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Abstract
We discuss new results concerning unbounded Toeplitz operators defined in Segal–Bargmann

spaces of (vector-valued) functions, i.e. the space of all entire functions which are square summable

with respect to the Gaussian measure in Cn. The problem of finding adjoints of analytic Toeplitz
operators is solved in some cases. Closedness of the range of analytic Toeplitz operators is studied.

We indicate an example of an entire function inducing a Toeplitz operator, for which the space of
polynomials is not a core though it is contained in its domain.

1. Introduction.

We begin by introducing basic definitions and notations. Let H be a complex
separable Hilbert space. Consider L2(µ)⊗H, the Hilbert space of all complex Borel
functions taking values in H which are square-integrable on Cn with respect to the
measure µ given by dµ(z) = π−ne−z·zdV (z), where V is the Lebesgue measure in
Cn and z · z = |z1|2 + · · · + |zn|2 for z = (z1, . . . , zn) ∈ Cn. The inner product in
L2(µ)⊗H is given by

〈f, g〉(H) =
∫

Cn

〈f(ζ), g(ζ)〉H dµ(ζ), f, g ∈ L2(µ)⊗H,

where 〈·, ·〉H stands for the inner product in H. The norm induced by the above
defined inner product is denoted by ‖ · ‖(H) and in case H = CN by ‖ · ‖(N).
The Segal–Bargmann space Bn ⊗ H (abbreviated B ⊗ H) is a closed subspace of
L2(µ)⊗H composed of all entire functions belonging to L2(µ)⊗H. By P ⊗ IH we
mean the orthogonal projection of L2(µ)⊗H onto B⊗H. We will use the following
identifications: L2(µ) = L2(µ) ⊗ C, B = B ⊗ C, 〈·, ·〉 = 〈·, ·〉(1), ‖ · ‖ = ‖ · ‖(1)
and P = P ⊗ IC. Observe that B ⊗ CN can be identified with B ⊕ · · · ⊕ B (N -
times), and following this we have B ⊗ CN = {(f1, . . . , fN ) : f1, . . . , fN ∈ B} and
‖(f1, . . . , fN )‖2(N) =

∫
Cn(|f1|2 + · · ·+ |fN |2) dµ.

Given f : Cn → C and h ∈ H we define (f ⊗ h)(z) := f(z)h, z ∈ Cn. Put
ea(z) := ez·a, where z · a :=

∑n
k=1 zkak and a := (a1, . . . , an) for a = (a1, . . . , an) ∈

Cn and z = (z1, . . . , zn) ∈ Cn. Denote by E (= En) the linear span of the set of
functions {ea : a ∈ Cn}. It can be checked that 〈f(z), h〉H = 〈f, ez ⊗ h〉(H) for
f ∈ B ⊗ H, h ∈ H and z ∈ Cn (cf. [4]), which is referred to as the reproducing
property for B ⊗H. By P (= Pn) we denote the space of all analytic polynomials
in Cn. Both P and E are dense subsets of B. The sequence fk(z) := zk/

√
k!,

k ∈ Nn, z ∈ Cn, forms an orthonormal basis for B, where according to the standard
multiindex notation zk := zk11 · . . . · zkn

n , k! := k1! · . . . · kn! and |k| := k1 + . . .+ kn
for all z = (z1, . . . , zn) ∈ Cn and k = (k1, . . . , kn) ∈ Nn (N = {0, 1, 2, . . .}).
A is called a linear operator in a complex Hilbert space H if its domain D(A) is

a linear subspace of H and A : D(A) → H is a linear mapping. As usual, A∗, A,
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R(A) stand for the adjoint (provided it exists), the closure of A and the range of
A, respectively. We say that a linear subspace D ⊆ D(A) is a core for a closable
operator A if (A|D)− = A. All these notions are also meaningful for linear operators
acting between different Hilbert spaces. By B(H,K) (H, K - Hilbert spaces) we
denote the space of all bounded linear operators A : H → K, and B(H) := B(H,H).
The graph norm ‖ · ‖A is defined by ‖f‖2A = ‖f‖2H + ‖Af‖2H, f ∈ D(A).

Write P ⊗ H for the space of polynomials (in Cn) taking values in H, i.e. the
totality of functions of type

∑K
j=0 pj ⊗ hj , where pj ∈ Pn, hj ∈ H and K ∈ N (in

the case where H = CN the elements of this space are identified with N -tuples of
polynomials). Spaces E⊗H and P⊗B(H,K) are defined analogously. Observe that
p ∈ P ⊗B(CM ,CN ) can be written as a matrix [pkl]

l=1,...,M
k=1,...,N with some polynomials

pkl ∈ P. Given p ∈ P ⊗ B(H,K), p(z) =
∑

|j|<K Ajz
j , Aj ∈ B(H,K), z ∈ Cn,

define p# ∈ P ⊗ B(K,H) via p#(z) = p(z)∗, z ∈ Cn, and a differential operator
(p(D)F )(z) =

∑
|j|<K AjD

jF (z), z ∈ Cn, where F : Cn → H is an analytic function

(here Dj = ∂|j|

∂z
j1
1 ...∂zjn

n

for j = (j1, . . . , jn)). We will regard p(D) as an operator in

B ⊗H and its domain is defined as D(p(D)) = {F ∈ B ⊗H : p(D)F ∈ B ⊗K}.
Let ϕ : Cn → B(H,K) be an analytic function. Define ϕ#(z) := ϕ(z)∗, which

amounts to taking adjoints of all coefficients in the series expansion of ϕ, and
ϕ∗(z) := ϕ(z)∗ for z ∈ Cn. A Toeplitz operator1 with symbol ϕ is defined by
D(Tϕ) = {f ∈ B ⊗ H : ϕf ∈ B ⊗ K} and Tϕf = ϕf for f ∈ D(Tϕ), where
(ϕf)(z) = ϕ(z)f(z), z ∈ Cn. We need one more operator in B⊗H denoted by Πϕ∗ ,
which is defined via

Πϕ∗f(z) =
∫

Cn
ϕ∗(ζ)f(ζ)ez·ζdµ(ζ), z ∈ Cn,

and its domain consists of all f : Cn → K such that the above integral exists2 for
all z ∈ Cn and the function in z defined by it lies in B ⊗ H. Since Πp∗ = p#(D)
for p ∈ P ⊗ B(H,K) (cf. [4]), we may regard Πϕ∗ as a generalized differential
operator. It is known that Πp∗ = (Tp|E⊗H)∗ = (Tp|P⊗H)∗ (cf. [4, Corollary 7.3]).
The following abstract lemma reflects the connection between Tp and Πp∗ .

Lemma 1.1. Let A be a closed operator in H and V ⊆ D(A) be a dense subspace
of H. Then for B := (A|V)∗ the following conditions are equivalent:
(i) A∗ = B;
(ii) ker(I +AB) = {0};
(iii) AB is symmetric;
(iv) AB is non-negative;
(v) AB is selfadjoint;
(vi) V is a core for A.
Interchanging A and B in (i) – (v) gives another condition equivalent to (vi).

Proof. Observe that A∗ ⊆ B and B is closed. Both these facts are in frequent
use in the following proof. We begin with (i)⇔(ii). Let Γ(A) denote the graph of A,
i.e. the set {(x, y) : x ∈ D(A), Ax = y}. Then one can easily show that Γ(B)	Γ(A∗)
consists of all (x, y) such that x ∈ D(B), y = Ax ∈ D(A) and x + Ay = 0, which
immediately implies the desired equivalence. Equivalence (i)⇔(vi) is implied by
taking adjoints in (i). By standard operator theory (i) implies (iii), (iv) and (v).
Since each of (iv) and (v) implies (iii) by definition, it suffices to prove implication
(iii)⇒(i). Observe that AA∗ is a selfadjoint operator contained in AB. Hence by

1What we have defined here is, in fact, an analytic Toeplitz operator, cf. [4] for the general

case.
2i.e. it is weakly convergent, cf. [4]
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(iii) AA∗ = AB, which implies (ii) and, consequently, (i). So the equivalence of
conditions (i)–(vi) is established.

Condition (i) may be rewritten as A = B∗. Thus the last statement of the
assertion follows.

The adjointness hypothesis consists in equality T ∗p = Πp∗ for p ∈ P ⊗ B(H),
which was proved in some cases, e.g. p ∈ Pn, cf. [10], or p ∈ P1 ⊗ B(H) and its
leading coefficient is surjective, cf. [4]. In the present paper we present new results
concerning the hypothesis.

Toeplitz operators of type Tp as above, and their adjoints, play an important
role in extending known results on partial differential operators and convolution
operators in the space of entire functions to the context of Segal–Bargmann spaces.
Suppose for simplicity we consider one-variable Segal–Bargmann space B. In the
classical theory of linear differential equations of infinite order, with constant coef-
ficients (one variable), one starts with a “symbol function” ϕ, which is entire and
of exponential type, and the thematic problem is to show that every entire function
u which satisfies the equation ϕ(D)u = 0 is, in the sense of uniform approximation
on compact sets, the limit of a sequence each term of which is a finite linear combi-
nation of “monomial exponential” solutions of this same equation, that is solutions
of the form m(z) = zr exp(wz), where w ∈ C and r ∈ N. There are various ways,
all equivalent, to define the operator ϕ(D), for example as an infinite order dif-
ferential operator, or as convolution with a certain compactly supported measure
on C, whose Fourier–Laplace transform is ϕ. This theory originated in the study
of difference and differential-difference equations, and there is a solid treatment of
this e.g. [6], for more modern versions see e.g. [5].

A more refined question (arising from Delsarte’s notion of mean periodic func-
tions, originally in the context of functions of a real variable but extended to the
holomorphic category by Laurent Schwartz and others) is this: Given u entire such
that its translates (equivalently its derivatives) fail to span Hol(C) (the entire func-
tions), which is equivalent to the existence of some nontrivial ϕ of exponential type
such that ϕ(D)u = 0, do those translates none the less span enough monomial ex-
ponentials to, in turn, span (“synthesize”) u? This is the spectral synthesis question
for Hol(C). It is known that this question too has an affirmative answer; in higher
dimensions however there are counterexamples to the spectral synthesis version,
whereas the positive solution to the versions in the preceding paragraph holds in
all dimensions.

Using this as a guide, one can formulate analogous questions in other topological
vector spaces of entire functions. For example, in B let us ask whether the solutions
to ϕ#(D)u = 0 are in the closure of the monomial exponential solutions. Here we
may take as our definition of ϕ#(D) the operator Πϕ∗ . It is no longer necessary
to suppose ϕ of exponential type, we get a sensible problem whenever the product
of ϕ by each exponential is in B; however, to fix ideas think first of the case where
ϕ is of exponential type; even here the question to be posed is still unsolved. The
monomial exponentials in question consist precisely of, for each zero w of ϕ, the
functions zk exp(wz), k = 0, . . . , r − 1 where r is the multiplicity of the zero.

The question whether these span all solutions to ϕ#(D)u = 0 in the norm
topology of B, then translates, by duality, to this: suppose h in B is orthogonal to
the monomial exponentials belonging to kerϕ#(D); this is equivalent to it vanishing
on all zeros of ϕ, with the appropriate multiplicities, i.e. to the assertion: h/ϕ is
an entire function. We ask if h must then be orthogonal to each u that is, in turn,
orthogonal to all ϕ(z) exp(tz) with t ∈ C. Since h = ϕF for some entire F , the
question is whether ϕF is approximable in B-norm by exponential multiples of ϕ.
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And this is just the question: do the finite linear combinations of exponentials span
every entire function, in the metric of L2(|ϕ|2dµ)?

In [10] an affirmative solution was given for ϕ which are exponential polynomials,
and indeed in any number of variables. But, for other classes of entire functions ϕ
this is unsolved.

The counterexample of Borichev [1] (and our version of it below, in Section 4) are
a borderline case: they can be said to disprove spectral synthesis for some “symbol
function” ϕ of very large growth — so large, indeed, that the equation ϕ#(D)u = 0
has to be interpreted in a generalized sense, namely u (in B) is orthogonal to all the
polynomial multiples of ϕ (this is all we have to work with, since the exponential
multiples, needed for the natural definition, do not lie in B). So, it is of interest to
know whether a corresponding counterexample exists where ϕ is of smaller growth,
at least multiplying exponentials into B.

2. Adjointness.

In what follows ∆(w,R) ⊆ Cn stands for the open polydisk with radius R centered
at w. Let Pk : Cn → C, k = 1, . . . , n, denote projection onto the k-axis, i.e.
Pk(z) := zk for all z = (z1, . . . , zn) ∈ Cn.

Lemma 2.1. Let X be a Borel measurable set such that Pk(X) is bounded for
some k ∈ {1, . . . , n} and R := inf{r > 0 : Pk(X) is contained in ∆(w, r) with some
w}. Then there exists a constant C depending only on R such that

(2.1)
∫

Cn
|f |2dµ ≤ C

∫
Cn\X

|f |2dµ

for all entire functions f : Cn → C.

Proof. First consider the one-dimensional case. Fix R > 0, w ∈ C and an
entire function f defined on C. Put I(r) :=

∫ 2π

0
|f(reit + w)|2dt, r ≥ 0. Since I(r)

is increasing with respect to r we have

re−r
2
I(r) ≤ (R+ r)e3R

2
e−(R+r)2I(R+ r), r ∈ [0, R].

Both sides of this inequality are functions in r, so integrating over the interval [0, R]
(with respect to the Lebesgue measure) yields

(2.2)
∫

∆(w,R)

|f |2dµ ≤ e3R
2
∫

∆(w,2R)\∆(w,R)

|f |2dµ.

Adding
∫
C\∆(w,R)

|f |2dµ to both sides of (2.2) implies the assertion with X =

∆(w,R) and C := e3R
2
+ 1.

We now proceed with the multi-dimensional case. Assume that X satisfies the
assumptions of the lemma with some k. Let R be the constant defined in the
statement of Lemma, then Pk(X) ⊆ ∆(w,R+1) with some w ∈ C. Let f : Cn → C
be an entire function. Set Yk := {(z1, . . . , zn) ∈ Cn : |zk − w| > R + 1}. An easy
application of the one-dimensional case leads to∫

Cn
|f |2dµ ≤ C

∫
Yk

|f |2dµ,

with C := e3(R+1)2 + 1. Since Yk ⊆ Cn \X the result follows.

Lemma 2.2. Given f ∈ B1, p ∈ P1 \ {0} and ε > 0 there exists a polynomial
q ∈ P1 such that ‖f − q‖ ≤ ε and f = q (mod p), i.e. there exists h ∈ Hol(C)
satisfying f − q = ph.

Proof. We first state the following auxiliary fact:
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Lemma 2.3. Let p ∈ P1 \ {0} and let ρ > 0 be such that ∆(0, ρ) contains all
zeroes of p. Then there exists a constant C > 0 depending only on p and ρ such
that for every F ∈ Hol(∆(0, ρ)) one can find a unique Q ∈ P1 such that
(i) degQ ≤ deg p− 1,
(ii) F−Q

p ∈ Hol(∆(0, ρ)),
(iii) supz∈∆(0,ρ) |Q(z)| ≤ C supz∈∆(0,ρ) |F (z)|.

To prove this suppose that z1, . . . , zr are distinct zeroes of p with multiplicities
m1, . . . ,mr (resp.). Observe that m := m1 + . . .mr = deg p. By the Cauchy
inequality there exists C1 > 0 (depending on ρ) such that

|g(l)(zj)| ≤ C1 sup
z∈∆(0,ρ)

|g(z)|, l = 1, . . . ,mj ,

for every j ∈ {1, . . . , r} and g ∈ Hol(∆(0, ρ)). We can find another constant C2 > 0,
which depends only on p and ρ, such that

sup
z∈∆(0,ρ)

|h(z)| ≤ C2 max{|h(lj)(zj)| : lj = 1, . . . ,mj and j = 1, . . . , r},

for every h ∈ P1 with deg h ≤ m − 1, because by the Lagrange–Hermite interpo-
lation the right-hand side of the above inequality defines a norm in the space of
polynomials of degree at most m− 1.

Choose arbitrary F ∈ Hol(∆(0, ρ)). Applying the Lagrange–Hermite interpo-
lation we infer that there exists a unique Q ∈ P1 of degree at most m − 1 such
that

Q(l)(zj) = F (l)(zj), l = 1, . . . ,mj .

for every j = 1, . . . , r. Hence Q satisfies (i) and (ii). By the choice of C1 and C2

we see that (iii) holds with C := C1C2. This completes the proof of Lemma 2.3.
We now turn to the proof of Lemma 2.2. Fix f ∈ B1, p ∈ P1 and δ > 0. Choose

a polynomial g such that ‖f−g‖ ≤ δ and ρ > 0 such that ∆(0, ρ) contains all zeroes
of p. Set F := f − g. Then, by the reproducing property for B, |F (z)| ≤ δe|z|

2/2,
z ∈ C, and, consequently,

|F (z)| ≤ δeρ
2/2, z ∈ ∆(0, ρ).

We can now apply Lemma 2.3 to obtain the polynomial Q, degQ ≤ m − 1 (here
m := deg p), such that F−Q

p is analytic in ∆(0, ρ) (hence entire) and

|Q(z)| ≤ Cδeρ
2/2, z ∈ ∆(0, ρ),

with C > 0 depending only on p and ρ. This implies that

|Q(z)| ≤ Cδeρ
2/2 max

{(
|z|
ρ

)m−1

, 1

}
, z ∈ C.

This inequality leads to ‖Q‖ ≤ C ′δ with a new constant C ′ > 0 depending only on
p and ρ. Setting q := g+Q we obtain a polynomial, for which f − q is divisible by
p. Moreover,

‖f − q‖ = ‖f − g −Q‖ ≤ ‖f − g‖+ ‖Q‖ ≤ δ(1 + C ′).

Since δ can be made arbitrarily small, the result follows.

Theorem 2.4. Let p ∈ P1 ⊗ B(CM ,CN ) with M > N ≥ 1 and f ∈ D(Tp).
Assume that p(z) is of maximal rank for at least one point z ∈ C. Suppose that
Tpf = 0. Then for any ε > 0 there exists q ∈ P1 ⊗ CM such that ‖f − q‖(M) ≤ ε
and Tpq = 0.
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Proof. We can represent p by means of the matrix [pkl]
l=1,...,M
k=1,...,N , where pkl ∈ P1.

Put p̃ := [pkl]
l=1,...,N
k=1,...,N . By assumption on the rank of p, rearranging columns if

necessary, we can assume that d(z) := det p̃(z) is not identically zero; moreover,
it can be done so that deg d is maximal among degrees of all possible minors of
dimension N , which arise from the matrix representing p.

Given ε0 > 0 by Lemma 2.2 we can find polynomials qN+1, . . . , qM ∈ P1 such
that fj = qj (mod d) and ‖fj−qj‖ < ε0, j = N+1, . . . ,M . By the Cramer formulas
there exist rational functions q1, . . . , qN such that Tp(q1, . . . , qM ) = 0. Thus every
qj , j = 1, . . . , N , can be expressed by qN+1, . . . , qM via

(2.3) qj = d−1 det

 p11 . . . p1 j−1 −
∑M
l=N+1 p1lql p1 j+1 . . . p1N

...
...

...
...

...
pN1 . . . pN j−1 −

∑M
l=N+1 pNlql pN j+1 . . . pNN


for j = 1, . . . , N .

Observe that all qj ’s are polynomials! Indeed, one can verify that the difference
fj − qj is an entire function. To see this it suffices to check that the formula (2.3)
holds if qj is replaced by fj , j = 1, . . . ,M , in both members of (2.3). Then it
turns out that for each j ∈ {1, . . . , N} function fj − qj is a linear combination with
polynomial coefficients of fl − ql, l = N + 1, . . . ,M , divided by d. By the choice
of qj the difference fl − ql is divisible by d, l = N + 1, . . . ,M . Thus fj − qj is
entire and, consequently, qj is entire. Since every entire rational function has to be
a polynomial, we deduce that every qj is a polynomial.

It remains to estimate the norm of fj − qj for j = 1, . . . , N . Note that by (2.3)
for fixed j ∈ {1, . . . , N} we get

fj − qj =
M∑

l=N+1

αl
Ml

d
(fl − ql),

where Ml is a properly chosen minor of dimension N in p (obviously, Ml depends
on j, which has been omitted in the notation) and αl is equal to 1 or −1. Choose
R > 0 such that all zeros of d lie in ∆R. By the assumption on deg d we infer that
every quotient Ml

d is bounded outside ∆R. Set c̃l = sup{|Ml(z)
d(z) | : z ∈ C \ ∆R}.

Then

|fj(z)− qj(z)| ≤
M∑

l=N+1

c̃l|fl(z)− ql(z)|, z ∈ C \∆R.

Taking squares, integrating over C \∆R and applying Lemma 2.1 yield

‖fj − qj‖2 ≤ CR ε
2
0 (M −N)

M∑
l=N+1

c̃2l ,

where CR is some positive constant. If ε0 is small enough, then polynomial q :=
(q1, . . . , qM ) satisfies all the required conditions.

Note: The authors thank John McCarthy for a valuable suggestion in connection
with the proof of Theorem 2.4.

Theorem 2.5. Let p ∈ P1 ⊗B(CM ,CN ). Then T ∗p = Πp∗ .

Proof. It suffices to check the density of P1 ⊗ CN in D(Tp) with respect to
the graph norm ‖ · ‖Tp

. Choose f ∈ D(Tp). We are going to show that there
exists q ∈ P1 ⊗ CN such that ‖f − q‖Tp is arbitrarily small. Define p̃ ∈ P1 ⊗
B(CM+N ,CN ) by p̃(z) = [p(z),−IN ], where IN stands for the identity matrix of
dimension N . It is easily seen that p̃ satisfies the assumptions of Theorem 2.4.
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Since Tp̃(f, Tpf) = 0, given ε > 0 we can find q̃ = (q1, . . . , qM+N ) ∈ P1 ⊗ CM+N

such that Tp̃q̃ = 0 and ‖(f, Tpf) − q̃‖(M+N) ≤ ε. Setting q := (q1, . . . , qN ) we
see that Tpq = (qN+1, . . . , qN+M ), as a consequence of the equality Tp̃q̃ = 0, and
‖f − q‖2Tp

= ‖(f, Tpf)− q̃‖2(M+N) ≤ ε2.

It seems that the case of homogeneous polynomials is much easier to deal with,
even in the case of several complex variables and values being operators on (possi-
bly) infinite-dimensional Hilbert space H.

Proposition 2.6. If p ∈ P⊗B(H) is a homogeneous polynomial then T ∗p = Πp∗ .

Proof. The main idea of the proof is to write B ⊗H as an orthogonal sum of
subspaces reducing p#(D)Tp to a non-negative operator. Let Fk ⊆ P⊗H denote the
space of homogeneous polynomials of degree k (with the zero polynomial included).
Obviously, B⊗H =

⊕∞
k=0 Fk. It is easily seen that p#(D)Tp(Fk) ⊆ Fk for all k ≥ 0.

Hence, each Fk reduces p#(D)Tp. Pick arbitrary f ∈ Fk and compute

〈p#(D)Tpf, f〉(H) =
∫

Cn

〈p#(D)(pf)(z), f(z)〉H dµ(z)

=
∫

Cn

∫
Cn

〈p(ζ)∗p(ζ)f(ζ), f(z)〉Hez·ζ̄dµ(ζ) dµ(z).

The last equality follows from [4, Lemma 2.3], but the reader may obtain it applying
the theorem on differentiating under the integral sign. We may now change the
order of integration, which is allowed because the function under the integral sign
is summable with respect to µ ⊗ µ. Then it suffices to apply the reproducing
property for B ⊗H to see that

〈p#(D)Tpf, f〉(H) = 〈p∗pf, f〉(H) ≥ 0.

Since3 p#(D)Tp =
⊕∞

k=0 p
#(D)Tp|Fk

we infer that p#(D)Tp is non-negative, so by
Lemma 1.1 the assertion follows.

Remark 2.7. The above prove works also for the wider class of t-homogeneous
polynomials (cf. [9]).

Proposition 2.8. Assume that p = [pkl]k,l=1,...,N ∈ P ⊗B(CN ) is such that all
pkl are homogeneous. If deg pkl depends only on l, then T ∗p = Πp∗ .

Proof. (Based on an idea of J. Janas.) We are going to prove that Tpp#(D)
is non-negative. Let Fk,j ⊆ P ⊗ Cj denote the space of homogeneous polynomi-
als of degree k for k ≥ 0. Observe that B ⊗ CN =

⊕∞
k=0 Fk,N . We claim that

each Fk,N is invariant under Tpp#(D) (hence reducing for this operator). Op-
erator Tpp#(D)|Fk,N

: Fk,N → B ⊗ CN may be written as an operator matrix
[Akl]k,l=1,...,N , where

Akl =
N∑
j=0

Tpkj
p#
lj (D), D(Akl) = Fk,1.

By assumption on p we see that if f is homogeneous of degree k then so is Aklf .
It now remains to show that Tpp#(D)|Fk,N

is non-negative. Note first that

P ⊗ ICN (p∗f)(z) =
∫

Cn

p∗(ζ)f(ζ)ez·ζ̄dµ(ζ) = p#(D)f(z), z ∈ Cn, f ∈ Fk,N ,

for all k ≥ 0 (cf. [4, Lemma 2.3]). Thus

〈Tpp#(D)f, f〉(H) = 〈pp#(D)f, f〉(H) = 〈p#(D)f, P ⊗ ICN (p∗f)〉(H) ≥ 0

3Note that p#(D)Tp is closed.
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for all f ∈ Fk,N and k ≥ 0. Applying Lemma 1.1 completes the proof.

One of the natural questions which arise when studying the adjointness hypoth-
esis is whether it is possible to find the solution to this problem only by means
of coefficients of p. This idea is presented in the following theorem. The set of
operators A ⊆ B(H) is called jointly subnormal if there exists a set A′ ⊆ B(K) of
commuting normal operators defined on a larger Hilbert space containing H as a
closed subspace such that for every A ∈ A there exists A′ ∈ A′ satisfying A = A′|H.

Theorem 2.9. Suppose that p =
∑N
k=0 pk ⊗ Ak ∈ P ⊗ B(H) with pk ∈ P and

Ak ∈ B(H). If the sequence {Ak}Nk=0 is jointly subnormal, then T ∗p = Πp∗ .

The proof of this theorem requires the following lemma

Lemma 2.10. Suppose that q ∈ P ⊗ B(H) takes values only among normal
operators, f ∈ D(Tq) and g ∈ B ⊗H. Then the function

Cn × Cn 3 (z, w) → 〈g(w), q(w)f(z)〉ez·w ∈ C

is summable with respect to the measure µ⊗ µ in Cn × Cn.

Proof. We begin with a change of variables w = z + ζ, which yields∫
Cn
|〈g(w), q(w)f(z)〉ez·w| dµ(w) =

∫
Cn
|〈g(z + ζ), q(z + ζ)f(z)〉e−z·ζ | dµ(ζ)

Thus

J :=
∫

Cn

∫
Cn
|〈g(w), q(w)f(z)〉ez·w| dµ(w) dµ(z)

≤
∫

Cn
‖g(·+ ζ)e−ζ‖(H)‖q(·+ ζ)f‖(H) dµ(ζ).

But ‖g(·+ ζ)e−ζ‖(H) = e
1
2‖ζ‖

2‖g‖(H), which together with the normality of q(z) for
all z ∈ Cn implies that

J ≤ ‖g‖(H)

∫
Cn
‖q(·+ ζ)∗f‖(H)e

1
2‖ζ‖

2
dµ(ζ).

Applying the isometry theorem (cf. [10], [4]), which states that4

‖p∗h‖2(H) =
∑
j≥0

1
j!
‖(Djp#)(D)h‖2(H), p ∈ P ⊗B(H), h ∈ B ⊗H,

we infer that ‖q(·+ ζ)∗f‖(H) is of polynomial growth, so J <∞.

Proof of Theorem 2.9. Let q(z) :=
∑N
j=0 pj ⊗ Bj , where {Bk}Nk=0 is the

sequence of commuting normal operators defined on a larger Hilbert space K such
that Ak = Bk|H, k = 0, . . . , N . Thus q takes its values only among normal operators
and, consequently, T ∗q = q#(D), according to [4, Theorem 7.8]. We will show that
〈p#(D)Tpf, f〉(H) ≥ 0 for every f ∈ D(p#(D)Tp). Observe that

〈p#(D)Tpf, f〉(H) =
∫

Cn
〈p#(D)(pf)(z), f(z)〉 dµ(z)

=
∫

Cn
〈q#(D)(pf)(z), f(z)〉 dµ(z)

=
∫

Cn

∫
Cn
〈q(w)∗p(w)f(w), f(z)〉ez·wdµ(w) dµ(z).(2.4)

4The symbol “
∑

j≥0” should be read “sum over all multiindices j”. In the following equality

we put ‖F‖(H) = ∞ whenever F /∈ L2(µ)⊗H
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We know that pf ∈ B ⊗H, which implies that qf ∈ B ⊗ K, because p(z) = q(z)|H
for all z ∈ Cn. By Lemma 2.10 we are allowed to change the order of integration
in (2.4). So we arrive at

〈p#(D)Tpf, f〉(H) =
∫

Cn

∫
Cn
〈q(w)∗p(w)f(w), f(z)〉ez·wdµ(z) dµ(w)

=
∫

Cn
〈q(w)∗p(w)f(w), f(w)〉 dµ(w)

=
∫

Cn
‖p(w)f(w)‖2dµ(w) ≥ 0.

Thus ker(IH + p#(D)Tp) = {0}, which implies that T ∗p = p#(D).

Remark 2.11. If the property T ∗p = Πp∗ is proved for all polynomials, whose
coefficients commute, then it can easily be shown for arbitrary polynomial p. To
see this pick arbitrary p ∈ P ⊗B(H) and define polynomial q ∈ P ⊗B(H⊕H) via

q(z) =
[

0 0
p(z) 0

]
, z ∈ Cn.

Note that q(z) can be written as
∑

|j|≤N Bjz
j , z ∈ Cn, where Bj ∈ B(H⊕H) and

BjBk = 0 for all admissible j and k. Suppose that Tq = q#(D). Then for any
g ∈ D(Tq) one can find a sequence {hj}∞j=0 in P ⊗ (H⊕H) such that hj → g and
qhj → qg. One can readily check that ‖q(z)(f ⊕ g)‖ = ‖p(z)f‖ for all z ∈ Cn and
f, g ∈ H.

Pick arbitrary f ∈ D(Tp). Then f⊕0 belongs to the domain of Tq. Let {hj}∞j=0 ⊆
P ⊗ (H⊕H) be the sequence chosen so that hj → f ⊕ 0 and qhj → q(f ⊕ 0). Let
PH⊕0 be the orthogonal projection of H ⊕H onto H ⊕ 0. By the choice of q it is
apparent that the sequence {PH⊕0hj}∞j=0 ⊆ P ⊗ H tends to f in the graph norm
of Tp. Thus P ⊗H is a core for Tp and, consequently, T ∗p = p#(D).

3. Closedness of range.

Let p ∈ P ⊗ B(CN ). In what follows, det p stands for the polynomial defined in
the natural way as (det p)(z) = det(p(z)), and pkl ∈ B(CN−1) originates from p by
removing the k-th row and the l-th column.

Theorem 3.1. Assume that p ∈ P1 ⊗B(CN ), p 6= 0. Then Tp is bounded below
if and only if deg det p ≥ maxk,l=1,...,N deg det pkl ≥ 0.

Proof. The “only if” part of assertion was proved in [4, Proposition 8.6]. It
remains to consider the “if” part. Suppose that p = [pkl]k,l=1,...,N with pkl ∈ P1

and Tp(f1, . . . , fN ) = (g1, . . . , gN ) for (f1, . . . , fN ) ∈ D(Tp), which means that p11 · · · p1N

...
...

pN1 · · · pNN


 f1

...
fN

 =

 g1
...
gN

 .
Note that by assumption det p is not identically 0, so the above equation may be
solved for f1, . . . , fN . Choose R > 0 such that all zeroes of det p lie in ∆(0, R).
Hence, by the Cramer formulas, we infer that

|fj(z)| ≤ sup
{∣∣∣∣det pkl(ζ)

det p(ζ)

∣∣∣∣ : k, l = 1, . . . , N, |ζ| ≥ R

}
(|g1(z)|+ . . . |gN (z)|)
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for all j = 1, . . . N and z ∈ C \∆(0, R). Let M denote the supremum in the above
inequality. Then it follows that∫

C\∆(0,R)

N∑
j=1

|fj |2dµ ≤MN
N∑
j=1

‖gj‖2.

Applying Lemma 2.1 yields

‖Tp(f1, . . . , fN )‖(N) = ‖(g1, . . . , gN )‖(N) ≥ C‖(f1, . . . , fN )‖(N)

with an appropriate constant C > 0 depending only on p and R. This means that
Tp is bounded below.

Theorem 3.1 is the one variable refinement of [4, Proposition 8.6], which gives
the necessary condition for boundedness below of Tp in the multivariable case.
Although it does not seem likely one can obtain the multivariable version of the
above theorem we have not been able to give any counterexample.

The following proposition deals with non-injective operators with closed range.

Proposition 3.2. Let p ∈ P1 ⊗B(CN ,C). Then R(Tp) is closed.

Proof. Assume that p = [p1, . . . , pN ] and q is the greatest common divisor of
all pj ’s, j = 1, . . . , N . We may choose p such that pN 6= 0, which involves no loss
of generality. We are going to establish the following description of the range:

R(Tp) =
{
g ∈ B1 :

g

q
extends to an entire function

}
.

Since Tp(f1, . . . , fN ) =
∑N
j=1 pjfj the inclusion “⊆” is obvious. To prove the reverse

inclusion pick g ∈ B1 such that g
q is entire. By easy algebra there exist polynomials

q1, . . . , qj such that
∑N
j=1 qjpj = qr, where r is a polynomial chosen so that g−qr

pN

is entire (use the interpolation property). Put

fj := qj for j = 1, . . . , N − 1, and fN :=
g − qr

pN
+ qN .

It is easily seen that fN ∈ B1 and Tp(f1, . . . , fN ) = g, thus g ∈ R(Tp).
Observe thatR(Tp) = R(Tq), where Tq is Toeplitz operator defined in B1. By the

Newman–Shapiro Isometry Theorem [10, 4] operator Tq is bounded below, hence
R(Tq) is closed.

We now turn to an example showing that the above proposition is not true in
the multivariable case.

Example 3.3. R(Tp) need not be closed even in case of homogeneous polyno-
mials. Define p = [ p1 p2 ], where p1(z, w, ζ) = z3w3 − ζ6 and p2(z, w, ζ) = w6,
(z, w, ζ) ∈ C3. Observe that R(Tp) contains all functions of type w3ζ6q, where q is
an arbitrary polynomial depending only on z. This follows from Tp(−w3q, z3q) =
w3ζ6q. Suppose R(Tp) is closed. Then it follows that the closure of {w3ζ6q :
q is a polynomial depending only on z} is contained in R(Tp). But this closure is
equal to {w3ζ6f : f ∈ B3, f depends only on z}, which is an immediate con-
sequence of ‖w3ζ6q‖2 = 3!6!‖q‖2, with q depending only on z. Put f0(z) =
(ez

2/2 − 1)(z − z1)−1(z − z2)−1, where z1, z2 are two different zeroes of func-
tion ez

2/2 − 1. Observe that f0 ∈ B1. Hence, there are f, g ∈ B3 such that
Tp(f, g)(z, w, ζ) = w3ζ6f0(z), or more explicitly

(z3w3 − ζ6)f(z, w, ζ) + w6g(z, w, ζ) = w3ζ6 ez
2/2 − 1

(z − z1)(z − z2)
, z, w, ζ ∈ C.
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Fix arbitrary x > 0. Substituting z := x, w := 1
x and ζ := 1 we get

g(x,
1
x
, 1) = x3 ex

2/2 − 1
(x− z1)(x− z2)

, x > 0.

This leads to a contradiction, because the left hand side of the above equality can
be estimated from above by ‖g‖ exp(x

2

2 + 1
2x2 + 1

2 ), x > 0, whereas this is impossible
for the right hand side. So we have proved that the range of Tp is not closed.

By a similar argument one can show that the range of operator Tq with q(z, w, ζ) =
[ q1 q2 ], q1(z, w, ζ) = z3w3 − ζ6, q2(z, w, ζ) = w4, (z, w, ζ) ∈ C3, is not closed.
Observe that deg q1 6= deg q2 in opposition to the previous example. Hence, if we
drop the assumption on equality of degrees of coordinate polynomials, then it does
not follow that the range of Tp is closed in case of several complex variables.

4. The non-density example.

Below we show an example of an analytic function ϕ for which polynomials do not
form a core for the operator Tϕ though they are contained in its domain. In other
words: we will indicate an analytic ϕ for which the space of all entire functions
square–integrable with respect to the measure (1 + |ϕ|2) dµ contains polynomials
as a non-dense subset. Before we go into details we need the following theorem,
which is of independent interest.

Theorem 4.1. Let {zk}∞k=1 ⊆ C be a sequence of non-zero numbers satisfying
| zk+1
zk
| ≥ λ for all k ∈ N with some λ > 1. Then the formula

ψ(z) :=
∞∏
k=1

(
1− z

zk

)
, z ∈ C,

defines an entire function for which there exists c > 0 such that ‖Tψf‖ ≥ c‖f‖ for
all f ∈ D(Tψ).

Proof. Since we want to impose some additional conditions on the given se-
quence {zk}∞k=1 ⊆ C, we will show that it suffices to deal only with a modification
of this sequence obtained by removing a few initial terms. Indeed, if the theorem
is proved for ψ1(z) :=

∏∞
k=1(1−

z
zk+j

) with some integer j ≥ 0, then applying the

boundedness below of Tp with the polynomial p := ψ
ψ1

we get

‖Tψf‖ = ‖Tpψ1f‖ ≥ c1‖ψ1f‖, f ∈ D(Tψ),

where c1 is a positive constant. Thus if Tψ1 is bounded below, then so is Tψ.
From now on we are going to assume that |z1| ≥ 1,

(4.5) λ ≥ 3
|zk|

+ 1, k = 1, 2, . . . ,

and

(4.6) |zk − zj | > 4, k 6= j,

which can be easily obtained by omitting a suitable number of initial terms in the
sequence {zk}∞k=1.

Denote by ∆(w, r) the open disk with radius r centered at w ∈ C. We claim that
there exists a positive constant a such that

(4.7) |ψ(z)| ≥ a for z ∈ C \
∞⋃
k=1

∆(zk, 1).

To prove this we first show that there exists a > 0 such that

(4.8) |ψ(zk + ζ)| ≥ a whenever |ζ| = 1 and k = 1, 2, . . . .
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By assumption (4.6) the unit disks centered at the zk’s are disjoint so

min{|ψ(zk + ζ)| : k = 1, 2, |ζ| = 1} > 0.

Fix k ≥ 3 and observe that

ψ(zk + ζ) =
(

1− zk + ζ

z1

) k−1∏
j=2

(
1− zk + ζ

zj

) (
− ζ

zk

) ∞∏
j=k+1

(
1− zk + ζ

zj

)

We are going to find uniform (in k) estimates for terms appearing in the above
equality. We have∣∣∣∣(1− zk + ζ

z1

) (
− ζ

zk

)∣∣∣∣ ≥ |zk| − |z1| − 1
|z1zk|

≥ 1
|z1|

− 1
|z2|

− 1
|z1z2|

> 0.

The next term is estimated as follows∣∣∣∣∣∣
k−1∏
j=2

(
1− zk + ζ

zj

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
k−2∏
j=1

(
1− zk

zk−j
− ζ

zk−j

)∣∣∣∣∣∣
≥

k−2∏
j=1

(∣∣∣∣ zk
zk−j

∣∣∣∣− 1
|zk−j |

− 1
)

≥
k−2∏
j=1

(
λj − 1

|z1|
− 1

)
.

The last term tends to infinity as k →∞. By (4.5) we see that it is always positive,
so there exists a uniform positive lower bound for all k’s. We now turn to the
remaining part:∣∣∣∣∣∣

∞∏
j=k+1

(
1− zk + ζ

zj

)∣∣∣∣∣∣ =
∞∏
j=1

∣∣∣∣1− zk + ζ

zk+j

∣∣∣∣
≥

∞∏
j=1

(
1− |zk|+ 1

λj |zk|

)

=
j0∏
j=1

(
1− |zk|+ 1

λj |zk|

) ∞∏
j=j0+1

(
1− |zk|+ 1

λj |zk|

)
,

where j0 is the minimal integer for which 1− 2
λj > 0 for j ≥ j0. Hence

∞∏
j=j0+1

(
1− |zk|+ 1

λj |zk|

)
≥

∞∏
j=j0+1

(
1− 2

λj

)
> 0.

To complete the proof of (4.8) we proceed to show that

(4.9) 1− |zk|+ 1
λj |zk|

> c̃, j = 1, . . . , j0,
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with some c̃ > 0. Indeed,

1− |zk|+ 1
λj |zk|

≥ 1− |zk|+ 1
λ|zk|

= 1− 1
λ
− 1
λ|zk|

≥ 1− 1
λ
− 1
λ|z2|

,

which implies (4.9). So we have proved (4.8).
To deduce (4.7) from (4.8) we need to apply the Wiman theorem stating that for

an entire function f : C → C of sufficiently small growth (i.e. dominated by eα|z|
β

with some α > 0 and β ∈ (0, 1
2 )) there exists a strictly increasing sequence of radii

{Rj}∞j=1 such that Rj → ∞ and min{|f(z)| : |z| = Rj} → ∞ when j → ∞ (cf.
[2, Thm 3.1.1]). In particular, we are able to find a sequence {Rj}∞j=1 satisfying
min{|ψ(z)| : |z| = Rj , j ≥ 1} ≥ a, where a is a constant appearing in (4.8). In
order to prove (4.7) it suffices to notice that

|ψ(z)| ≥ a, z ∈ ∆(0, Rj) \
∞⋃
k=1

∆(zk, 1)

for each j ≥ 1. This in turn follows from the minimum principle applied to ψ
restricted to the interior of ∆(0, Rj)\

⋃∞
k=1 ∆(zk, 1). So the property (4.7) is proved.

Having established (4.7) we are in a position to finish the proof. Suppose that
F : C → C is entire and chosen so that F

ψ is again entire. Applying (2.2) and (4.7)
we obtain∫

C

∣∣∣∣Fψ
∣∣∣∣2 dµ =

∫
C\

⋃∞
k=1 ∆(zk,1)

∣∣∣∣Fψ
∣∣∣∣2 dµ+

∞∑
k=1

∫
∆(zk,1)

∣∣∣∣Fψ
∣∣∣∣2 dµ

≤
∫

C\
⋃∞

k=1 ∆(zk,1)

∣∣∣∣Fψ
∣∣∣∣2 dµ+ e3

∞∑
k=1

∫
∆(zk,2)\∆(zk,1)

∣∣∣∣Fψ
∣∣∣∣2 dµ

≤ 1
a2

∫
C\

⋃∞
k=1 ∆(zk,1)

|F |2dµ+
e3

a2

∞∑
k=1

∫
∆(zk,2)\∆(zk,1)

|F |2dµ

=
1
a2

∫
C\

⋃∞
k=1 ∆(zk,1)

|F |2dµ+
e3

a2

∫
⋃∞

k=1 ∆(zk,2)\∆(zk,1)

|F |2dµ

≤ e3 + 1
a2

∫
C

|F |2dµ.

This implies that ‖Tψf‖2 ≥ a2(e3+1)−1‖f‖2 for f ∈ D(Tψ). The proof is complete.

We now proceed with the example described in the beginning of this section.
Let {zk}∞k=1 be any sequence satisfying assumptions of Theorem 4.1 and such that
ez

2
k/2 = 1, k ≥ 1. Define the entire function ϕ by

ϕ(z) :=
ez

2/2 − 1∏∞
k=1(1−

z
zk

)
.

In the next proposition we list some properties of the operator Tϕ.

Proposition 4.2. (i) P ⊆ D(Tϕ).
(ii) P is not dense in D(Tϕ) with respect to the graph norm of Tϕ.
(iii) E 6⊆ D(Tϕ).
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Proof. Throughout the proof we will use the notation: r(z) := z and ψj(z) :=∏∞
k=j(1−

z
zk

), j ≥ 1, z ∈ C.
(i) Given arbitrary j ≥ 1 we show that rjϕ ∈ B. First observe that∣∣∣∣∣ zj(ez

2/2 − 1)∏j+2
k=1(1−

z
zk

)

∣∣∣∣∣ ≤ C
e|z|

2/2

(|z|+ 1)2
, z ∈ C,

with a properly chosen C > 0. Since the right hand side of this inequality is
square summable with respect to µ we infer that the function rjϕψj+3 belongs to
B. Applying Theorem 4.1 to ψj+3 yields

‖rjϕψj+3‖ ≥ c‖rjϕ‖

with some c > 0. So rj ∈ D(Tϕ).
(ii) We claim that the function g(z) := e−z

2/4 belongs to the domain of Tϕ but it
cannot be approximated by polynomials with respect to the induced graph norm.
Indeed, g ∈ D(Tϕ), because (gϕψ1)(z) = ez

2/4 − e−z
2/4 belongs to B and

‖gϕψ1‖ ≥ c‖gϕ‖

with some c > 0 obtained in virtue of Theorem 4.1.
We are now going to disprove the possibility of approximating g by polynomials

in the graph norm of Tϕ. Suppose, contrary to our claim, that one can find a
sequence {pk}∞k=1 such that pk → g and pkϕ→ gϕ, k →∞. We have

|pk(z)ϕ(z)| = |〈pkϕ, ez〉| ≤ ‖pkϕ‖‖ez‖, z ∈ C, k ≥ 1.

Since the sequence {pkϕ}∞k=1 is bounded in B, we deduce that

|pk(z)ϕ(z)| ≤ De|z|
2/2, z ∈ C, k ≥ 1,

with some constant D > 0. Taking z = x ∈ R we get

|pk(x)ϕ(x)| ≤ Dex
2/2, x ∈ R, k ≥ 1,

which together with uniform boundedness of the sequence {pk}∞k=1 near the origin
(this follows from convergence in B of the sequence) implies that

|pk(x)| ≤ D1|ψ1(x)|, x ∈ R, k ≥ 1.

with a new constant D1 > 0. Consider the function hk(z) := pk(z)e−
4√z defined in

{z ∈ C : Im z ≥ 0}, where the branch is chosen so that 4
√
z ∈ [0,∞) for z ∈ [0,∞)

and 4
√
z ∈ {a(1+ i) : a ∈ [0,∞)} for z ∈ (−∞, 0]. Observe that every hk is bounded

on the real line. Indeed, this is a consequence of the following inequality

|hk(x)| ≤ D1e
− 4
√
|x|/2|ψ1(x)|, x ∈ R, k ≥ 1,

and the fact that ψ1(z) is dominated by every function of the form eA|z|
α

with
A > 0 and α ∈ (0, 1). Since hk is continuous in {z ∈ C : Im z ≥ 0}, analytic in
the interior of this set and bounded by eA

√
|z| with some A > 0, we can apply the

Phragmen-Lindelöf principle (cf. [2, Thm. 6.2.4]) to deduce that

|hk(z)| ≤ D2, Im z > 0, k ≥ 1,

where D2 := sup{D1e
− 4
√
|x|/2|ψ1(x)| : x ∈ R}. This means that

|pk(z)| ≤ D2|e
4√z|, Im z > 0, k ≥ 1,

which is in contradiction with the convergence pk(z) → e−z
2/4, k →∞.

(iii) We will check that ea /∈ D(Tϕ) when Re a > 0. Suppose that ea ∈ D(Tϕ),
then

|ea(z)ϕ(z)| = |〈eaϕ, ez〉| ≤ ‖eaϕ‖e|z|
2/2, z ∈ C.
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It follows that

|exā(ex
2/2 − 1)| ≤ ‖eaϕ‖ex

2/2|ψ1(x)|, x ∈ R,

which is a contradiction, since |ψ1(x)| is dominated by e
√
|x| on the real axis. The

proof is complete.

Remark 4.3. It is known that if P is any polynomial satisfying

|P (x)| ≤M(x), x ∈ R,

where

(4.10)
∫ +∞

−∞

log+M(x)
1 + x2

dx < +∞,

then a majorant of exponential growth in |z| can be given for |P (z)| in the whole
complex plane (the condition (4.10) is sharp). However, instead of just quoting this
theorem, we preferred to give an ad hoc proof for (ii), for the reader’s convenience.

The above example was found by the second named author as an attempt to
find a “constructive” approach to a result published in [3] (Theorem 2.2), proof of
which required existence of an entire function ϕ such that it belongs to B with all
polynomial multiples, yet some exponential multiple does not belong to B. Later
on, it occurred that this function is also a good example for disproving the poly-
nomial approximation property as it is stated in Proposition 4.2(ii). This in turn
may be regarded as a contribution to the topic of paper [1], which deals with poly-
nomial approximation in the Segal–Bargmann type spaces. However, it would be
far more significant to establish whether there exists an entire function ϕ satisfying
conditions (i) and (ii) of Proposition 4.2 together with E ⊆ D(Tϕ). In this way we
would get the answer to the following open problem: is Πϕ always adjoint to Tϕ
with ϕ : C → C entire and such that ϕez ∈ B for all z ∈ C?
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