On the symmetry group of perfect 1-error correcting binary codes

Olof Heden

January 24, 2003

Abstract

It is shown that for any rank r with $n-\log (n+1)+4 \leq r \leq n-4$ and any length n, where $n=2^{k}-1$ and $k \geq 8$, there is a perfect code with these parameters and with a trivial group of symmetries.

1 Introduction

We consider the direct product Z_{2}^{n} of n copies of the ring Z_{2}. The elements of Z_{2}^{n} will be called words. The distance, $d(c, v)$, between two words c and v is the number of positions in which they differ. A perfect 1-error correcting binary code is a subset C of Z_{2}^{n}, satisfying the following condition:
to any word v of Z_{2}^{n} there is a unique word c of Csuch that $d(c, v) \leq 1$.
Below we will write perfect code instead of perfect 1-error correcting binary code.

Perfect codes of length n exist if and only if $n=2^{k}-1$ where $k \geq 2$ is an integer. If $n=3$ or $n=7$ they are unique and linear subspaces of the vector space Z_{2}^{n}. In case $n \geq 15$ there are both linear and non linear perfect codes. There are now many different constructions of non linear perfect codes, see [11]. Many constructions are given by switching processes, see [1], and many by concatenations, see [10].

Let the rank, $r(C)$, of a code C be the dimension of the linear span, $<C>$, of the words of C. The linear perfect code H of length n has rank $n-\log (n+1)$ and is unique. (If $n=2^{k}$ then $\log (n)=k$.) This code will be called the Hamming code of length n.

Let the symmetry group of $C, \operatorname{Sym}(C)$, be defined as the set of permutations π of the coordinate set that fixes C, that is for any $c \in C, \pi(c) \in C$. The purpose of this note is to show the following theorem:

Theorem 1 For any possible length $n=2^{k}-1$, where $k \geq 8$, and rank r with

$$
n-\log (n+1)+4 \leq r \leq n-4,
$$

there is a perfect code with these parameters and with a trivial symmetry group.

It is well known that the number of different perfect codes of length n is extremely large, more than $2^{2^{n / 2-\log (n+1)}}$. So there is a need for some kind of classification or a tool to distinguish perfect codes.

Beside the rank and symmetry group mentioned above, the kernel of a perfect code has also been studied and seems to be of great importance for the classification of perfect codes.

A word p is a period of the code D if

$$
p+D=\{p+d \mid d \in D\}=D
$$

The set of periods of a code D will be called the kernel of $D, \operatorname{ker}(D)$. We note that the kernel is a linear subspace of Z_{2}^{n}.

All possible pairs (r, k), for which there is a perfect code of length n, rank r and with a kernel of dimension k have been determined, see e.g. [5]. Theorem 1 above is perhaps a little step on the way to see which the possibilities are for the symmetry group of a perfect code. It has already been proved that there are perfect codes with a trivial symmetry group. Phelps [9] proved that any finite group is the symmetry group of some perfect code. Avgustinovich and Solov'eva [2] showed that for any length ≥ 255 there is a perfect code of rank n, with a trivial symmetry group and a trivial kernel. This result was extended to perfect codes of length ≥ 31 by Malyugin [7] and of length 15, also by Malyugin [8], by using a computer search. Theorem 1 shows that this is true for any length n and any rank r as stated in the theorem.

2 Preliminaries

We will let N denote the set $\{1,2, \ldots, n\}$.
The weight of a word $c, w(c)$, is the number of non zero positions of c. We denote by e_{i} the word of weight one with the only one in the position i. We denote by e_{I} the word $\sum_{i \in I} e_{i}$.

In [3] we showed that to any perfect code of rank r with

$$
n-\log (n+1)+2 \leq r \leq n-1
$$

there is a partition of the set N :

$$
I_{0} \cup I_{1} \cup I_{2} \cup \ldots \cup I_{t}=N,
$$

where $t=2^{n-r}-1, I_{i} \cap I_{j}=\emptyset$ for $i \neq j$ and $\left|I_{0}\right|+1=\left|I_{1}\right|=\left|I_{2}\right|=\ldots=$ $\left|I_{t}\right|=(n+1) /(t+1)$, such that each of the words $e_{I_{i}}, i=0,1,2, \ldots, t$, are periods. This partition is called the fundamental partition of N associated with C.

With the support of a word $c=\left(c_{1}, \ldots, c_{n}\right)$ we mean the set

$$
\operatorname{supp}(c)=\left\{i \mid c_{i} \neq 0\right\}
$$

The set of vectors v of Z_{2}^{n} satisfying $\operatorname{supp}(v) \subseteq I_{i}$ is a subspace of the vector space Z_{2}^{n} that we denote by $Z_{2}^{I_{i}}$.

For words c of Z_{2}^{n}, we sometimes write $c=\left(c_{0}\left|c_{1}\right| \ldots \mid c_{t}\right)$, where c_{i}, for $i=0,1,2, \ldots, t$, is the projection of c on the subspace $Z_{2}^{I_{i}}$.

If c is a word of Z_{2}^{s+1} then c^{*} denotes the word of Z_{2}^{s} obtained from c by deleting the last coordinate of c. If $c=\left(c_{1}, c_{2}, \ldots, c_{s}\right)$, then we denote by c^{e} the word $\left(c_{1}, c_{2}, \ldots, c_{s}, c_{1}+c_{2}+\ldots+c_{s}\right)$ of Z_{2}^{s+1}. For any code D we denote by D^{e} the set $\left\{c^{e} \mid c \in D\right\}$.

If π is a permutation of the coordinate set of Z_{2}^{n} then π induces in the most natural way a map on the subsets of Z_{2}^{n}. If under this map a set D is mapped on a set D^{\prime} we denote D^{\prime} by $\pi(D)$.

We denote by $\mathbf{1}$ and $\mathbf{0}$ the words $(1,1, \ldots, 1)$ respectively $(0,0, \ldots, 0)$.
Let, for $x \in\left(Z_{2}^{s}\right)^{t}, \sigma_{i}(x)=\sum_{j=1}^{s} x_{i j}$ and $\sigma_{j}^{\prime}(x)=\sum_{i=1}^{t} x_{i j}$. Let $\sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{t}(x)\right)$ and $\sigma^{\prime}(x)=\left(\sigma_{1}^{\prime}(x), \ldots, \sigma_{s}^{\prime}(x)\right)$.

3 Proof of the Theorem 1

We consider Z_{2}^{n} where $n=(s+1)(t+1)-1$. The words of Z_{2}^{n} are denoted by

$$
\left(x_{01}, \ldots, x_{0 s}\left|x_{11}, \ldots, x_{1, s+1}\right| x_{21}, \ldots, x_{2, s+1}|\ldots| x_{t 1}, \ldots, x_{t, s+1}\right)
$$

where $x_{i j} \in Z_{2}$.
Let H be a Hamming code of length t. We define τ to be the following map from H to Z_{2}^{n} :

$$
\tau\left(\left(h_{1}, h_{2}, \ldots, h_{t}\right)\right)=\left(\mathbf{0}\left|0 \ldots 0 h_{1}\right| 0 \ldots 0 h_{2}|\ldots| 0 \ldots 0 h_{t}\right)
$$

We will use a construction similar to the Krotov construction [6] to define a perfect code $C_{H, \mathcal{F}}$ of length $(s+1)(t+1)-1$, where $s \geq 15$ and $t \geq 15$, with the desired properties. The code $C_{H, \mathcal{F}}$ will be the disjoint union of codes $C_{h}, h \in H$.

Let C_{0} be a perfect code of length s and with $\operatorname{Sym}\left(C_{0}\right)=\{i d\}$ and such that $\mathbf{0} \in C_{0}$. For the existence of such codes, see the introduction. For $h=\mathbf{0} \in \mathbf{H}$ we let

$$
C_{\mathbf{0}}=\left\{\left(c_{1}^{*}+\ldots+c_{t}^{*}+C_{0}\left|c_{1}\right| c_{2}|\ldots| c_{t}\right) \mid c_{1}, c_{2}, \ldots, c_{t} \in Z_{2}^{s+1}\right\}
$$

Let C_{1} be a perfect code of length s with a trivial kernel, see [4], and containing the zero word $\mathbf{0}$. Trivially $h=\mathbf{1} \in H$ and we define $C_{\mathbf{1}}$ to be the code

$$
\tau((1,1, \ldots, 1))+\left\{\left(c_{1}^{*}+\ldots+c_{t}^{*}+C_{1}\left|c_{1}\right| c_{2}|\ldots| c_{t}\right) \mid c_{1}, c_{2}, \ldots, c_{t} \in Z_{2}^{s+1}\right\}
$$

To describe the codes C_{h}, for $h \in H \backslash\{\mathbf{0}, \mathbf{1}\}$ we need a notation: For any integer $i=1,2, \ldots t, f_{i 0}$ denotes the zero word $(\mathbf{0}|\mathbf{0}| \ldots \mid \mathbf{0})$ and $f_{i k}$, for $i=1,2, \ldots, t$ and $k=1,2, \ldots, s$, the word $e_{i, k}+e_{i, s+1}$.

Denote the dimension of the dual space of H by p. Let $\left\{d_{1}, d_{2}, \ldots, d_{p}\right\}$ be a set of base vectors for the dual code of H. Let G be a non linear perfect code of length s. Below we will use the extended codes H^{e} and G^{e}.

Define, for $h=\left(h_{1} \ldots, h_{t}\right) \in H \backslash\{\mathbf{0}, \mathbf{1}\}, C_{h}$ to be the code
$\left(\cup_{\left(k_{1}, \ldots, k_{t}\right) \in S^{t}}\left(\sigma\left(f_{1 k_{1}}+\ldots+f_{t k_{t}}\right)+C_{h, 0}\left|f_{1 k_{1}}+C_{h, 1}\right| \ldots \mid f_{t k_{t}}+C_{h, t}\right)\right)+\tau(h)$
where $S=\{0,1,2, \ldots, s\}$ and $C_{h, l}$, for $l=1,2, \ldots, t$, are extended perfect codes that we will describe below.

The weight spectrum of the Hamming code H of length $n \geq 15$ contains $n-3$ integers. Thus we may define $C_{h, l}$, for $h \in H$, with $3 \leq w(h) \leq p+2$, to be

$$
C_{h, l}=\left\{\begin{array}{lll}
H^{e} & \text { if } & l \in \operatorname{supp}\left(d_{w(h)-2}\right) ; \\
G^{e} & \text { if } & l \notin \operatorname{supp}\left(d_{w(h)-2}\right) ;
\end{array}\right.
$$

and for $p+2<w(h)<t-2, C_{h, l}, l=1,2, \ldots, t$ to be any extended perfect code of length s.

By considering the minimum distance and the number of elements of $C_{H, \mathcal{F}}$ we get that $C_{H, \mathcal{F}}$ is a perfect code, see also [6].

We first note that if π belongs to $\operatorname{Sym}(C)$ then π maps the fundamental partition of N associated to the perfect code C to the same fundamental partition of N. As C_{1} has a trivial kernel, we may conclude from Corollary 1 of [4], that $r(C)=n-\log (t+1)$, and as a consequence, that the sets $I_{0}=\{(0,1),(0,2), \ldots(0, s)\}, I_{1}=\{(1,1),(1,2), \ldots,(1, s+1)\}, \ldots, I_{t}=$ $\{(t, 1),(t, 2), \ldots,(t, s+1)\}$ in fact form the fundamental partition of the set N. Hence:

$$
\text { if } i_{1}, i_{2} \in I_{k} \text { then there is } k^{\prime} \text { such that } \pi\left(i_{1}\right), \pi\left(i_{2}\right) \in I_{k^{\prime}} \text {. }
$$

As I_{0} is the only set with s elements in the fundamental partition, we get that $\pi\left(I_{0}\right)=I_{0}$. We now prove that $\pi\left(I_{k}\right)=I_{k}$, for $k=1,2, \ldots, t$.

Assume that $\pi \in \operatorname{Sym}(C)$, and that $\pi\left(I_{k}\right)=I_{k^{\prime}}, k \neq k^{\prime}$. As the minimum distance in H is three, we deduce that there must be a base vector $d_{q}, q \in\{1,2, \ldots, p\}$, of the dual code of H such that $\left|\left\{k, k^{\prime}\right\} \cap \operatorname{supp}\left(d_{q}\right)\right|=1$. Assume that $k \in \operatorname{supp}\left(d_{q}\right)$ and $k^{\prime} \notin \operatorname{supp}\left(d_{q}\right)$. Let $h \in H$ be such that
$q=w(h)-2$ and consider the code C_{h}. The symmetry π maps C_{h} to another code $C_{h^{\prime}}$ with $w(h)=w\left(h^{\prime}\right)$. The code C_{h} contains words

$$
\left(c_{0}\left|c_{1}\right| \ldots \mid c_{t}\right)+\tau(h) \quad \text { where } \quad c_{i} \in\left\{\begin{array}{l}
\{\mathbf{0}\} \text { if } i \neq k \\
H^{*} \text { if } i=k
\end{array} \quad i=0,1, \ldots, t\right.
$$

and $C_{h^{\prime}}$ contains words

$$
\left(c_{0}\left|c_{1}\right| \ldots \mid c_{t}\right)+\tau\left(h^{\prime}\right) \quad \text { where } \quad c_{i} \in\left\{\begin{array}{l}
\{\mathbf{0}\} \text { if } i \neq k^{\prime} \\
G^{*} \text { if } i=k^{\prime}
\end{array} \quad i=0,1, \ldots, t\right.
$$

If $\pi\left(I_{k}\right)$ were equal to $I_{k^{\prime}}$, then, as $\pi(C)=C$, we get that $\pi\left(H^{e}\right)=G^{e}$. As an extended non linear perfect code never can be equivalent to an extended Hamming code, this is not true and hence we get a contradiction and $\pi\left(I_{k}\right)$ must be equal to I_{k}, for $k=1,2, \ldots t$.

We observe that if $\pi \in \operatorname{Sym}(C)$ then, as

$$
\left(C_{\mathbf{0}}|\mathbf{0}| \ldots \mid \mathbf{0}\right) \subseteq C_{H, \mathcal{F}}
$$

is mapped to $\pi\left(C_{\mathbf{0}}|\mathbf{0}| \ldots \mid \mathbf{0}\right)$ and as $\operatorname{Sym}\left(C_{0}\right)=\{i d\}$, the restriction of π to the set I_{0} must be the identity.

We now show that if $\pi \in \operatorname{Sym}(C)$ then, for $(k, i) \in I_{k}, k=1,2, \ldots t$, $\pi((k, i))=(k, i)$.

Assume that $\pi\left(i_{1}\right)=j_{1}$ (where i_{1} and j_{1} are contained in the same set I_{k}) and let $i_{2}=\pi^{-1}\left(i_{1}\right)$. From the definition of C and from the observation above we deduce that C contains the words $c=\left(\sigma^{*}\left(e_{i_{1}}+\right.\right.$ $\left.\left.e_{i_{2}}\right)|0| \ldots|0| e_{i_{1}}+e_{i_{2}}|0| \ldots \mid 0\right), c^{\prime}=\left(\sigma^{*}\left(e_{i_{1}}+e_{j_{1}}\right)|0| \ldots|0| e_{i_{1}}+e_{j_{1}}|0| \ldots \mid 0\right)$ and $\pi(c)=\left(\sigma^{*}\left(e_{i_{1}}+e_{i_{2}}\right)|0| \ldots|0| e_{j_{1}}+e_{i_{1}}|0| \ldots \mid 0\right)$.

We note that

$$
d\left(\sigma^{*}\left(e_{i_{1}}+e_{j_{1}}\right), \sigma^{*}\left(e_{i_{1}}+e_{i_{2}}\right)\right)=\left\{\begin{array}{ccc}
0 & \text { if } & j_{1}=i_{2} \\
2 & \text { else }
\end{array}\right.
$$

As $d\left(c^{\prime}, \pi(c)\right) \geq 3$, we may conclude that $\pi\left(i_{1}\right)=j_{1}=i_{2}$ and hence that π must be a product of disjoint 2-cycles.

Without loss of generality we may thus assume that if $\pi \in \operatorname{Sym}(C)$ then

$$
\pi(2 b-1)=2 b \quad \text { and } \quad \pi(2 b)=2 b-1 \quad \text { for } \quad b=1,2 \ldots, s / 2
$$

We now show that this implies that $C_{\mathbf{1}}$ has a non trivial kernel.
If $a=\left(a_{1}, a_{2}, \ldots, a_{s-1}\right) \in C_{1}$ then:

$$
\bar{a}=\left(a+a\left|\left(a_{1}, \ldots, a_{s-1}, \sigma(a)\right)\right| \mathbf{0}|\ldots| \mathbf{0}\right)+(\mathbf{0}|0 \ldots 01| \ldots|0 \ldots 01|) \in C
$$

As $\pi \in \operatorname{Sym}(C)$ we get that $\pi(\bar{a}) \in C$ and that $\pi(\bar{a})$ equals

$$
\left(\mathbf{0}\left|\left(a_{2}, a_{1}, a_{4}, a_{3}, \ldots, \sigma(a), a_{s-1}\right)\right| \mathbf{0}|\ldots| \mathbf{0}\right)+(\mathbf{0}|0 \ldots 01| \ldots|0 \ldots 01|) \in C
$$

and hence, for any $z=1,2, \ldots,(s-2) / 2$,

$$
\begin{gathered}
\bar{a}^{\prime}=\left(e_{2 z}\left|\left(a_{2}, a_{1}, a_{4}, a_{3}, \ldots, \sigma(a), a_{s-1}+1\right)+e_{2 z}\right| \mathbf{0}|\ldots| \mathbf{0}\right)+ \\
(\mathbf{0}|0 \ldots 01| \ldots|0 \ldots 01|)
\end{gathered}
$$

belongs to C. This implies that also the word

$$
\begin{gathered}
\pi\left(\bar{a}^{\prime}\right)=\left(e_{2 z}\left|\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{s-1}+1, \sigma(a)\right)+e_{2 z-1}\right| \mathbf{0}|\ldots| \mathbf{0}\right)+ \\
(\mathbf{0}|0 \ldots 01| \ldots|0 \ldots 01|)
\end{gathered}
$$

as well as the word

$$
\begin{gathered}
\left(a+e_{2 z-1}+e_{s-1}\left|\left(a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{s-1}+1, \sigma(a)\right)+e_{2 z-1}\right| \mathbf{0}|\ldots| \mathbf{0}\right)+ \\
(\mathbf{0}|0 \ldots 01| \ldots|0 \ldots 01|)
\end{gathered}
$$

belongs to C and hence that

$$
a+e_{2 z-1}+e_{s-1} \in e_{2 z}+C_{1} .
$$

As $a \in C_{1}$ was chosen arbitrarily and as $a+e_{2 z-1}+e_{s-1}+e_{2 z} \in C_{1}$, we get that the word $e_{2 z-1}+e_{s-1}+e_{2 z}$ is a period of C_{1}. As C_{1} is assumed to have a trivial kernel we get a contradiction.

The theorem is proved.
Acknowledgement I am grateful to Faina I. Solov'eva for her support on this search and for her comments on a previous version of this text.

References

[1] Avgustinovich S. V., Solov'eva F. I., Construction of perfect binary codes by sequential translations of an $\tilde{\alpha}$-components, Problems of Information Transmission 33 (3) (1997) 202-207.
[2] Avgustinovich S. V., Solov'eva F. I., Perfect binary codes with trivial automorphism group, Proc. of Int. Workshop on Information Theory, Killarney, Ireland. June. 1998. P. 114-115.
[3] Avgustinovich S. V., Heden O., Solov'eva F. I., The classification of some perfect codes, submitted.
[4] Avgustinovich S. V., Heden O., Solov'eva F. I., On ranks and kernels of perfect codes, submitted.
[5] Avgustinovich S. V., Heden O., Solov'eva F. I., , On ranks and kernels problem of perfect codes, Proc. Eighth Int. Workshop on Algebraic and Comb. Coding Theory. Tsarskoe Selo, Russia. September (2002) 14-17.
[6] Krotov D. S., Combining construction of perfect binary codesProblems of Information Transmission36(2000)349-353.
[7] Malyugin S. A., Perfect codes with trivial automorphism group, Proc. Second Int. Workshop on Optimal Codes and Related Topics. Sozopol, Bulgaria. June. 1998. P. 163-167.
[8] Malyugin S. A., Private comunication with Faina I. Solov'eva.
[9] Phelps K. T., Every finite group is the automorphism group of some perfect code, J. Combin. Theory, series A 43(1)(1986)45-51.
[10] Solov'eva F. I., A combinatorial construction of perfect binary codes, Proc. of Fourth Int. Workshop on Algebraic and Comb. Coding Theory, Novgorod, Russia. September (1994) 171-174.
[11] Solov'eva F. I., Perfect binary codes: bounds and properties, Discrete Mathematics, 213 (2000) 283-290.
O. Heden, Department of Mathematics, KTH, S-100 44 Stockholm, Sweden. (olohed@math.kth.se)

