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Abstract

It is shown that for any rank r with n—log(n+1)+4 <r <n-—4
and any length n, where n = 2¥ — 1 and k > 8, there is a perfect
code with these parameters and with a trivial group of symmetries.

1 Introduction

We consider the direct product Z3 of n copies of the ring Z5. The elements
of Z% will be called words. The distance, d(c,v), between two words ¢ and v
is the number of positions in which they differ. A perfect 1-error correcting
binary code is a subset C' of Z7, satisfying the following condition:

to any word v of Z3 there is a unique word c¢ of Csuch that d(c,v) < 1.

Below we will write perfect code instead of perfect 1-error correcting binary
code.

Perfect codes of length n exist if and only if n = 28 — 1 where k > 2
is an integer. If n = 3 or n = 7 they are unique and linear subspaces
of the vector space Z7. In case n > 15 there are both linear and non
linear perfect codes. There are now many different constructions of non
linear perfect codes, see [11]. Many constructions are given by switching
processes, see [1], and many by concatenations, see [10].

Let the rank, r(C), of a code C be the dimension of the linear span,
< C >, of the words of C. The linear perfect code H of length n has rank
n —log(n + 1) and is unique. (If n = 2* then log(n) = k.) This code will
be called the Hamming code of length n.

Let the symmetry group of C, Sym(C'), be defined as the set of permu-
tations 7 of the coordinate set that fixes C, that is for any ¢ € C, w(c) € C.
The purpose of this note is to show the following theorem:



Theorem 1 For any possible length n = 2F — 1, where k > 8, and rank r
with
n—logln+1)+4<r<n-4,

there is a perfect code with these parameters and with a trivial symmetry
group.

It is well known that the number of different perfect codes of length n is
extremely large, more than 92"/ 275 g there is a need for some kind
of classification or a tool to distinguish perfect codes.

Beside the rank and symmetry group mentioned above, the kernel of a
perfect code has also been studied and seems to be of great importance for
the classification of perfect codes.

A word p is a period of the code D if

p+D={p+d|deD}=D.

The set of periods of a code D will be called the kernel of D, ker(D). We
note that the kernel is a linear subspace of Z3.

All possible pairs (r, k), for which there is a perfect code of length n,
rank r and with a kernel of dimension k£ have been determined, see e.g.
[5]. Theorem 1 above is perhaps a little step on the way to see which the
possibilities are for the symmetry group of a perfect code. It has already
been proved that there are perfect codes with a trivial symmetry group.
Phelps [9] proved that any finite group is the symmetry group of some
perfect code. Avgustinovich and Solov’eva [2] showed that for any length
> 255 there is a perfect code of rank n, with a trivial symmetry group and
a trivial kernel. This result was extended to perfect codes of length > 31 by
Malyugin [7] and of length 15, also by Malyugin [8], by using a computer
search. Theorem 1 shows that this is true for any length n and any rank r
as stated in the theorem.

2 Preliminaries

We will let N denote the set {1,2,...,n}.

The weight of a word ¢, w(c), is the number of non zero positions of c.
We denote by e; the word of weight one with the only one in the position
i. We denote by ey the word )., e;.

In [3] we showed that to any perfect code of rank r with

n—log(n+1)+2<r<n-1
there is a partition of the set IV:

ILbULULU..UI =N,



where t =2""" — 1, [ NI; =0 for i # j and |[o| + 1 = || = || = ... =
|I;] = (n+1)/(t + 1), such that each of the words er,, i = 0,1,2,...,t, are
periods. This partition is called the fundamental partition of N associated
with C.

With the support of a word ¢ = (¢y, ..., ¢;,) we mean the set

supp(c) = {i | ¢ # 0}

The set of vectors v of Z§ satisfying supp(v) C I; is a subspace of the
vector space Z§ that we denote by Z2'.

For words ¢ of ZZ', we sometimes write ¢ = (¢o|c1]. .. |ct), where ¢;, for
1=0,1,2,...,t, is the projection of ¢ on the subspace ZQIi.

If ¢ is a word of Z5™' then ¢* denotes the word of Z§ obtained from c
by deleting the last coordinate of c. If ¢ = (¢1,¢2,...,¢s), then we denote

by ¢¢ the word (c1,¢2,...,¢5,¢1 +c2+ ...+ ¢s) of ZQSH. For any code D
we denote by D¢ the set {c¢¢ | c € D}.

If 7 is a permutation of the coordinate set of Z§ then 7 induces in the
most natural way a map on the subsets of Z2'. If under this map a set D
is mapped on a set D’ we denote D’ by 7(D).

We denote by 1 and 0 the words (1,1,...,1) respectively (0,0,...,0).

Let, for € (Z3)", oi(x) = Y25, =iy and oj(z) = S, wij. Let

o(z) = (01(x), ..., 0:(w)) and o' (z) = (0} (), .., ().

3 Proof of the Theorem 1

We consider Z§ where n = (s+1)(t+ 1) — 1. The words of Z§ are denoted
by

(.1‘01, e ,$03|l‘11, . ,l‘175+1|£21, .. .,x273+1| . |],‘t17 - ,1‘t75+1)

where z;; € Z5.
Let H be a Hamming code of length t. We define 7 to be the following
map from H to Z3:

We will use a construction similar to the Krotov construction [6] to define
a perfect code Cy 7 of length (s +1)(¢ 4+ 1) — 1, where s > 15 and t > 15,
with the desired properties. The code Cy, r will be the disjoint union of
codes Cp, h € H.

Let Cy be a perfect code of length s and with Sym(Cy) = {id} and
such that 0 € (. For the existence of such codes, see the introduction.
For h =0 € H we let

Co={(c} +...4+¢c +Coler|ea| ... |ci) | e1y e, ... e € Z5THY.



Let C; be a perfect code of length s with a trivial kernel, see [4], and
containing the zero word 0. Trivially h = 1 € H and we define C; to be
the code

7((1,1,..., ) +{(cf + ...+ ¢ + Cilerlea| ... |er) | eryca,. .., c € Z;H}.

To describe the codes C},, for h € H \ {0,1} we need a notation: For any
integer ¢ = 1,2,...t, f;0 denotes the zero word (0|0|...|0) and f;x, for
1=1,2,...,tand k=1,2,...,s, the word e; j + €; s41-

Denote the dimension of the dual space of H by p. Let {d1,ds,...,d,}
be a set of base vectors for the dual code of H. Let G be a non linear
perfect code of length s. Below we will use the extended codes H® and G°.

Define, for h = (hy...,ht) € H\ {0,1}, C}, to be the code

(U, kyest (0(fiky o4 fir,) + Chool fiky +Chal - | fik, +Chit)) +7(h)

where S = {0,1,2,...,s} and Cy, for I =1,2,...,¢, are extended perfect
codes that we will describe below.

The weight spectrum of the Hamming code H of length n > 15 contains
n — 3 integers. Thus we may define Cj, ;, for h € H, with 3 < w(h) < p+2,
to be

G* if l ¢ Supp(dw(h)—Q);

and for p+2 < w(h) <t—2, Chy, 1 =1,2,...,t to be any extended perfect
code of length s.

By considering the minimum distance and the number of elements of
Cu,r we get that Cy r is a perfect code, see also [6].

We first note that if 7 belongs to Sym/(C') then 7 maps the fundamental
partition of N associated to the perfect code C' to the same fundamental
partition of N. As C; has a trivial kernel, we may conclude from Corollary
1 of [4], that r(C) = n — log(t + 1), and as a consequence, that the sets
Iy = {(0,1),(0,2),...(0,s)}, I = {(1,1),(1,2),...,(L,s + 1)}, ..., Iy =
{(t, 1), (¢,2),...,(t,s + 1)} in fact form the fundamental partition of the
set N. Hence:

He¢ if l € supp(dy(ny—2);
Ch,z={ PP(dus(n)—2)

if 41,19 € Iy then there is k' such that w(i1),n(iz) € Ijr.

As I is the only set with s elements in the fundamental partition, we get
that 7(Iy) = In. We now prove that w(I)) = Iy, for k =1,2,...,t.
Assume that 7 € Sym(C), and that 7(Ix) = I, k # k'. As the
minimum distance in H is three, we deduce that there must be a base vector
dg, q € {1,2,...,p}, of the dual code of H such that [{k, k'}Nsupp(d,)| = 1.
Assume that k € supp(d,) and k" ¢ supp(dy). Let h € H be such that



g = w(h) — 2 and consider the code Cj. The symmetry = maps C} to
another code Cps with w(h) = w(h’). The code C}, contains words

(coler|...|ee) +7(h)  where Cig{l{t?*}iiffiizé: i=0,1,...,t

and C}, contains words

(coler]|---|et) + (') where  ¢; € { g)*}i;filjk]f/ i=0,1,...,t
If w(Iy) were equal to Iy, then, as 7(C) = C, we get that m(H®) = G°. As
an extended non linear perfect code never can be equivalent to an extended
Hamming code, this is not true and hence we get a contradiction and ()
must be equal to I, for k =1,2,...¢.

We observe that if = € Sym/(C) then, as

(Col0]...10) € Cn.7

is mapped to 7(Cp|0|...|0) and as Sym(Cy) = {id}, the restriction of =
to the set Ip must be the identity.

We now show that if # € Sym(C) then, for (k,i) € I, k = 1,2,...1,
w((k,)) = (k,1).

Assume that 7(i;) = j; (where i; and j; are contained in the same
set Ij) and let ia = 7~ !(i1). From the definition of C' and from the
observation above we deduce that C contains the words ¢ = (0*(e;, +
e )l0].. 10les, + s l0]..[0), ¢ = (" (e, + €510 Oles, + e [0]... [0)
and m(c) = (0" (e, +€4,)[0]...]0lej, +€;,[0]...]0).

We note that

. . 0 if i =i
d(O’ (e’h + ej1)70 (e’h + eiz)) = {2 else. ) 2
As d(¢/,m(c)) > 3, we may conclude that 7(i1) = j; = i2 and hence that =
must be a product of disjoint 2-cycles.

Without loss of generality we may thus assume that if 7 € Sym(C)

then

m(26—1) =2b and m(20) =2b—1 for b=1,2...,s/2.

We now show that this implies that C; has a non trivial kernel.
Ifa= (ah az, ..., %71) € (1 then:

a=(a+al(a,...,as-1,0(a))|0]...|0)+ (0]0...01|...]0...01]) € C.
As m € Sym(C) we get that w(a) € C and that 7(a) equals

(0|(ag, a1,a4,as,...,0(a),as—1)|0]...]0)+ (0]0...01]...]0...01]) e C



and hence, for any z =1,2,...,(s —2)/2,
@ = (ea.|(az2,a1,a4,03,...,0(a),as_1 + 1)+ ez.[0]...]0)+
(0/0...01]...]0...01])
belongs to C'. This implies that also the word
n(@) = (e2:|(a1,a2,as,a4,...,as_1 + 1,0(a)) + e2.-1|0|...|0)+

(0]0...01]...]0...01))

as well as the word

((Z +e2-1+ es—1|(a17 a2,a3,0a4,...,0s—1 + 1,0’(@)) + 622—1‘0| s |0)+

(0]0...01|...]0...01))

belongs to C' and hence that

a+ex,—1+es—1 €ey +Ch.

As a € C; was chosen arbitrarily and as a + es,_1 + €51 + ea, € Cq, we
get that the word ez, 1 + es_1 + eo, is a period of C;. As C is assumed
to have a trivial kernel we get a contradiction.

The theorem is proved.
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