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1. Elliptic systems in a plane domain generated by a given vector field, which
degenerates at the boundary

1.1 Let
(
a(x, y), b(x, y)

)
be a real vector field of class C1 in a bounded domain G of the

real (x, y)-plane R2. We shall consider the following three first order systems in G which
are all generated by this vector field:

∂u

∂x
− a(x, y)Pu− ∂v

∂y
+ b(x, y)Pv = f1(x, y) ,

∂u

∂y
− b(x, y)Pu− ∂v

∂x
− a(x, y)Pv = g1(x, y) ,

(1.1)

∂u

∂x
− a(x, y)Pu− ∂v

∂y
= f2(x, y) ,

∂u

∂y
− b(x, y)Pu +

∂v

∂x
= g2(x, y) ,

(1.2)

and

∂u

∂x
− ∂v

∂y
+ b(x, y) Pv = f3(x, y) ,

∂u

∂y
+

∂v

∂x
− a(x, y)Pv = g3(x, y) ,

(1.3)

where we have used the notation P :≡ a(x, y) ∂/∂x+ b(x, y) ∂/∂y. The characteristic form
of both system (1.2) and (1.3) is equal to

(1− a2) ξ2 − 2ab ξη + (1− b2) η2

and the characteristic form of (1.1) is given by

(
(1− a2) ξ − ab η

)2 +
(−ab ξ + (1− b2) η

)2
.
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The systems (1.1)-(1.3) are thus evidently elliptic inside the domain G and degenerate on
its boundary Γ = ∂Ω if we assume the vector field to be such that

a2(x, y) + b2(x, y) < 1 , (x, y) ∈ G , (1.4)

and
a2(x, y) + b2(x, y) ≡ 1 , (x, y) ∈ Γ . (1.5)

Multiplying the second equation by i and adding it to the first, we may replace the system
(1.1) by the single equation

∂w

∂z̄
− q(z)

∂w

∂z
= f(z) , (1.6)

for the complex valued function w(z) = u(x, y) + i v(x, y), where

q(z) =
(a + ib)2

2− a2 − b2
. (1.7)

In the same way both systems (1.2) and (1.3) may be put into the following single equation

∂w

∂z̄
− q1(z)

∂w

∂z
− q2(z)

∂w

∂z
= f(z) (1.8)

where we have the coefficient

q1(z) =
(a + ib)2

2(2− a2 − b2)
(1.9)

in both systems (1.2) and (1.3), whereas the other coefficient is

q2(z) =
a2 + b2

2(2− a2 − b2)
(1.10)

for the system (1.2) and

q2(z) = − a2 + b2

2(2− a2 − b2)
(1.11)

for the system (1.3). From (1.4) and (1.5) it is seen that the Beltrami equation (1.6) as
well as equation (1.8) are elliptic inside G and degenerate on the boundary Γ.

Here we point out the following few examples of equation (1.6) in the unit disc |z| < 1
obtained from (1.1) for various explicit choices of vector fields. With a(x, y) ≡ x and
b(x, y) ≡ y one obtains

∂w

∂z̄
− z2

2− |z|2
∂w

∂z
= f(z) , (1.12)

with
a(x, y) ≡ x

(1 +
√

1− x2 − y2)1/2
, b(x, y) ≡ y

(1 +
√

1− x2 − y2)1/2
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one gets the equation

∂w

∂z̄
− z2

(1 +
√

1− x2 − y2)1/2

∂w

∂z
= f(z) , (1.13)

with

a(x, y) ≡
√

2x√
1 + x2 + y2

, b(x, y) ≡
√

2y√
1 + x2 + y2

the equation becomes
∂w

∂z̄
− z2 ∂w

∂z
= f(z), (1.14)

and, finally, with

a(x, y) ≡ −√2y√
1 + x2 + y2

, b(x, y) ≡
√

2x√
1 + x2 + y2

equation (1.6) takes the form
∂w

∂z̄
+ z2 ∂w

∂z
= f(z) . (1.15)

The homogeneous equation corresponding to (1.15) posseses the solution

ζ1 =
2z

1 + |z|2 , (1.15′)

which maps the unit disc |z| < 1 onto the unit disc |ζ| < 1 homeomorphically, and in the
same way the homogeneous equation corresponding to (1.13) admits the solution

ζ2 =
z

1 +
√

1− |z|2 ,

which again maps the unit disc |z| < 1 homoemorphically onto the unit disc |ζ| < 1. As
a consequence of this, the general solutions, continuous in the closed disc |z| ≤ 1, of these
two homogeneous equations, are superpositions of an arbitrary holomorphic function φ(ζ)
in the unit disc |ζ| < 1 and these two respective homeomorphisms: φ ◦ ζ1 and φ ◦ ζ2.
In contrast to (1.13) and (1.15), the homogeneous equations corresponding to (1.14) and
(1.12) do not posses any solutions that map the unit disc onto the unit disc. Instead, they
have the respective solutions

ζ =
z

1− |z|2
and

ζ =
z

1 +
√

1− |z|2 ,

which map the unit disc |ζ| < 1 onto the whole complex ζ-plane C. From this it follows
that the equations (1.14) and (1.12) are solvable without any boundary conditions and
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that the corresponding homogeneous equations have no other solutions, continuous in the
closed disc |z| ≤ 1, except the constant ones. What is the cause for such a difference?
At first sight all these equations have the same property: they are elliptic inside the disc
|ζ| < 1 and degenerate on the circle |ζ| = 1. One of the reasons for the differences between
the equations (1.12)-(1.14) and equation (1.15) might be the circle being the characteristic
set of degeneracy for (1.12)-(1.14), while it is not a characteristic set for (1.15). But then
- what is the cause for the differences between (1.13) and the two equations (1.12) and
(1.14), these three equations all having this circle as their characeristic set? Even in this
case there is a cause: the degenerataion for (1.12) and (1.14) is of order one, while for
(1.13) it is of order one half, that is, less than one.

1.2 Let us now consider the equations (1.14) and (1.12) in |ζ| < 1 perturbed by lower
terms:

∂w

∂z̄
− z2 ∂w

∂z
+ λ zw = f(z) , (1.14′)

and
∂w

∂z̄
− z2

2− |z|2
∂w

∂z
+ λ

∂

∂z
(

z2

2− |z|2 )w = f(z) . (1.12′)

As we have already seen, the corresponding homogeneous equations have no other solu-
tions bounded in |z| ≤ 1 except the constant ones, and the inhomogeneous equations are
unconditionally solvable if λ = 0. What happens if λ = α + iβ 6= 0? Making the change of
variables

ζ =
z

1− |z|2 ,

we get instead of (1.14′) the new equation

∂w

∂ζ̄
+

2λ ζ√
1 + 4|ζ|2(1 +

√
1 + 4|ζ|2)w =

f(ζ)√
1 + 4|ζ|2

in the whole complex ζ-plane C, and this may also be written as the inhomogeneous
Cauchy–Riemann equation

∂w

∂ζ̄
=

f(ζ)(1 +
√

1 + 4|ζ|2)λ

√
1 + 4|ζ|2 (1.16)

for the function v(ζ) = (1 +
√

1 + 4|ζ|2)λw, which grows at infinty |ζ| → ∞ for w(z)
bounded in |z| ≤ 1 if α > 0 and vanishes at infinity if α < 0. Hence the inhomogeneous
equation (1.16) is solvable and the general solution of the corresponding homogeneous
equation is a polynomial of order m = [α]:

(1 +
√

1 + 4|ζ|2)λw(ζ) = pm(ζ) = a0 + a1ζ + . . . + amζm ,

or in the original variable:

w(z) = b0(1− |z|2)λ + b1z(1− |z|2)λ−1 + . . . + bmzm(1− |z|2)λ−m .
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From this we conclude the following: if Reλ > 0, then equation (1.14’) is solv-
able, within the class of functions bounded in |z| ≤ 1, for any right-hand side, and the
corresponding homogeneous equation has exactly m + 1 linearly independent solutions:
wk(z) = zk(1− |z|2)λ−k, k = 0, 1, . . . , m; if on the other hand Reλ < −1, then from (1.16)
it follows that corresponding homogeneous equation has no non-zero solutions, and that
the inhomogeneous equation is solvable if and only if

∫

C

f(ζ)Pm−2(ζ) dCζ√
1 + 4|ζ|2(1 +

√
1 + 4|ζ|2)−λ

= 0 . (1.17)

Indeed, according to (1.16) the integral on the left-hand side of (1.17) is equal to
∫

C

∂

∂ζ̄

[
w(ζ)

Pm−2(ζ)
(1 +

√
1 + 4|ζ|2)−λ

]
dCζ = lim

R→∞

∫

|ζ|<R

∂

∂ζ̄

[ w(ζ)Pm−2(ζ)
(1 +

√
1 + 4|ζ|2)−λ

]
dCζ

= lim
R→∞

1
2i

∫

|ζ|=R

w(ζ)Pm−2(ζ) dζ

(1 +
√

1 + 4|ζ|2)−λ
= 0 ,

because ∣∣∣∣
1
2i

∫

|ζ|=R

w(ζ)Pm−2(ζ) dζ

(1 +
√

1 + 4|ζ|2)−λ

∣∣∣∣ ≤
M

R
,

where M is a bound for w. But the left-hand side of (1.17) is

∫

|z|<1

f(z)(1− |z|2)1−λ

2−λ(1 + |z|2) Pm−2(z)
(|ζz|2 − |ζz̄|2

)
dxdy

=
∫

|z|<1

f(z)(1− |z|2)−λ−2
(
b0 + b1

z

1− |z|2 + . . . + bm−2
zm−2

(1− |z|2)m−2

)
dxdy ,

so (1.17) means that the right-hand side f(z) of (1.14′) satisfies the equalities
∫

|z|<1

f(z) zk (1− |z|2)−λ−2−kdxdy = 0 , k = 0, 1, . . . ,m− 2 , (1.18)

that is, f(z) is orthogonal to the functions

Ψk(z) = z̄k (1− |z|2)−λ̄−2−k , k = 0, 1, . . . , m− 2 ,

which are solutions to the homogeneous adjoint equation

Ψz − (z̄Ψ)z̄ − λ̄z̄Ψ = 0 .

We now turn our attention to equation (1.12′), and we begin by making the change
of variables

ζ =
z√

1− |z|2
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which transforms (1.12′) to the equation

∂w

∂ζ̄
+

λζ(4 + 3|ζ|2)
2(1 + |ζ|2)(2 + |ζ|2)w =

f(ζ)(2 + |ζ|2)
2(1 + |ζ|2)3/2

in the entire complex ζ-plane C. This equation can also be written as the inhomogeneous
Cauchy–Riemann equation

∂v

∂ζ̄
=

f(ζ)(2 + |ζ|2)λ+1

2(1 + |ζ|2) 3−λ
2

for the function v(ζ) = (1 + |ζ|2)λ/2(2 + |ζ|2)λw(ζ), which grows at infinity |ζ| → ∞ for
bounded w if Re λ > 0 and vanishes at infinity if Reλ < 0. Hence we can write

w(ζ) =
P3m(ζ)

(1 + |ζ|2)λ/2(2 + |ζ|2)λ
=

1
(1 + |ζ|2)λ/2(2 + |ζ|2)λ

(
a0 + a1ζ + . . . + a3mζ3m

)

=
1

(2− |z|2)λ

(
a0(1− |z|2)3λ/2 + a1z(1− |z|2) 3λ−1

2 + . . . + a3mz3m(1− |z|2) 3(λ−m)
2

)
,

i.e., the homogeneous equation (1.12′) (having f ≡ 0) has exactly 3m + 1 linearly inde-
pendent nontrivial solutions bounded in |z| ≤ 1 if Re λ > 0, where m = [Re λ], and the
inhomogeneous equation is solvable for any right-hand side, but if Reλ < −1 then the
homogeneous equation has no nonzero solutions and the inhomogeneous equation (1.12′)
is solvable if and only if its right-hand side f(z) satisfies a finite number of orthogonality
conditions. Thus, for equations (1.12′) and (1.14′) in the disc |z| < 1 the kernel space as
well as the co-kernel space are completely described without any boundary conditions.

1.3 For the systems (1.1)-(1.3) the boundary Γ of the domain G will be a characteristic
set if the boundary values of the vector field

(
a(x, y), b(x, y)

)
on Γ satisfy the identity

a(x, y) cos(n, y)− b(x, y) cos(n, x) ≡ 0 , (x, y) ∈ Γ , (1.19)

where n denotes the unit outward normal to Γ. This condition means that the vector (a, b)
at the boundary points on Γ is directed along the outward unit normal n. The Schwarz
problem for the system (1.2) is to find a solution to this system in G, continuous up to the
boundary, satisfying the condition

u(x, y) = γ(x, y) , (x, y) ∈ Γ , (1.20)

where γ(x, y) is a continuous function given on Γ.
Theorem 1.1 If the boundary Γ of the domain G is not characteristic for the system (1.2),
i.e., if

a(x, y) cos(n, y)− b(x, y) cos(n, x) 6= 0 (1.21)

at any point (x, y) ∈ Γ, then the Schwarz problem (1.20) for this system is always solvable,
and the corresponding homogeneous problem has the only solution u = 0, v = const.
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Proof: From (1.12) it is easy to see that the function u(x, y) satisfies the following second
order equation

∆u− P 2u− (
∂a

∂x
+

∂b

∂y
)Pu =

∂f

∂x
+

∂g

∂y
(1.22)

in G, where ∆ :≡ ∂2/∂x2 +∂2/∂y2 , P 2 = PP :≡ (a∂/∂x+ b∂/∂y)(a∂/∂x+ b∂/∂y). Equa-
tion (1.22) is elliptic inside of G and degenerates on the boundary ∂G. The characteristic
equation arises as a curve satisfying the characteristic equation

(1− a2(x, y))
(∂ϕ

∂x

)2

− 2a(x, y)b(x, y)
∂ϕ

∂x

∂ϕ

∂y
+ (1− b2(x, y))

(∂ϕ

∂y

)2

= 0

or (
b(x, y)

∂ϕ

∂x
− a(x, y)

∂ϕ

∂y

)2

= 0 , (1.23)

because of the identity a2(x, y) + b2(x, y) ≡ 1 on Γ. But in view of (1.21) this means
that no point on Γ has a tangent pointing in the characteristic direction. Therefore, any
point of the boundary Γ is a regular point, that is, a barrier function exists and hence the
Dirichlet problem (1.20) for equation (1.22) can be uniquely solved by the Perron method
(see [2], [6]). However, if the condition (1.21) is violated on Γ (or on a part Γ′ ⊂ Γ), then
a barrier function may not exist (see [5]), i.e., the Dirichlet problem for equation (1.22) is
not solvable.

Theorem 1.2 If the boundary Γ of the domain G is characteristic, that is, if (1.19) holds
at any point (x, y) ∈ Γ, then the homogeneous system corresponding to (1.2) has no
non-constant continuous solutions in Ḡ = G + Γ.

Proof: Let (u, v) be a solution of system (1.2) with f = g ≡ 0, which is continuous in Ḡ.
Since u(x, y) satisfies the homogeneous equation corresponding to (1.22), then according
to (1.19) we have

0 =
∫

Γ

u
[
b(b cos(n, x)− a cos(n, y))

∂u

∂x
− a(b cos(n, x)− a cos(n, y))

∂u

∂y

]
ds

−
∫

G

u(∆u− P 2u− (
∂a

∂x
+

∂b

∂y
)Pu) dxdy

=
∫

Γ

u
[
((1−a2) cos(n, x)−ab cos(n, y))

∂u

∂x
+((1− b2) cos(n, y)−ab cos(n, x))

∂u

∂y
)
]
ds

−
∫

G

u(∆u− P 2u− (
∂a

∂x
+

∂b

∂y
)Pu) dxdy

=
∫

Γ

[ ∂

∂x
u(

∂u

∂x
− aPu) +

∂

∂x
u(

∂u

∂y
− bPu)

]
dxdy −

∫

G

u(∆u− P 2u− (
∂a

∂x
+

∂b

∂y
)Pu) dxdy

=
∫

G

[
(
∂u

∂x
)2 + (

∂u

∂y
)2 − (Pu)2

]
dxdy
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=
∫

G

[
(
∂u

∂x
− a

1 +
√

1− a2 − b2
Pu)2 + (

∂u

∂y
− b

1 +
√

1− a2 − b2
Pu)2

]
dxdy ,

that is, (
1− a2

1 +
√

1− a2 − b2

)∂u

∂x
− ab

1 +
√

1− a2 − b2

∂u

∂y
= 0 ,

−ab

1 +
√

1− a2 − b2

∂u

∂x
+

(
1− b2

1 +
√

1− a2 − b2

)∂u

∂y
= 0 ,

and so ∂u/∂x = ∂u/∂y = 0, because 1− (a2 + b2)/(1 +
√

1− a2 − b2) =
√

1− a2 − b2 6= 0
in G. From this proof we see that the homogeneous Dirichlet problem for the homogeneous
equation (1.22) has only the zero solution even in the case when (1.21) holds.

The Schwarz problem with the condition v(x, y) = γ(x, y) on Γ for the system (1.3)
is always solvable when (1.21) holds, and the corresponding homogeneous problem has
the only solution u = const, v = 0. If Γ is characteristic for (1.3) then the homogeneous
system (1.3) has no non-constant continuous solutions in Ḡ. As an example we note that
the systems (1.2) and (1.3) with a(x, y) ≡ −y and b(x, y) ≡ x satisfy the conditions of
Theorem 1.1. in the unit disc x2 + y2 < 1.

2. Second order equations in a bounded domain of Rn, which are elliptic inside
the domain and degenerate on its boundary
Let a(x) =

(
a1(x), . . . , an(x)

)
be a real vector field of class C1 given in a bounded domain

Ω ⊂ Rn. We consider the following second order equation

∆u− P 2u +
∑

bk(x)
∂u

∂xk
+ b0(x)u = f(x) , x ∈ Ω , (2.1)

where

Pu =
n∑

k=1

ak(x)
∂u

∂xk
. (2.2)

The principal symbol of (2.1) is |ξ|2 − (a(x), ξ)2, with |ξ| = (
∑n

k=1 ξ2
k)1/2 and (a(x), ξ) =∑n

k=1 ak(x)ξk. It follows that equation (2.1) is elliptic in the interior of Ω and degenerate
on its boundary ∂Ω if we assume that

|a(x)| < 1 , x ∈ Ω , (2.3)

and
|a(x)| ≡ 1 , x ∈ ∂Ω , (2.4)

where |a(x)| = (
∑n

k=1 a2
k(x))1/2. In view of (2.4) there are two possibilities: either

ak(x) cos(n, x`)− a`(x) cos(n, xk) 6= 0 , k 6= ` , x ∈ ∂Ω , (2.5)

or else
ak(x) cos(n, x`)− a`(x) cos(n, xk) = 0 , k 6= ` , x ∈ ∂Ω . (2.6)
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In case (2.5) holds and the bj(x) are continuous in Ω̄, with b0(x) ≤ 0, the Dirichlet problem

u(x) = γ(x) (2.7)

with given continuous data γ(x) on ∂Ω has a unique solution (see [2], [6]), but in case (2.6)
holds, there may not always exist a barrier function; this depends also on the lower terms
(see [5]).

Let us next consider the homogeneous equation (2.1), i.e., f(x) ≡ 0, with b0(x) ≡ 0
and

bk(x) ≡ −ak(x)
n∑

e=1

∂ae

∂xe
,

that is, the equation

∆u− P 2u−
n∑

e=1

∂ae

∂xe
Pu = 0 . (2.8)

Theorem 2.1 If the coefficients ak(x) of (2.8) satisfy the condition (2.3) in Ω and the
conditions (2.4) and (2.6) on ∂Ω, then this equation has no non-constant bounded solutions
in Ω̄.

Proof: Taking into account (2.8) and the equations

n∑

`=1

(
cos(n, x`)− a`

n∑

k=1

ak cos(n, xk)
)

= 0

on ∂Ω following from (2.4) and (2.6), we have

n∑

`=1

∫

∂Ω

u
(
cos(n, x`)− a`

n∑

k=1

ak cos(n, xk)
) ∂u

∂x`
ds−

∫

Ω

u
(
∆u− P 2u−

n∑

k=1

∂ak

∂xk
Pu

)
dx

=
n∑

k=1

∫

∂Ω

u
( ∂u

∂xk
− akPu

)
cos(n, xk) ds−

∫

Ω

u
(
∆u− P 2u−

n∑

k=1

∂ak

∂xk
Pu

)
dx

=
n∑

k=1

∫

Ω

[ ∂

∂xk

(
u

∂u

∂xk

)−u
∂2u

∂x2
k

]
dx−

∫

Ω

[ n∑

k=1

∂

∂xk
(u ak Pu)−u (P 2u+

n∑

k=1

∂ak

∂xk
Pu)

]
dx

=
∫

Ω

[ n∑

k=1

(
∂u

∂xk
)2 − (Pu)2

]
dx =

n∑

k=1

∫

Ω

( ∂u

∂xk
− ak(x)

1 +
√

1− |a(x)|2 Pu
)2

dx ,

that is,
n∑

`=1

(
δk` − ak(x)a`(x)

1 +
√

1− |a(x)|2
) ∂u

∂x`
= 0 , (2.9)
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where δk` denotes the Kronecker delta. From (2.9) it now follows that ∂u/∂x` = 0,
1 ≤ ` ≤ n, because the determinant of the system (2.9) does not vanish in Ω:

1− |a(x)|2
1 +

√
1− |a(x)|2 =

√
1− |a(x)|2 6= 0 , x ∈ Ω .

It follows from this proof that the homogeneous Dirichlet problem for the equation (2.8)
has only the zero solution even in the case when (2.5) holds.

The particular equation
∆u− E2u + λEu = 0 (2.10)

in the unit ball |x| < 1 in Rn, with Eu =
∑n

k=1 xk∂/∂xk denoting the Euler operator and λ
being a complex number, is obtained from (2.1) by putting b0(x) ≡ 0, bk(x) = ak(x) ≡ xk.
The sphere |x| = 1 is a characteristic set for (2.10). The difference between equations for
different λ can already be seen in case n = 1. For λ = −1 its general solution is

u(x) = c1 + c2 log

√
1 + x

1− x
,

with c1 and c2 being constants, so that the only solutions that are bounded in the segment
[−1, 1] are the constant ones, and therefore the Dirichlet problem is not well posed. But
for λ = 0 the Dirichlet problem with boundary conditions u(−1) = a, u(1) = b has the
unique solution

u(x) =
a− b

π
arcsinx +

3b− a

2
in the segment [−1, 1]. Similar conclusions are valid also for n > 1. Indeed, the equation
(2.10) for λ = −n is a particular case of (2.8), with ak(x) ≡ xk, 1 ≤ k ≤ n, for which the
condition (2.6) holds and therefore the constant is the only bounded solution in |x| ≤ 1.
Seeking a solution of (2.10) of the form u(x) = g(|x|2)up(x), where up(x) is a harmonic
polynomial of degree p (so that Pup = pup), we obtain the Gauss hypergeometric equation
for g(t), t = |x|2

t (1− t) g′′(t) +
(n + 2p

2
− (

p− λ

2
+ 1

)
t
)

g′(t)− p(p− λ)
4

g(t) = 0 .

For λ > −n the series for the hypergeometric function F
(
(n + 2p)/2, p/2, (p − λ)/2; |x|2)

converges uniformly in the closed ball |x| ≤ 1, and the solution of the Dirichlet problem
with boundary condition u(x) = up(x) , |x| = 1 is given by

up(x) =
F

(
(n + 2p)/2, p/2, (p− λ)/2; |x|2)

F
(
(n + 2p)/2, p/2, (p− λ)/2; 1

) up(x) = ap(|x|2)up(x) .

The solution of the Dirichlet problem with an arbitrary boundary condition u(x) = f(x),
|x| = 1 can be obtained by superposition through the expansion of f(x) into the series
with respect to up(x):

u(x) =
∑

p

Ap(|x|2)up(x) ,

10



i.e., for λ > −n the Dirichlet problem u(x) = f(x), |x| = 1 for equation (2.10) is uniquely
solvable in the unit ball of Rn.

3. Second order equations and first order systems, which are elliptic in a
bounded domain of the complex space and degenerate on its boundary
3.1. The following first order overdetermined systems

∂u

∂z̄k
− zkRu + λzku = fk(z) , 1 ≤ k ≤ n , (3.1)

and
∂u

∂z̄k
− zk

2− |z|2Ru +
λ(2(n + 1)− n|z|2)

(2− |z|)2 zku = fk(z) , 1 ≤ k ≤ n , (3.2)

with the radial operators R :≡ ∑n
k=1 zk∂/∂zk and R̄ :≡ ∑n

k=1 z̄k∂/∂z̄k, are counterparts
in the unit ball |z| < 1 of Cn to equations (1.14′) and (1.12′) respectively. We assume that
the systems (3.1) and (3.2) are compatible, that is, the right-hand sides of (3.1) should
satisfy the conditions

∂fk

∂z̄k
− ∂f`

∂z̄k
= z`Rfk − zkRf` , k 6= ` , (3.3)

and the right-hand sides of (3.2) should satisfy the conditions

∂fk

∂z̄k
− ∂f`

∂z̄k
= (z`Rfk − zkRf`)

1
2− |z|2 , k 6= ` . (3.4)

Performing the change of variables

ζk =
zk

1− |z|2 , 1 ≤ k ≤ n ,

we replace (3.1) by the system

∂u

∂ζk
+

2λζk√
1 + 4|ζ|2(1 +

√
1 + 4|ζ|2 u = f̃k , 1 ≤ k ≤ n ,

with f̃k given by

2fk

1 +
√

1 + 4|z|2 −
4ζk

∑n
`=1 ζ̄`f`√

1 + 4|z|2(1 +
√

1 + 4|z|2)2 , ζ = (ζ1, . . . , ζn) ∈ Cn .

This equation can also be written as the inhomogeneous Cauchy–Riemann system

∂v

∂ζ̄k
= f̃k(1 +

√
1 + 4|z|2)λ , 1 ≤ k ≤ n , (3.5)

11



with respect to the function v(ζ) = (1+
√

1 + 4|ζ|2)λu(ζ). Since we are seeking a bounded
solution u of (3.1) in the closed ball |z| ≤ 1, the system (3.5) for λ = 0 is always solvable
and the corresponding homogeneous system has no other solutions except zero and the
same is true for the system (3.1), but if Re λ > 0, then (3.5) is solvable only under the
conditions (3.3), and a solution of the corresponding homogeneous system is a polynomial
of order m =

[
Re λ

]
:

u(ζ) =
Pm(ζ)

(1 +
√

1 + 4|ζ|2)λ
=

1
(1 +

√
1 + 4|ζ|2)λ

∑

|α|≤m

aαζα ,

so a solution of system (3.1) with fk ≡ 0 is given by

u(z) =
∑

|α|≤m

aαzα (1− |z|2)λ−|α| , aα = const . (3.6)

If Re λ < −1, then v decreases at infinity, so the system (3.5) (together with (3.1)) is
solvable if its right-hand sides satisfy besides (3.3) also a finite number of integral conditions
of orthogonality type. Turning now to the system (3.2), we make the change of variables

ζk =
zk√

1− |z|2 , 1 ≤ k ≤ n ,

to get instead of (3.2) the system

∂u

∂ζ̄k
+

λζk

(
2(n + 1) + (n + 2)|ζ|2)

2(1 + |ζ|2)(2 + |ζ|2) u = f̃k =
fk√

1 + [ζ|2 −
ζk

∑n
k=1 ζ̄kfk

2(1 + |ζ|2)3/2

in the whole complex space Cn of the variable ζ = (ζ1, . . . , ζn), and this equation can be
written also as

∂u

∂ζ̄k
+

λζk

2
(

n

1 + |ζ|2 +
2

2 + |ζ|2 )u = f̃k ,

or as the inhomogeneous Cauchy–Riemann system

∂v

∂ζ̄k
= f̃k(1 + |ζ|2)λn/2(2 + |ζ|2)λ (3.7)

with respect to the function v = (1 + |ζ|2)λn/2(2 + |ζ|2)λu. If λ = 0, then it follows from
(3.7) that inhomogeneous system (3.2) is solvable under the conditions (3.4) only, and the
corresponding homogeneous system has no non-zero bounded solutions in the closed ball
|z| ≤ 1. If Reλ > 0, then the inhomogeneous system (3.2) is solvable under conditions
(3.4) only, and a solution of the corresponding homogeneous system is a polynomial of
order m = [Reλ(n + 1)], but if Reλ < 0, then the system (3.2) is solvable if its right-hand
sides, besides the compatibility conditions (3.4), satisfy also a finite number of integral
conditions of orthogonality type.
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3.2 Let a(z) =
(
a1(z), . . . , an(z)

)
be a complex vector field of class C1 given in a bounded

domain Ω in the space Cn of variables z = (z1, . . . , zn), such that

|a(z)| = (
n∑

k=1

|ak(z)|2)1/2 < 1 (3.8)

in the interior of Ω, and
|a(z)| ≡ 1 (3.9)

on the boundary ∂Ω. We consider the following second order equation

n∑

k=1

∂2u

∂zk∂z̄k
− PP̄u +

n∑

k=1

(
bk(z)

∂u

∂zk
+ ck(z)

∂u

∂z̄k

)
+ b0(z)u = f(z) , z ∈ Ω , (3.10)

where bj(z), ck(z) and f(z) are given continuous functions in Ω̄, and

P :≡
n∑

k=1

ak(z)
∂

∂zk
, P̄ :≡

n∑

k=1

ak(z)
∂

∂z̄k
. (3.11)

The principal symbol of (3.10) is

|ζ|2 − |〈a, ζ〉|2 = |ζ1|2 + . . . + |ζn|2 − |a1ζ̄1 + . . . + anζ̄n|2 ,

so that according to (3.8) and (3.9) the equation (3.10) is elliptic inside of Ω and degenerate
on its boundary ∂Ω. Due to condition (3.9) there are two possibilities: either

ak(z)
∂ρ

∂z̄`
− a`(z)

∂ρ

∂z̄k
6= 0 , k 6= ` (3.12)

on the boundary ∂Ω, or else

ak(z)
∂ρ

∂z̄`
− a`(z)

∂ρ

∂z̄k
≡ 0 (3.13)

on ∂Ω, where ρ(z) is the defining function for the domain Ω, i.e., Ω =
{
z ∈ Cn ; ρ(z) < 0

}
,

∂Ω =
{
z ∈ Cn ; ρ(z) = 0

}
, and grad ρ(z) 6= 0 on ∂Ω. In case (3.12) holds it can be shown

as before that the Dirichlet problem u(z) = γ(z), z ∈ ∂Ω with a given continuous γ(z) on
∂Ω, is well posed for (3.10), whereas in case of (3.13) the Dirichlet problem is in general
not well posed for (3.10). Let us consider the homogeneous equation (3.10), f ≡ 0, first
with the coefficients bj(z) ≡ 0 and

ck(z) ≡ −ak(z)
n∑

R=1

∂a`

∂z`
,
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that is, the equation

Hu =
n∑

k=1

∂2u

∂zk∂z̄k
− PP̄u−

n∑

k=1

∂ak

∂zk
P̄ u = 0 , (3.14)

and then with the coefficients b0(z) = ck(z) ≡ 0, and

bk(z) ≡ −ak(z)
n∑

`=1

∂ā`

∂z̄`
,

that is, the equation

H̄u =
n∑

k=1

∂2u

∂zk∂z̄k
− PP̄u−

n∑

k=1

∂āk

∂z̄k
Pu = 0 . (3.15)

Theorem 3.1 If the coefficients ak(z) satisfy the condition (3.8) in Ω and the conditions
(3.9) and (3.13) on ∂Ω, then equation (3.14) has no other bounded solutions in Ω̄, except
functions that are holomorphic in Ω; and equation (3.15) has no other bounded solutions
in Ω̄, except functions that are antiholomorphic in Ω.

Proof: Taking into account (3.14) and the equalities

∂ρ

∂z`
− a`(z)

n∑

k=1

ak(z)
∂ρ

∂zk
= 0

on ∂Ω, which follow from (3.13) and (3.9), we have

0 =
n∑

`=1

∫

∂Ω

ū
( ∂ρ

∂z`
−a`(z)

n∑

k=1

ak(z)
∂ρ

∂zk

) ∂u

∂z̄`
ds−

∫

Ω

ūHu dΩ

=
∫

∂Ω

ū

n∑

k=1

( ∂u

∂z̄k
− ak(z)P̄ u

) ∂ρ

∂zk
ds−

∫

Ω

ū

n∑

k=1

( ∂2u

∂zk∂z̄k
− ∂

∂zk
(ak(z)P̄ u)

)
dΩ

= −
n∑

k=1

∫

Ω

ū
∂2u

∂zk∂z̄k
−

n∑

k=1

∫

Ω

ak(z)
∂ū

∂zk
P̄ u dΩ +

n∑

k=1

∫

Ω

∂

∂zk

(
ū

∂u

∂z̄k

)
dΩ

=
n∑

k=1

∫

Ω

∣∣∣ ∂u

∂z̄k

∣∣∣
2

dΩ−
∫

Ω

∣∣P̄ u
∣∣2dΩ

=
n∑

k=1

∫

Ω

∣∣∣ ∂u

∂z̄k

∣∣∣
2

dΩ−
∫

Ω

(2− |a(z)|2
1 +

√
1− |a(z)|2 )

1
1 +

√
1− |a(z)|2

∣∣P̄ u
∣∣2 dΩ

=
n∑

k=1

∫

Ω

(
∣∣∣ ∂u

∂z̄k

∣∣∣
2

− 2Re
ak(z)

1 +
√

1− |a(z)|2
∂ū

∂zk
P̄ u +

|ak(z)|2
(1 +

√
1− |a(z)|2 )2

∣∣P̄ u
∣∣2) dΩ
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=
n∑

k=1

∫

Ω

∣∣ ∂u

∂z̄k
− ak(z)

1 +
√

1− |a(z)|2 P̄ u
∣∣2 dΩ ,

that is,
n∑

`=1

(
δk` − ak(z)a`(z)

1 +
√

1− |a(z)|2
) ∂u

∂z̄k
= 0 ,

and hence ∂u/∂z̄k = 0, 1 ≤ k ≤ n, because the determinant of this last system does not
vanish in Ω:

1− |a(z)|2
1 +

√
1− |a(z)|2 =

√
1− |a(z)|2 6= 0 , z ∈ Ω .

The first assertion of the Theorem is thereby proved. The second assertion is proved in
the same way. The particular case of equation (3.10) with ak(z) ≡ zk, bk(z) ≡ αzk,
ck(z) ≡ βzk, 1 ≤ k ≤ n, b0(z) = αβ, f ≡ 0, α, β = const, that is,

n∑

k,`

(
δk` − zkz̄`

) ∂2u

∂zk∂z̄k
+ αRu + βR̄u− αβ u = 0 (3.16)

in the unit ball |z| < 1, where R :≡ ∑n
k=1 zk∂/∂zk and R̄ :≡ ∑n

k=1 z̄k∂/∂z̄k are radial
operators, appears in [1]. In this case the conditions (3.13) are obviously fulfilled, i.e., the
sphere |z| = 1 is the characteristic set for (3.16). As is shown in [1], if Re (n + α + β) > 0
and neither n + α nor n + β is zero, then the Dirichlet problem for (3.16) is uniquely
solvable, though the solution is not as smooth as in the case of the Dirichlet problem for
equations that are elliptic in the whole domain Ω̄, but if one of the above conditions is
violated, then the Dirichlet problem is not well posed: the function u(z) =

(
1− |z|2)λ for

example is a solution of the equations

n∑

k=1

∂2u

∂zk∂z̄k
−RR̄u + λRu− n R̄u + λ nu = 0 ,

n∑

k=1

∂2u

∂zk∂z̄k
−RR̄u− nRu + λ R̄u + λ nu = 0 ,

in the unit ball |z| < 1 vanishing (Re λ > 0) on the sphere |z| = 1.

3.3 Let
(
a(z), b(z)

)
be a complex valued vector field of class C1 given in a bounded domain

Ω of C2 such that ∣∣a(z)
∣∣2 +

∣∣b(z)
∣∣2 < 1 (3.17)

inside Ω and ∣∣a(z)
∣∣2 +

∣∣b(z)
∣∣2 ≡ 1 (3.18)

on the boundary ∂Ω. The two first order systems

∂u

∂z̄1
− a(z) P̄ u− ∂v

∂z2
= f(z) ,

∂u

∂z̄2
− b(z) P̄ u +

∂v

∂z1
= g(z) , (3.19)
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and
∂u

∂z̄1
− ∂v

∂z2
+ b(z)Pv = f(z) ,

∂u

∂z̄2
+

∂v

∂z1
− a(z)Pv = g(z) , (3.20)

where
P :≡ a(z)

∂

∂z1
+ b(z)

∂

∂z2
, P̄ :≡ a(z)

∂

∂z̄1
+ b(z)

∂

∂z̄2
,

both have the same principal symbol

|ζ1|2 + |ζ2|2 − |a(z)ζ̄1 + b(z)ζ̄2|2 ,

so that both systems are elliptic in Ω and degenerate on ∂Ω. From (3.17) it follows that
the function u(z) satisfies the second order equation

∂2u

∂z1∂z1
+

∂2u

∂z2∂z̄2
− PP̄u−

( ∂a

∂z1
+

∂b

∂z2

)
P̄ u =

∂f

∂z1
+

∂g

∂z2
(3.21)

and from (3.18) it follows that the function v(z) satisfies the second order equation

∂2v

∂z1∂z̄1
+

∂2v

∂z2∂z̄2
− PP̄v −

( ∂ā

∂z̄1
+

∂b̄

∂z̄2

)
Pv =

∂g

∂z̄1
− ∂f

∂z̄2
. (3.22)

Theorem 3.2 If the vector field
(
a(z), b(z)

)
satisfies (3.17) in Ω, together with the bound-

ary conditions (3.18) and a(z) ∂ρ/∂z̄2− b(z) ∂ρ/∂z̄1 6= 0 on ∂Ω, then there exists a unique
solution (u, v) of the system (3.19) in Ω, satisfying the condition u(z) = γ(z) on ∂Ω and
with v(z) lying in the orthogonal complement of the subspace of functions consisting of
functions that are antiholomorphic in Ω. There also exists a unique solution (u, v) of
the system (3.20) such that v(z) = γ(z) on ∂Ω and with u(z) lying in the orthogonal
complement of the subspace consisting those functions that are holomorphic in Ω.

Proof: Equation (3.21) and the condition a(z) ∂ρ/∂z̄2 − b(z) ∂ρ/∂z̄1 = 0 coincide with
(3.14) and (3.13) for n = 2, while (3.22) and the condition a(z) ∂ρ/∂z̄2 − b(z) ∂ρ/∂z̄1 6= 0
coincide with (3.15) and (3.12) for n = 2. Therefore the functions u(z) and v(z) are
uniquely determined as solutions of the Dirichlet problem. Then the function v(z) is
determined from the anti Cauchy–Riemann system following from (3.19) by the condition
v(z) ⊥ H̄(Ω) and the function u(z) is determined from the Cauchy–Riemann system
following from (3.20) by the condition u(z) ⊥ H(Ω), where H(Ω) and H̄(Ω) denote the
subspaces of functions that are holomorphic respectively antiholomorphic in Ω (see [3]).
Theorem 3.3 If the vector field

(
a(z), b(z)

)
satisfies (3.17) in Ω, together with the bound-

ary conditions (3.18) and a(z) ∂ρ/∂z̄2−b(z) ∂ρ/∂z̄1 = 0 on ∂Ω, then the homogeneous sys-
tems (3.19), (3.20) f = g ≡ 0 have no other continuous solutions in Ω̄ except

(
ϕ(z), ψ̄(z)

)
,

where ϕ and ψ are arbitrary holomorphic functions in Ω.

Proof: Since equation (3.21) and condition a(z) ∂ρ/∂z̄2 − b(z) ∂ρ/∂z̄1 = 0 on ∂Ω coincide
with equation (3.14) and conditions (3.13) for n = 2 and equation (3.22) and above con-
dition coincides with equation (3.15) and conditions (3.13) for n = 2, it follows that the
result is a consequense of Theorem 3.1. As an example note that the systems (3.19) and
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(3.20) with a(z) ≡ z1, b(z) ≡ z2 in the ball |z1|2 + |z2|2 < 1 of C2 satisfy the conditions of
Theorem 3.3, while the same systems with a(z) ≡ z̄2, b(z) ≡ −z̄1 satisfy the conditions of
Theorem 3.2.

3.4 Let us consider now two more first order systems in C3 which can be treated in the
same way. Let a(z) =

(
a1(z), a2(z), a3(z)

)
be a complex valued vector field of class C1

given in a bounded domain Ω of C3 such that

|a(z)| = (|a1(z)|2 + |a2(z)|2 + |a3(z)|2)1/2
< 1 (3.23)

in the interior of Ω and |a(z)| ≡ 1 on the boundary ∂Ω. We introduce the operators

∂̄k :≡ ∂

∂z̄k
− ak(z) P̄ , ∂k :≡ ∂

∂zk
− ak(z)P , k = 1, 2, 3 ,

where P and P̄ are defined by (3.11) for n = 3. The first system

divz̄u = 0 ,

∂̄u0 + rotzu = 0 ,
(3.24)

where divz̄u =
∑3

k=1 ∂uk/∂z̄k, ∂̄ :≡ (∂̄1, ∂̄2, ∂̄3) and

rotzu =
(∂u3

∂z2
− ∂u2

∂z3
,
∂u1

∂z3
− ∂u3

∂z1
,
∂u2

∂z1
− ∂u1

∂z2

)

has principal symbol −(|ζ|2 − |〈a, ζ〉|2) |ζ|2 and is therefore elliptic inside of Ω and degen-
erates on ∂Ω. The second system

divz̄u = 0 ,

gradz̄u0 +
[
∂ × u

]
= 0 ,

(3.25)

where gradz̄u0 =
(
∂u0/∂z̄1, ∂u0/∂z̄1, ∂u0/∂z̄1

)
and

[
∂ × u

]
=

(
∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1

)

has principal symbol−(|ζ|2−|〈a, ζ〉|2)2 and therefore is also elliptic inside of Ω and degener-
ates on ∂Ω. The function u0(z) = ϕ(z) and the vector-function u(z) =

(
u1(z), u2(z), u3(z)

)
with ϕ being an arbitrary holomorphic function in Ω and u an arbitrary solution of the
elliptic system

divz̄u = 0 , rotzu = 0 (3.26)

will evidently satisfy the system (3.24). Conversely, we have the following result.
Theorem 3.4 If the vector field a(z) satisfies (3.23) in Ω, together with the conditions
|a(z)| ≡ 1 and

[
a(z)×gradz̄ρ(z)

]
= 0 on ∂Ω, then any continuous solution (u0, u) of (3.24)
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in Ω̄ is of the form
(
ϕ(z) u(z)

)
, where ϕ(z) is an arbitrary holomorphic function in Ω and

u(z) is an arbitrary solution of the system (3.26).

Proof: Applying ∂/∂z1 to the second line, ∂/∂z2 to the third line, and ∂/∂z3 to fourth line
of (3.24) we get

( ∂

∂z1∂z̄1
+

∂

∂z2∂z̄2
+

∂

∂z3∂z̄3

)
u0 − PP̄u0 −

(∂a1

∂z1
+

∂a2

∂z2
+

∂a3

∂z3

)
P̄ u0 = 0

Since
[
a(z) × gradz̄ρ(z)

]
= 0 on ∂Ω, then by Theorem 3.1 for the case n = 3, we have

u0(z) ≡ ϕ(z) and then (3.24) is reduced to (3.26). Let us finally remark that it is also
interesting to study properties of system (3.5).
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