t to be any extended perfect
code of length s.

By considering the minimum distance and the number of elements of
CH,F we get that CH,F is a perfect code, see also [6].

We first note that if π belongs to Sym(C) then π maps the fundamental
partition of N associated to the perfect code C to the same fundamental
partition of N . As C1 has a trivial kernel, we may conclude from Corollary
1 of [4], that r(C) = n − log(t + 1), and as a consequence, that the sets
I0 = {(0, 1), (0, 2), . . . (0, s)}, I1 = {(1, 1), (1, 2), . . . , (1, s + 1)}, ..., It =
{(t, 1), (t, 2), . . . , (t, s + 1)} in fact form the fundamental partition of the
set N . Hence:

if i1, i2 ∈ Ik then there is k′ such that π(i1), π(i2) ∈ Ik′ .

As I0 is the only set with s elements in the fundamental partition, we get
that π(I0) = I0. We now prove that π(Ik) = Ik, for k = 1, 2, . . . , t.

Assume that π ∈ Sym(C), and that π(Ik) = Ik′ , k 6= k′. As the
minimum distance in H is three, we deduce that there must be a base vector
dq, q ∈ {1, 2, . . . , p}, of the dual code of H such that |{k, k′}∩supp(dq)| = 1.
Assume that k ∈ supp(dq) and k′ 6∈ supp(dq). Let h ∈ H be such that
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q = w(h) − 2 and consider the code Ch. The symmetry π maps Ch to
another code Ch′ with w(h) = w(h′). The code Ch contains words

(c0|c1| . . . |ct) + τ(h) where ci ∈
{ {0} if i 6= k

H∗ if i = k
i = 0, 1, . . . , t

and Ch′ contains words

(c0|c1| . . . |ct) + τ(h′) where ci ∈
{ {0} if i 6= k′

G∗ if i = k′
i = 0, 1, . . . , t.

If π(Ik) were equal to Ik′ , then, as π(C) = C, we get that π(He) = Ge. As
an extended non linear perfect code never can be equivalent to an extended
Hamming code, this is not true and hence we get a contradiction and π(Ik)
must be equal to Ik, for k = 1, 2, . . . t.

We observe that if π ∈ Sym(C) then, as

(C0|0| . . . |0) ⊆ CH,F

is mapped to π(C0|0| . . . |0) and as Sym(C0) = {id}, the restriction of π
to the set I0 must be the identity.

We now show that if π ∈ Sym(C) then, for (k, i) ∈ Ik, k = 1, 2, . . . t,
π((k, i)) = (k, i).

Assume that π(i1) = j1 (where i1 and j1 are contained in the same
set Ik) and let i2 = π−1(i1). From the definition of C and from the
observation above we deduce that C contains the words c = (σ∗(ei1 +
ei2)|0| . . . |0|ei1 + ei2 |0| . . . |0), c′ = (σ∗(ei1 + ej1)|0| . . . |0|ei1 + ej1 |0| . . . |0)
and π(c) = (σ∗(ei1 + ei2)|0| . . . |0|ej1 + ei1 |0| . . . |0).

We note that

d(σ∗(ei1 + ej1), σ
∗(ei1 + ei2)) =

{ 0 if j1 = i2;
2 else.

As d(c′, π(c)) ≥ 3, we may conclude that π(i1) = j1 = i2 and hence that π
must be a product of disjoint 2-cycles.

Without loss of generality we may thus assume that if π ∈ Sym(C)
then

π(2b− 1) = 2b and π(2b) = 2b− 1 for b = 1, 2 . . . , s/2.

We now show that this implies that C1 has a non trivial kernel.
If a = (a1, a2, . . . , as−1) ∈ C1 then:

a = (a + a|(a1, . . . , as−1, σ(a))|0| . . . |0) + (0|0 . . . 01| . . . |0 . . . 01|) ∈ C.

As π ∈ Sym(C) we get that π(a) ∈ C and that π(a) equals

(0|(a2, a1, a4, a3, . . . , σ(a), as−1)|0| . . . |0) + (0|0 . . . 01| . . . |0 . . . 01|) ∈ C
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and hence, for any z = 1, 2, . . . , (s− 2)/2,

a′ = (e2z|(a2, a1, a4, a3, . . . , σ(a), as−1 + 1) + e2z|0| . . . |0)+

(0|0 . . . 01| . . . |0 . . . 01|)
belongs to C. This implies that also the word

π(a′) = (e2z|(a1, a2, a3, a4, . . . , as−1 + 1, σ(a)) + e2z−1|0| . . . |0)+

(0|0 . . . 01| . . . |0 . . . 01|)
as well as the word

(a + e2z−1 + es−1|(a1, a2, a3, a4, . . . , as−1 + 1, σ(a)) + e2z−1|0| . . . |0)+

(0|0 . . . 01| . . . |0 . . . 01|)
belongs to C and hence that

a + e2z−1 + es−1 ∈ e2z + C1.

As a ∈ C1 was chosen arbitrarily and as a + e2z−1 + es−1 + e2z ∈ C1, we
get that the word e2z−1 + es−1 + e2z is a period of C1. As C1 is assumed
to have a trivial kernel we get a contradiction.

The theorem is proved.

Acknowledgement I am grateful to Faina I. Solov’eva for her support
on this search and for her comments on a previous version of this text.

References

[1] Avgustinovich S. V., Solov’eva F. I., Construction of perfect binary
codes by sequential translations of an α̃-components, Problems of In-
formation Transmission 33 (3) (1997) 202-207.

[2] Avgustinovich S. V., Solov’eva F. I., Perfect binary codes with trivial
automorphism group, Proc. of Int. Workshop on Information Theory,
Killarney, Ireland. June. 1998. P. 114–115.

[3] Avgustinovich S. V., Heden O., Solov’eva F. I., The classification of
some perfect codes, submitted.

[4] Avgustinovich S. V., Heden O., Solov’eva F. I., On ranks and kernels
of perfect codes, submitted.

6



[5] Avgustinovich S. V., Heden O., Solov’eva F. I., , On ranks and kernels
problem of perfect codes, Proc. Eighth Int. Workshop on Algebraic
and Comb. Coding Theory. Tsarskoe Selo, Russia. September (2002)
14–17.

[6] Krotov D. S., Combining construction of perfect binary codesProblems
of Information Transmission36(2000)349-353.

[7] Malyugin S. A., Perfect codes with trivial automorphism group, Proc.
Second Int. Workshop on Optimal Codes and Related Topics. Sozopol,
Bulgaria. June. 1998. P. 163–167.

[8] Malyugin S. A., Private comunication with Faina I. Solov’eva.

[9] Phelps K. T., Every finite group is the automorphism group of some
perfect code, J. Combin. Theory, series A 43(1)(1986)45-51.

[10] Solov’eva F. I., A combinatorial construction of perfect binary codes,
Proc. of Fourth Int. Workshop on Algebraic and Comb. Coding The-
ory, Novgorod, Russia. September (1994) 171-174.

[11] Solov’eva F. I., Perfect binary codes: bounds and properties, Discrete
Mathematics, 213 (2000) 283-290.

O. Heden, Department of Mathematics, KTH, S-100 44 Stockholm, Sweden.
(olohed@math.kth.se)

7


