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1. Introduction

Our aim in this paper is to make some remarks about certain algebraic aspects of the classical Dirichlet
problem for the Laplace operator

∆ :=
n∑

k=1

∂2

∂x2
k

in the unit ball Bn of Rn, n ≥ 2. Thus, letting Sn−1 := ∂Bn denote the unit sphere, we pose the Dirichlet
problem

(1.1)

{
∆u = 0, in Bn

u = f, on Sn−1,

where the Dirichlet data f is a continuous function on the sphere Sn−1. It will be convenient for us to
assume, without loss of generality of course, that the data function f is defined in an open neighborhood
of Sn−1 in Rn. The solution u is given by the Poisson integral

(1.2) u(x) =
∫

Sn−1
f(y)Kn(y, x)dSy,

where dSy is the surface area measure of the sphere and Kn(x) is the Poisson kernel

(1.3) Kn(x) = ωn
1− ||x||2

||y − x||n

and ωn is the reciprocal of the surface area of the sphere Sn−1. Many classical analytic properties of the
solution u (such as e.g. regularity up to the boundary) can be gleaned from this formula. In this paper,
we shall address some questions of algebraic nature which do not seem to follow as easily from (1.2).

We take as our starting point the following well known result: If f(x) is a polynomial of degree m,
then the solution u(x) to the Dirichlet problem (1.1) is a polynomial of degree at most m. The precise
origin of this result is difficult to trace (see e.g. [F] for the result in R3), but a simple and elementary
proof based on linear algebra can be found in e.g. [K], [KS], and [Sh] (where the conclusion is in fact
proved for the Dirichlet problem in an arbitary ellipsoid). In light of this basic result, it seems natural
to ask if the solution operator preserves wider classes of algebraic functions:

Question A. Assume that the data f(x) is a rational function without poles on Sn−1. Is then the
solution u(x) of the Dirichlet problem (1.1) necessarily rational?

Professor W. Ross’ student Mr. T. Fergusson (private communication) has answered Question A in
the affirmative for n = 2. (This also follows from a more general result due to the first author [E]; a
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very short and simple proof is given in section 3.) In the general form Question A was posed to us by
Fergusson and Ross (written communication). More generally, one may ask the following.

Question B. Assume that the data f(x) is an algebraic function which is analytic in a neighborhood of
Sn−1 in Rn. Is then the solution u(x) of the Dirichlet problem (1.1) necessarily algebraic?

Somewhat surprisingly perhaps, even though the answer to Question A is affirmative for n = 2, it
is negative for all odd n ≥ 3 and, at least, for all even n with 4 ≤ n ≤ 270 (see Theorem 2.2 and the
remark following it). The answer to Question B is negative in all dimensions. Our main results are
examples of rational data functions f in Rn, for all odd n ≥ 3 (Theorem 2.1) and even n ≥ 4 such that an
additional condition is satisfied (Theorem 2.2), which yield non-rational—even non-algebraic—solutions
to the Dirichlet problem (1.1), but also some positive results (Theorems 2.5 and 5.1) on Question A when
f belongs to certain subclasses of rational functions in Rn with n even. We also give examples (Theorem
2.4) of algebraic data functions in R2 for which the solutions are non-algebraic.

The paper is organized as follows. In section 2, we state our main results more precisely. In section 3,
we discuss the Dirichlet problem in two dimensions, its relation to the problem of Laurent decomposition,
and give a proof of Theorem 2.4. The proofs of the remaining Theorems are then given in sections 4 and
5. As concluding remarks, we discuss in section 6 a connection with ultraspherical polynomials and the
”Nehari transform”.

2. Main results

Our first two results provide very simple rational functions f(x) in Rn, n ≥ 3 (moreover if n is even
the further arithmetical condition (2.2) is assumed), for which the solutions to (1.1) are not rational, or
even algebraic, showing that the answers to both Questions A and B above are negative for these values
of n ≥ 3.

Theorem 2.1. Let |a| > 1 and n = 2k + 1 ≥ 3 be odd. Then, the solution u(x) to the Dirichlet problem
(1.1) in Rn with data

(2.1) f(x) =
1

(x1 − a)2k−1

is not algebraic.

When n = 4, the solution to (1.1) with data given by (2.1) turns out to be rational (cf. Theorem 2.5
below). However, we have the following for the even dimensional Dirichlet problem.

Theorem 2.2. Let n = 2k ≥ 4 be even and assume that

(2.2)
∑

0≤j≤k−1
k+jodd

k−1∑
l=j

(
−1

2

)l (
k − 1
l

)(
l + k − 1

l

)(
l

j

)
(−i)j 6= 0,

Then, the solution u(x) to the Dirichlet problem (1.1) in Rn with data

(2.3) f(x) =
1

(1 + x2
1 + x2

2)k−1

is not algebraic.

Remark 2.3. The authors suspect, but have been unable to prove, that (2.2) holds for all k ≥ 2. At
least, we have verified, using the software package MatLab, that (2.2) holds for all 2 ≤ k ≤ 135. The
modulus of the left hand side grows steadily, although not quite monotonically, as k grows in this range.
For k = 2, the left hand side is i, and for k = 135 it is of the order 1080. Thus, the solution in Rn with
data (2.3) is not algebraic, at least for all even n with 4 ≤ n ≤ 270.
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As mentioned above, the answer to Question A when n = 2 is affirmative (see e.g. section 3 below for
a simple proof). However, the answer to Question B is negative, as is shown by the following result. We
shall identify R2 with the complex plane C in the usual way via z = x1 + ix2.

Theorem 2.4. Let w ∈ C \ (S1 ∪ {0}). Then, the solution u(x1, x2) to the Dirichlet problem (1.1) in
R2 ∼= C with data

(2.4) f(x1, x2) = |z − w|, z = x1 + ix2,

is not algebraic.

Theorem 2.4 will follow from a more general result about Laurent decompositions in section 3.
We shall conclude this section by giving a positive result on Question A for axially symmetric rational

data functions in R4. Recall that a function f(x) in Rn is called axially symmetric if there is a unit vector
v ∈ Rn such that

(2.5) f(Ax) = f(x), ∀A ∈ Ov(Rn),

for all x ∈ Rn where both sides are defined. Here, Ov(Rn) denotes the subgroup of the orthogonal linear
group O(Rn) which leaves the vector v invariant; the line spanned by v is called the axis of symmetry.

Theorem 2.5. Consider the Dirichlet problem (1.1) in R4. If the data f(x) is an axially symmetric
rational function, then the solution is a rational (axially symmetric) function.

Theorem 2.5 will follow from a more general, but slightly more technical result (Theorem 5.1 in section
s-axsym below) for axially symmetric rational data functions in Rn for even n.

3. The two dimensional case

We identify R2 with C in the usual way via z = x1 + ix2, so that ∆ = 4 ∂2/∂z∂z̄. Hence, any harmonic
(not necessarily real-valued) function u(x) = u(z, z̄) in a simply connected domain Ω ⊂ C is of the form
u(z, z̄) = h(z) + g(z), where h, g ∈ O(Ω) and O(Ω) denotes the space of analytic functions in Ω. If
f = f(z, z̄) is a (possibly complex-valued) real-analytic function in a neighborhood of S1 and u is the
solution to the Dirichlet problem (1.1), with n = 2, then it is well known that u extends real-analytically
to an open neighborhood of the closed unit disk D; we prefer to use the notation D rather than B2 for
the open unit disk in C. Thus, we have u(z, z̄) = h(z) + g(z) for h, g ∈ O(D) (i.e. h, g are analytic in
some neighborhood of the closed unit disk D) and we have

(3.1) f(z, z̄) = h(z) + g(z), z ∈ S1.

The functions h and g will be uniquely determined if we require e.g. g(0) = 0. Observe that on S1 we
have z̄ = 1/z. Thus, if we write

(3.2) F (z) := f(z, 1/z),

then F (z) is analytic in some annular neighborhood of the unit circle S1 and, in view of (3.1), we have
the identity

(3.3) F (z) = h(z) + ḡ(1/z)

in some open neighborhood of S1, where ḡ(w) is the analytic function

ḡ(w) := g(w̄).
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This illustrates the connection between the Dirichlet problem in two dimensions and the problem of
Laurent splitting of analytic functions. Recall that if F (z) is an analytic function in a neighborhood of
S1, then it has a unique series expansion

(3.4) F (z) =
∞∑

k=0

akz
k +

∞∑
k=1

bk

(
1
z

)k

,

where the first series converges in a neighborhood of the closed unit disk D and the second series converges
in a neighborhood of the closed complement C \ D (with the limit 0 at ∞). Hence, if we set

(3.5) h(z) :=
∞∑

k=0

akz
k, g(w) =

∞∑
k=1

b̄kw
k,

then we obtain a unique splitting (3.3) of F (z), for z in some neighborhood of S1, with h, g ∈ O(D) and
g(0) = 0; we shall refer to (h, g) as the Laurent pair of F . Thus, we have proved the following.

Proposition 3.1. Let F (z) be an analytic function in some open neighborhood of the unit circle S1

and f(z, z̄) a (possibly complex-valued) real-analytic function such that (3.2) holds. If h, g ∈ O(D) with
g(0) = 0, then (h, g) is the Laurent pair of F (i.e. (3.3) holds) if and only if

u(z, z̄) := h(z) + ḡ(z̄)

is the solution of the Dirichlet problem (1.1) with n = 2 and data f = f(z, z̄).

Thus, we can, and we shall, reformulate and prove Theorem 2.4 regarding the two-dimensional Dirichlet
problem in terms of Laurent splittings. First, however, let us state the following proposition which is
equivalent to the statement in the introduction that the solution to the Dirichlet problem with rational
data is rational. We shall also give a very short and simple proof. The proof by T. Fergusson, also not
difficult, was based on the Cauchy residues theorem [Fe, written communication].

Proposition 3.2. Let F be analytic in a neighborhood of S1 and let (h, g) the its Laurent pair (as defined
above). If F is rational, then so are h and g.

Proof. Since F is rational (or, equivalently, a meromorphic function on the Riemann sphere Ĉ) and g
is analytic in a neighborhood of D, we can extend h, originally analytic in a neighborhood of D, as a
meromorphic function on the Riemann sphere Ĉ by defining it for z ∈ Ĉ \ D by

h(z) = F (z)− ḡ(1/z),

where of course z = ∞ corresponds to 1/z = 0. This implies that h is rational, and hence also g, being
the difference between two rational functions, is rational. �

In order to prove Theorem 2.4, we observe that the data f(z, z̄) = |z − w| =
√

(z − w)(z̄ − w̄), with
w ∈ C \ (S1 ∪ {0}), corresponds to

(3.6) F (z) = f(z, 1/z) =

√
(z − w)(1− zw̄)

z
.

Thus, in view of Proposition 3.1, Theorem 2.4 follows from the following more general theorem about
Laurent splittings.

Theorem 3.3. Let F be analytic in a neighborhood of S1 and assume that F is of the form

(3.7) F (z) =
√
R(z),

where R is a rational function with at least one simple zero in D and at least one simple zero in C \ D.
If (h, g) is the Laurent pair of F , then neither h nor g is algebraic.
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Remark 3.4. Observe that the assumption that F is analytic in a neighborhood of S1 restricts the
possible choices of rational functions R. For instance, R cannot have poles or simple zeros on S1.
Moreover, R must have an even number of zeros and poles (counted with multiplicities) in D.

Proof. Let a ∈ D and b ∈ C \D be simple zeros of R, and let L be a smooth curve from a to b which does
not intersect any other poles or zeros of R. We shall, as we may, take L to be the shortest arc of a circle
with large radius through a and b. Let U be a small disk centered at the point of intersection between
L and S1. We shall choose U so small that F , h, and g are all analytic in U . We shall also let U1 ⊂ D
and U2 ⊂ C \ D be disks centered at a and b respectively, so small that R has no poles or zeros, except
a and b, inside U1 and U2. Now define the closed curve γ to be the piece L′ of L going from the point
of intersection L ∩ ∂U1 to the point L ∩ ∂U2, around the circle ∂U2 in the positive direction, back along
−L′, and finally around the circle ∂U1 in the positive direction. Observe that in a neighborhood of γ, by
the construction, there is an analytic function A(z) such that

(3.8) F (z) =
√

(z − a)(z − b)A(z).

Let us start in U and continue the function h(z) analytically along the portion of γ contained in C \ D
until we return to U by using the identity h(z) = F (z) − ḡ(1/z). Note that the analytic continuation
of F (z) changes sign as we go around b whereas 1/z stays inside D where ḡ is analytic. Thus, if we
denote by h̃(z) the analytic function in U obtained by this analytic continuation, then we conclude that
h̃(z) = −F (z) + ḡ(1/z). Hence, we have

h̃(z) = h(z)− 2F (z)

in U . If we use this identity to continue the new branch h̃(z) in U along the remaining portion of γ inside
D (where h(z) is analytic) until we come back to U—and have completed a full tour of γ—then F (z)
changes sign again (since we go around a). The conclusion is that if we denote by h1(z) the analytic
function in U obtained by analytically continuing h(z) along the closed curve γ, then

(3.9) h1(z) = h(z) + 2F (z).

Also, as we have already seen, analytic continuation of the function F (z) in U around γ leads to the same
function F (z) (since we change sign twice). Thus, it follows from (3.9) that the analytic continuation
hk(z) of h(z) around kγ (i.e. k times around γ) satisfies

hk(z) = h(z) + 2kF (z).

In particular, repeated analytic continuation of h(z) yields an infinite number of different branches over
U . This means, of course, that h(z) cannot be an algebraic function. Consequently, g can also not be
algebraic. This completes the proof. �

4. Proof of Theorems 2.1 and 2.2

The strategy in proving Theorems 2.1 and 2.2 will be to first show that the solutions to the corre-
sponding Dirichlet problems, restricted to the line x = (s, 0, . . . , 0), can be expressed by integrals of a
certain type. The proofs then reduce to showing that these integrals cannot be algebraic functions of s.
Our starting point will be the Poisson integral (1.2) for the solution of (1.1) in Rn. If we assume that
the data function f is a function of x1 alone, as in Theorem 2.1, then by using cylindrical coordinates
y = (t, rξ), where ξ ∈ Sn−2, t ∈ [−1, 1] and r =

√
1− t2, we obtain

(4.1) u(x) = ωn(1− ||x||2)
∫ 1

−1

g(t)rn−3

(∫
Sn−2

dSξ

((t− x1)2 +
∑n

j=2(rξj − xj)2)n/2

)
dt,
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where g = g(t) is the function of one variable such that f(x) = g(x1). As mentioned above, to prove
Theorem 2.1 we shall show that the restriction of u(x) to the axis of symmetry x = (s, 0, . . . , 0) is not
algebraic. The function inside the integral over Sn−2 then reduces to

(4.2)

1
((t− s)2 +

∑n
j=2(rξj)2)n/2

=
1

((t− s)2 + r2)n/2

=
1

(2s)n/2

1
(φ(s)− t)n/2

,

where in the first step we used that ξ ∈ Sn−2, and in the second that r2 = 1− t2; we also use the notation

(4.3) φ(s) =
1
2

(
s+

1
s

)
.

Observe that the expression in (4.2), which appears as an integrand in (4.1), is in fact independent of ξ.
Thus, we arrive at the following result.

Proposition 4.1. Let u(x) be the solution in Rn to the Dirichlet problem (1.1) in which the data function
f is a function of x1 alone, i.e. f(x) = g(x1). If we set v(s) := u(s, 0, . . . , 0), with s ∈ (0, 1), then we
have, for some constant cn depending only on n,

(4.4) v(s) = cn
1− s2

sn/2
Pn(g)(φ(s)),

where φ is given by (4.3) and Pn is the integral operator

(4.5) Pn(g)(z) :=
∫ 1

−1

g(t)(1− t2)(n−3)/2 dt

(z − t)n/2
.

To show that u(x) is not algebraic, it suffices to show that Pn(g)(z) is not an algebraic function of z.
Before proceeding to do this, we shall derive a similar, but slightly more complicated, integral formula for
the solution u(x) when the data function, as in Theorem 2.2, is a function of x2

1 +x2
2. Thus, assume that

f(x) = g(x2
1 + x2

2), where g = g(u) is a function of one variable; we shall also assume here that n ≥ 4.
This time we use, in the Poisson integral (1.2), coordinates y = (t1, t2, ρξ), where (t1, t2) ∈ B2, ξ ∈ Sn−3,
and ρ =

√
1− (t21 + t22). We then obtain

(4.6) u(x) = ωn(1−||x||2)
∫

B2
g(t21+t22)ρ

n−4

(∫
Sn−3

dSξ

((t1 − x1)2 + (t2 − x2)2 +
∑n

j=3(ρξj − xj)2)n/2

)
dt,

where dt denotes dt1dt2. Again restricting to the line x = (s, 0, . . . , 0) and essentially repeating the
computation in (4.2), we obtain

(4.7) u(s, 0 . . . , 0) = cn
1− s2

sn/2

∫
B2
g(t21 + t22)ρ

n−4 1
(φ(s)− t1)n/2

dt,

where cn is some constant depending only on n; in what follows, we shall, as is customary, use cn to
denote such a constant and the reader should be warned that the precise value of cn may be different
from formula to formula. By using polar coordinates t1 = r cos θ, t2 = r sin θ, we arrive at

(4.8) u(s, 0 . . . , 0) = cn
1− s2

sn/2

∫ 1

0

g(r2)(1− r2)(n−4)/2 r

(∫ 2π

0

1
(φ(s)− r cos θ)n/2

dθ

)
dr.

We shall compute the inner integral over the circle for even n = 2k with k ≥ 2. We shall, initially,
be interested in the solution u(s, 0, . . . , 0) with s ∈ (0, 1). Observe that this corresponds to z := φ(s)
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real-valued with z > 1. Thus, in the computation that follows, we shall let z be real with z > 1 and
0 ≤ r ≤ 1. We introduce ζ = eiθ and obtain

(4.9)
∫ 2π

0

dθ

(z − r cos θ)k
= −i

(
−2
r

)k ∫
γ

ζk−1dζ

(ζ2 − (2z/r)ζ + 1)k
,

where γ denotes the positively oriented unit circle. The latter integral can be computed by residues. If
we denote by

(4.10) h(ζ) :=
ζk−1

(ζ2 − (2z/r)ζ + 1)k

and observe that the denominator has two distinct real zeros (of multiplicity k) at the points

(4.11) ζ0 :=
1
r
(z −

√
z2 − r2), ζ1 :=

1
r
(z +

√
z2 − r2),

then we conclude, since 0 < ζ0 < 1 < ζ1, that

(4.12)

∫ 2π

0

dθ

(z − r cos θ)k
= 2π

(
−2
r

)k

Resζ0h

= 2π
(
−2
r

)k 1
(k − 1)!

[(
d

dζ

)k−1
ζk−1

(ζ − ζ1)k

]∣∣∣∣∣
ζ=ζ0

.

If we write
ζk−1

(ζ − ζ1)k
=

1
ζ − ζ1

(
1 +

ζ1
ζ − ζ1

)k−1

=
k−1∑
l=0

(
k − 1
l

)
ζl
1

(ζ − ζ1)l+1
,

then, by carrying out the differentiation in (4.12) term by term,

(4.13)

∫ 2π

0

dθ

(z − r cos θ)k
= 2π

(
−2
r

)k 1
(k − 1)!

k−1∑
l=0

(
k − 1
l

)
(−1)k−1(k − 1)!

(
l + k − 1

l

)
ζl
1

(ζ0 − ζ1)l+k

= −2π
(

2
r

)k k−1∑
l=0

(
k − 1
l

)(
l + k − 1

l

)
ζl
1

(ζ0 − ζ1)l+k
.

Now, ζ0 − ζ1 = −2
√
z2 − r2/r and hence we can rewrite (4.13) as follows

(4.14)
∫ 2π

0

dθ

(z − r cos θ)k
= −2π

(
2
r

)k k−1∑
l=0

(
k − 1
l

)(
l + k − 1

l

)(
−1

2

)l+k
rk(z +

√
z2 − r2)l

(z2 − r2)(l+k)/2
.

By expanding (z +
√
z2 − r2)l and simplifying, we obtain

(4.15)
∫ 2π

0

dθ

(z − r cos θ)k
= (−1)k+12π

k−1∑
l=0

l∑
j=0

(
−1

2

)l (
k − 1
l

)(
l + k − 1

l

)(
l

j

)
zj

(z2 − r2)(k+j)/2
.

We can formulate this as follows.

Lemma 4.2. For real z with z > 1, 0 ≤ r ≤ 1, and k ≥ 2, we have the following identity

(4.16)
∫ 2π

0

dθ

(z − r cos θ)k
= (−1)k+12π

k−1∑
j=0

Bjk
zj

(z2 − r2)(k+j)/2
,
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where

(4.17) Bjk :=
k−1∑
l=j

(
−1

2

)l (
k − 1
l

)(
l + k − 1

l

)(
l

j

)
.

Plugging this into (4.8), we obtain for the solution u(x), with data f(x) = g(x2
1 + x2

2) in Rn = R2k,

(4.18) u(s, 0 . . . , 0) = cn
1− s2

sk

k−1∑
j=0

Bjkz
j

∫ 1

0

g(r2)(1− r2)k−2 2rdr
(z2 − r2)(k+j)/2

,

where Bjk is given by (4.17) above and z = φ(s) as given by (4.3). Thus, by making the substitution
u = r2, we obtain the following.

Proposition 4.3. Let u(x) be the solution in Rn, with n = 2k even and k ≥ 2, to the Dirichlet problem
(1.1) in which the data function f is a function of x2

1 + x2
2, i.e. f(x) = g(x2

1 + x2
2). If we set v(s) :=

u(s, 0, . . . , 0), with s ∈ (0, 1), then we have, for some constant cn depending only on n,

(4.19) v(s) = cn
1− s2

sk
P̃k(g)(φ(s)),

where φ is given by (4.3) and P̃k is the operator

(4.20) P̃k(g)(z) :=
k−1∑
j=0

Bjkz
j

∫ 1

0

g(u)(1− u)k−2 du

(z2 − u)(k+j)/2

and Bjk is given by (4.17).

Motivated by Propositions 4.1 and 4.3, we shall now proceed to study the integral, initially defined for
real w > 1,

(4.21) I(w) :=
∫ 1

a

h(u)
du

(w − u)m/2
,

in which m is an integer ≥ 2, a a real number ≤ 0, h(u) is a rational function without poles on the real
line segment [a,∞). We shall further assume that, as u goes to infinity in the complex plane, we have
the following estimate

(4.22) |h(u)| ≤ C|u|q,
for some constant C > 0 and some q with

(4.23) q <
m

2
− 1.

Clearly, I(w) extends as an analytic function in the region Ω := C \ (−∞, 1] by simply letting the square
root in (4.24) be the principal branch. Moreover, I(w) is analytically extendable across the segment
(−∞, a), and the analytic continuation across this segment equals (−1)mI(w); in particular, if m is an
even integer, we may continue I(w) to an analytic function in the doubly connected region C \ [a, 1].
Comparing the definition of I(w) and the expressions for v(s) in Propositions 4.1 and 4.3 in which w
would correspond to φ(s) or φ(s)2, respectively, we realize that we should continue I(w) analytically
across the segment [a, 1] (which corresponds to continuing our solution v(s) across the unit circle in the
s-plane) before attempting to detect any non-algebraic singularities at infinity. Let us denote by I+(x)
and I−(x) the boundary value of I at x, for x ∈ (a, 1), approaching from {Im w > 0} and {Im w < 0},
respectively. Let Γ+ and Γ− denote smooth simple oriented curves from a to 1 such Γ±\{a, 1} is contained
in {±Im w > 0} and such that h(w) has no singularities in the region Ω bounded by the closed simple
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oriented curve Γ := Γ− − Γ+. By deforming the contour of integration in the definition of I(w) into Γ±,
we conclude that

(4.24) I+(x) =
∫

Γ−

h(u)
du

(w − u)m/2
, I−(x) =

∫
Γ+

h(u)
du

(w − u)m/2
,

where the branch of the square root in each case (when m is odd) is the principal branch. Let us now
denote by Ĩ(w) the analytic continuation of I+(x) into the half plane {Im w < 0}, or equivalently the
analytic continuation of I(w) across the segment (a, 1) from the upper half plane into the lower half
plane. We then obtain, for w = x− iy with x ∈ (a, 1) and y > 0, (I+ = I− + I+ − I−)

(4.25) Ĩ(w) = I(w) +
∫

Γ−

h(u)
du

(w − u)m/2
−
∫

Γ+

h(u)
du

(w − u)m/2
,

where the square roots again are the principal branches. Note that when m = 2p is even, we obtain

(4.26) Ĩ(w) = I(w) +
∫

Γ

h(u)
du

(w − u)p
= I(w) +H(w),

where again Γ is the closed simple contour Γ− − Γ+ and

(4.27) H(w) =
1

(p− 1)!

[(
d

du

)p−1

h(u)

]∣∣∣∣∣
u=w

.

In particular, if m is even, then Ĩ(w) is equal to I(w) modulo a rational function. When m is odd,
we can compute the integrals over Γ± in (4.25), for w ∈ (a, 1), as follows. For R > 0 large, let γR be
the closed oriented curve consisting of −Γ+, followed by Γ−, the line segment IR := [1, R], the circle
CR := {|w| = R} in the negative direction, and finally the line segment −IR. For fixed w ∈ (a, 1), we
continue the square root

√
w − u to a continuous function of u along γR, starting from the principal

branch along −Γ+ + Γ−. This defines an analytic branch of this square root, as a function of u, in
the open domain V bounded by the closed curve γR. The orientation of γR, however, is opposite the
positively oriented boundary ∂V . Thus, by the Residue Theorem, we have, for R large enough,

(4.28)
∫

γR

h(u)
du

(w − u)m/2
= −2πi

q∑
l=1

Resal

[
h(u)

(w − u)m/2

]
.

where a1, . . . , aq denote the poles of h and the residue is taken with respect to the variable u. (Recall
that h was assumed not to have any poles on [a,∞) or inside the curve Γ.) The integral over the circle
CR in (4.28) tends to 0 as R→∞ in view of (4.22) and (4.23). Observe also that the integrals over the
two oppositely oriented line segments IR and −IR do not cancel due to the fact that the branches of the
square root

√
w − u differ by a sign in each integral. Thus, by letting R→∞, we conclude that

(4.29)∫
Γ−

h(u)
du

(w − u)m/2
−
∫

Γ+

h(u)
du

(w − u)m/2
+ 2

∫ ∞

1

h(u)
du

(w − u)m/2
= −2πi

q∑
l=1

Resal

[
h(u)

(w − u)m/2

]
,

where the square root of the negative quantity w − u for u ∈ [1,∞) is i
√
u− w. By using (4.25), we

conclude that for the analytic continuation Ĩ(w) of I(w) across (a, 1) from the upper half plane into the
lower half plane, we have

(4.30) Ĩ(w) = I(w)− 2i
∫ ∞

1

h(u)
du

(u− w)m/2
− 2πi

q∑
l=1

Resal

[
h(u)

(w − u)m/2

]
.
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Proof of Theorem 2.1. Recall that n = 2k + 1 with k ≥ 1. As mentioned above, it suffices to show that
the function J(w) := Pn(g)(w), given by (4.5), is not algebraic with g(t) = 1/(t+ 2)2k−1. Thus, to reach
a contradiction, we shall assume that J(w) is algebraic. Observe that J(w) is equal to the integral I(w)
above with m = 2k + 1, a = −1, and

(4.31) h(u) =
(1− u2)k−1

(u+ 2)2k−1
.

Hence by (4.30), if we denote by J̃(w) the analytic continuation of J(w) across (−1, 1) from the upper
half plane to the lower half plane, then we have

(4.32) J̃(w) = J(w)− 2i
∫ ∞

1

h(u)
du

(u− w)k+1/2
− 2πiRes−2

[
h(u)

(w − u)k+1/2

]
,

where h is as in (4.31). Observe that the function

H(w) := −2πiRes−2

[
h(u)

(w − u)k+1/2

]
is algebraic, since it is a finite linear combination of derivatives, with respect to u, of (w − u)−k−1/2

evaluated at u = −2. Now, if J(w) were algebraic, then of course J̃(w) would be algebraic. Thus, we
conclude that if J(w) were algebraic, then the integral

(4.33) K(w) :=
∫ ∞

1

(1− u2)k−1

(u+ 2)2k−1

du

(u− w)k+1/2

would be an algebraic function of w. Observe that we may rewrite this integral as follows

(4.34) K(w) =
∫ ∞

1

(1− u2)k−1

(u+ 2)2k−1

du

(u− w)k+1/2
=

k−1∑
l=0

(−1)l

(
k − 1
l

)∫ ∞

1

u2l

(u+ 2)2k−1

du

(u− w)k+1/2

To obtain a contradiction, we shall need the following lemma.

Lemma 4.4. Let b > −1 and p+ α > 1. Then, as x→∞, we have

(4.35)
∫ ∞

1

du

(u+ b)p(u+ x)α
=

{
O(x−α), if p > 1

x−α lnx+O(x−α), if p = 1.

Proof. The statement for p > 1 is an immediate consequence of Lebesgue’s dominated convergence
theorem. (Simply multiply the integral by xα and take the limit as x → ∞.) Let us therefore assume
that p = 1. Making the change of variables u+ b = t(x− b), we obtain, with y = x− b,

(4.36)

∫ ∞

1

du

(u+ b)(u+ x)α
= y−α

∫ ∞

(1+b)/y

dt

t(t+ 1)α

= y−α

(∫ 1

(1+b)/y

dt

t(t+ 1)α
+
∫ ∞

1

dt

t(t+ 1)α

)
.

Observe that the function 1/(t(t+ 1)α) is integrable on [1,∞] by the assumption that 1 + α > 1. Thus,
to prove the lemma it suffices to show that

(4.37)
∫ ∞

(1+b)/y

dt

t(t+ 1)α
= ln y +O(1).
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An integration by parts yields

(4.38)
∫ 1

(1+b)/y

dt

t(t+ 1)α
=

1
(1 + (1 + b)/y)α

ln(y/(1 + b)) + α

∫ 1

(1+b)/y

ln t dt
(t+ 1)α+1

.

Since the function f(t) = ln t/(t+ 1)α+1 is integrable on [0, 1], the conclusion of Lemma 4.4 now follows.
�

Now, observe that, for u ∈ [1,∞), we have u < u + 2 < 4u. Thus, if we set w = −x in (4.34) with
x > 0, then we conclude from (4.34) and Lemma 4.4 (with b = 0) that, as x→∞,

(4.39) Ax−k−1/2 lnx ≤ |K(−x)| ≤ Bx−k−1/2 lnx,

for some constants 0 < A < B. If K(w) were algebraic, then K(w) would have a Puiseux expansion at
infinity, i.e. it would be given for large w by a convergent series

K(w) =
∞∑

l=−r

bl

(
1
w

)l/p

,

for some integers p and r. This clearly contradicts the estimate (4.39) and, hence, completes the proof
of Theorem 2.1. �

Proof of Theorem 2.2. The proof of Theorem 2.2 proceeds along the same lines as that of Theorem 2.1.
This time, we have n = 2k with k ≥ 2, and we shall show, as is sufficient to prove Theorem 2.2, that
J(z) := P̃k(g)(z), given by (4.20) with g(u) = 1/(1 + u)k−1, is not algebraic. Observe that we can write

J(z) =
k−1∑
j=0

Bjkz
jIj(w),

where Bjk is given by (4.17), w = z2, and Ij(w) is as in (4.21) with a = 0, m = k + j, and

(4.40) h(u) =
(1− u)k−2

(1 + u)k−1
.

Thus, if we denote by J̃(z) the analytic continuation of J(z) across the segment (0, 1) from the upper
half plane into the lower half plane, we obtain, by the arguments preceeding the proof of Theorem 2.1
above (since w = z2 then also crosses (0, 1) from the upper half plane into the lower half plane),

(4.41) J̃(z) = J(z) +
∑

0≤j≤k−1
k+jeven

zjHj(w)−

∑
0≤j≤k−1

k+jodd

Bjkz
j

(
2i
∫ ∞

1

h(u)
du

(u− w)(k+j)/2
+ 2πiRes−1

[
h(u)

(w − u)(k+j)/2

])
,

where Hj(w) is the rational function given by (4.27) with h is as in (4.40) and p = (k + j)/2. Hence, if
we assume, in order to reach a contradiction, that J(z) is algebraic, then we conclude (cf. the proof of
Theorem 2.1 above) that the function

(4.42) K(z) =
∑

0≤j≤k−1
k+jodd

Bjkz
j

∫ ∞

1

(1− u)k−2

(1 + u)k−1

du

(u− w)(k+j)/2
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must be algebraic. We write

(1− u)k−2

(1 + u)k−1
=

1
1 + u

(
−1 +

2
1 + u

)k−2

and expand the right hand side to obtain

(4.43)

K(z) =
∑

0≤j≤k−1
k+jodd

Bjkz
j

∫ ∞

1

(1− u)k−2

(1 + u)k−1

du

(u− w)(k+j)/2

=
∑

0≤j≤k−1
k+jodd

k−2∑
l=0

(−1)k−2−l

(
k − 2
l

)
2lBjkz

j

∫ ∞

1

1
(1 + u)l+1

du

(u− w)(k+j)/2
.

We set z = −iy, with y > 0, in K(z) and let y →∞. By Lemma 4.4 (with b = 1), we then obtain

(4.44)
K(−iy) = (−1)k−2

∑
0≤j≤k−1

k+jodd

Bjk(−iy)j
(
y−(k+j) ln y +O(y−(k+j))

)
= My−k ln y +O(y−k),

where

(4.45) M = (−1)k−2
∑

0≤j≤k−1
k+jodd

Bjk(−i)j .

By using the definition (4.17) of Bjk, we obtain

(4.46) M = (−1)k−2
∑

0≤j≤k−1
k+jodd

k−1∑
l=j

(
−1

2

)l (
k − 1
l

)(
l + k − 1

l

)(
l

j

)
(−i)j ,

Since M 6= 0 by the assumption (2.2), the estimate (4.44) contradicts the hypothesis that K(w) is
algebraic in precisely the same way as in the proof of Theorem 2.1 above (by considering the Puiseux
expansion of K at infinity). �

5. Axially symmetric data in even dimensions

Let f(x) be an axially symmetric rational function without singularities on the unit sphere Sn−1 in Rn.
We shall assume that n = 2k is even and k ≥ 2. Since the Laplace operator commutes with rotations,
we may assume that the axis of symmetry is the x1-axis. If we write r =

√
x2

2 + . . .+ x2
n, then f is a

function of x1 and r. Since f is rational, f must in fact be a function of x1 and r2. Now, on Sn−1 we
have x2

1 + . . . + x2
n = 1, or equivalently r2 = 1 − x2

1. It follows that there is a rational function of one
variable g(t) such that f(x) = g(x1) on the sphere Sn−1. Since f has no poles on Sn−1, we deduce that g
cannot have any poles on the segment [−1, 1]. Thus, we shall consider the Dirichlet problem (1.1) with
data f(x) = g(x1), where g(t) is a rational function without poles in [−1, 1]. We have the following result
which contains, as a special case, Theorem 2.5.

Theorem 5.1. Let n = 2k ≥ 4 and f(x) = g(x1), where g is a rational function of one variable. Assume
in addition, if k ≥ 3, that g has k − 2 rational integrals; i.e. there is a rational functions G(t) such that
dk−2G/dtk−2 = g. Then, the solution u(x) to (1.1) is an axially symmetric rational function.
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Proof. First, we observe that, for even n = 2k ≥ 4 and y ∈ Rn \ Bn, the harmonic potential

(5.1) Uy(x) =
1

||x− y||n−2
=

 n∑
j=1

(xj − yj)2

−(k−1)

is rational without poles in a neighborhood of Bn. Let us take y = y(s) := (s, 0, . . . , 0) with |s| > 1.
Then, for x on the sphere Sn−1, we have (cf. (4.2))

(5.2)
Uy(s)(x) =

(x1 − s)2 +
n∑

j=2

x2
j

−(k−1)

=
1

(−2s)k−1

1
(x1 − φ(s))k−1

,

where φ(s) is given in (4.3). Let us for simplicity denote Uy(s) by Us. Observe that φ is an analytic 2-to-1
mapping of C \ {0} onto C which sends both the punctured unit disk D \ {0} and C \D conformally onto
C \ [−1, 1]. Hence, for x ∈ Sn−1, we may continue Us(x) as an analytic function of s to C \ D and, for
any w ∈ C \ [−1, 1], there is a unique s = s(w) with s ∈ C \ D such that w = φ(s) and hence

u(x) = (−2s)k−1Us(x)

is the solution to the Dirichlet problem (1.1) with

f(x) =
1

(x1 − w)k−1
.

Also, note that for any integer m ≥ 1, the function

(5.3) Um
s (x) :=

∂m

∂sm
Us(x)

is harmonic away from the point y = (s, 0, . . . , 0) and satisfies, for x on the sphere Sn−1,

(5.4) Um
s (x) =

m∑
j=0

ψj(s)
1

(x1 − φ(s))k−1+j
,

where ψ1(s), . . . , ψm(s) are rational functions of s and

ψm(s) =
(k − 2 +m)!

(k − 2)!
(−φ′(s))m

(−2s)k−1
.

In particular, for any w ∈ C \ [−1, 1], we have ψm(s) 6= 0 for s = s(w) with s ∈ C \ D and φ(s) = w. We
conclude that there are coefficients cj ∈ C, j = 0, . . . ,m, such that

(5.5) u(x) :=
m∑

j=0

cjU
j
s (x),

where we use the notation U0
s := Us, solves the Dirichlet problem (1.1) with data f(x) = 1/(x1−w)k−1+m.

In particular, the solution u to (1.1) with data f(x) = 1/(x1 − w)l, where l ≥ k − 1, is rational. Recall
that any rational function of one variable can be decomposed as a finite sum of singular parts

(5.6) g(t) = p(t) +
p∑

j=1

qj∑
l=1

ajl
1

(t− wj)l
,
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where p(t) is a polynomial, w1, . . . , wp denote the poles of g in C, and q1, . . . , qp their orders. If we also
recall that the solution of the Dirichlet problem (1.1) with polynomial data is polynomial, then it follows
from the above discussion that the solution u(x) to (1.1) with axially symmetric data f(x) = g(x1), where
g is given by (5.6), is rational provided that the coefficients ajl satisfy

(5.7) ajl = 0, ∀ l < k − 1 and j = 1, . . . , p.

Clearly, this condition is vacuous when k = 2, and it is not difficult to see that for k ≥ 3 the condition (5.7)
is equivalent to g(t) having k− 2 rational integrals. Since, as is well known, the solution to the Dirichlet
problem with axially symmetric data is axially symmetric, the proof of Theorem 5.1 is complete. �

We should point out that we do not know if the condition that g(t) has k − 2 rational integrals is
necessary for the solution u(x) to be rational in Theorem 5.1. In particular, we do not know if e.g. the
solution in, say, R6 with data f(x) = 1/(x1 − 2) is rational. However, we can say that the solution
will be rational on the axis of symmetry. Indeed, by Proposition 4.1, the solution u(x) to (1.1) with
f(x) = g(x1), restricted to the axis of symmetry x = (s, 0, . . . , 0), is given by (4.4) where Pn(g)(z) is
given by (4.5). By an integration by parts, we have, using the notation n = 2k,

(5.8)

Pn(g)(z) =
∫ 1

−1

g(t)(1− t2)k−3/2 dt

(z − t)k

=
[

1
k − 1

g(t)(1− t2)k−3/2

(z − t)k−1

]1
−1

− 1
k − 1

∫ 1

−1

d

dt
(g(t)(1− t2)k−3/2)

dt

(z − t)k−1

= − 1
k − 1

∫ 1

−1

g′(t)(1− t2)k−3/2 dt

(z − t)k−1
+

2k − 3
k − 1

∫ 1

−1

g(t)t(1− t2)k−5/2 dt

(z − t)k−1

= − 1
k − 1

Pn−2(T1g)(z) +
2k − 3
k − 1

Pn−2(T2g)(z)

= Pn−2(Vkg)(z),

where

(5.9) Vkg(t) = − 1
k − 1

T1g(t) +
2k − 3
k − 1

T2g(t)

and

(5.10) T1g(t) := g′(t)(1− t2), T2g(t) := tg(t).

Observe that if g is rational, then T1g and T2g, and hence also Vkg, are rational. We conclude, by
induction, that for any rational function g(t) and n = 2k ≥ 6, we have

(5.11) Pn(g) =
2k−2∑
l=1

alP4(gl),

where al ∈ R and gl, for l = 1, . . . 2k−2, are rational functions. By Proposition 4.1, the solution to (1.1)
restricted to x = (s, . . . , 0) is given by

(5.12) v(s) =
2k−2∑
l=1

a′ls
k−2vl(s),

where a′l ∈ R and vl(s), for l = 1, . . . , 2k−2, is the restriction to the axis of symmetry of the solution to
the Dirichlet problem (1.1) in R4 with data f(x) = gl(x1). Hence, by Theorem 2.5, v(s) is rational. We
may formulate this as follows.
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Theorem 5.2. Let n = 2k ≥ 4, f(x) = g(x1), where g(t) is a rational function of one variable. Let u(x)
be the solution to the Dirichlet problem (1.1), and let v(s) = u(s, 0 . . . , 0) be its restriction to the x1-axis.
Then, v(s) is rational.

6. Ultraspherical polynomials and The Nehari transform

We shall conclude this paper by exploring a relationship between the Dirichlet problem and series of
ultraspherical polynomials. We shall follow closely the notations in [SW] and [S]. Thus, P (λ)

m (t) will
denote the ultraspherical (or Gegenbauer) polynomial of degree m with parameter λ. Recall that the
P

(λ)
m (t) are given by the generating function

(6.1)
1

(1− 2tw + w2)λ
=

∞∑
m=0

P (λ)
m (t)wm,

from which one easily deduces the recursion formula

(6.2)
dP

(λ)
m

dt
(t) = 2λP (λ+1)

m−1 (t), m ≥ 1.

We mention here that the ultraspherical polynomials are special cases of the Jacobi polynomials P (α,β)
m (t)

in the sense that P (λ)
m (t) = c(m,λ)P (α,β)

m (t) where α = β = λ− 1/2 and c(m,λ) is a normalization factor
depending on m and λ. Furthermore, as special cases of the ultraspherical polynomials we have the
Legendre polynomials Pm(t) (normalized by Pm(1) = 1) via P

(1/2)
m ((t) = Pm(t), and the Chebyshev

polynomials of the second kind Um(t) via P (1)
m (t) = Um(t) (see e.g. [S]). For our purposes, however, a

more relevant connection is to the spherical harmonics in Rn. For any y ∈ Sn−1 ⊂ Rn, the restriction of
the function

f(x) := P (n−2)/2
m (〈x, y〉),

where

〈x, y〉 :=
n∑

j=1

xjyj ,

to the sphere Sn−1 is a spherical harmonic of order m, i.e. the restriction to Sn−1 of a homogeneous
harmonic polynomial of degree m. More precisely, the function Hm(x) defined in Rn by

(6.3) Hm(x) := ||x||mP (n−2)/2
m

(
〈x, y〉
||x||

)
is a homogeneous harmonic polynomial of degree m. As a consequence of Theorem 5.2, we obtain the
following result.

Theorem 6.1. Let n ≥ 4 be even and {cm}∞m=0 a sequence of complex numbers such that

(6.4) lim sup
m→∞

|cm|1/m < 1.

Then, the series

(6.5) g(z) :=
∞∑

m=0

cmP
(n−2)/2
m (z)
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converges to a holomorphic function in an open neighborhood of the segment [−1, 1] in the complex plane.
If g is rational, then the function g̃(w) defined by the Taylor series

(6.6) g̃(w) :=
∞∑

m=0

cmP
(n−2)/2
m (1)wn

is also rational.

Remark 6.2. The numbers Pλ
m(1), which appear in the Taylor series (6.6) with λ = (n − 2)/2, can be

easily computed from the generating formula (6.1). One obtains

(6.7) Pλ
m(1) =

2λ(2λ+ 1) . . . (2λ+m− 1)
m!

.

For instance, if n = 6, so that λ = 2, then

P (2)
m (1) =

(
m− 3
m

)
=

(m+ 1)(m+ 2)(m+ 3)
3!

.

Thus, the conclusion of Theorem 6.1 with n = 6 implies that the Taylor series
∞∑

m=0

cmw
m+3

has a rational third derivative provided that the corresponding ultraspherical series (6.5) is rational.
Similarly, the conclusion of the theorem in general can be formulated as saying that the derivative of
order n− 3 of the Taylor series

∞∑
m=0

cmw
m+n−3

is rational when the series (6.5) is.

Proof. The convergence of the series (6.5) defining g, subject to the condition (6.4), follows from well
known estimates for Jacobi polynomials. If we now consider the Dirichlet problem (1.1) in Rn with data
f(x) = g(x1), where g is assumed to be rational, then the solution u(x) restricted to the x1-axis is rational
by Theorem 5.2. On the other hand, the solution u(x) can be given explicitly by

(6.8) u(x) =
∞∑

m=0

cm||x||mP (n−2)/2
m

(
x1

||x||

)
,

and hence the restriction of u to the x1-axis is precisely g̃(x1). �

The transformation of a sum of Jacobi polynomials to a Taylor series with the same coefficients was
apparently first studied by Nehari [N] who demonstrated, under the assumption (6.4), a correspondence
between the singular points of the series of Jacobi polynomials on its ellipse of convergence, and those of
the associated Taylor series on its circle of convergence. However, results of the precision of Theorem 6.1
do not follow from Nehari’s theorem. For further developments of Nehari’s results, see also [EKS].

The conclusion of Theorem 6.1 is in general false for odd n. Let us demonstrate this for n = 3. The
corresponding value of λ = (n − 2)/2 is then 1/2, and hence the relevant ultraspherical polynomials
P

(1/2)
m (t) are just the classical Legendre polynomials, which we denote, as is customary, by Pm(t). (The

integral operator Pn defined in (4.5) will not be used in this section, so there should be no risk of confusing
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the Legendre polynomials with these integral operators.) Since Pm(1) = 1, what we have to exhibit is a
sequence {cm}, subject to the condition (6.4), for which the series

(6.9)
∞∑

m=0

cmPm(t),

is a rational function, but for which

(6.10)
∞∑

m=0

cmw
m

is not. For this we invoke the classical formula of Heine (c.f. [WW], p. 322)

(6.11)
1

t− z
=

∞∑
m=0

(2m+ 1)Qm(t)Pm(z),

where Qm(t) denotes the mth order Legendre function of the second kind. For fixed complex t not on
the segment [−1, 1], the numbers cm := (2m+ 1)Qm(t) satisfy (6.4), and the series on the right in (6.11)
converges uniformly for z in any compact subset of the domain bounded by the ellipse with foci at −1
and 1 and passing through t. The Nehari transform of the series in (6.11), i.e. the result of replacing
Pm(z) by wm, is

(6.12) Ft(w) =
∞∑

m=0

(2m+ 1)Qm(t)wm

and we claim that for fixed complex t not in the segment [−1, 1], the function Ft(w), given by (6.12), is
not a rational function of w. Indeed, from the identity ([WW], p. 321, Example 20)

(6.13)
∞∑

m=0

Qm(t)wm =
1

(1− 2tw + w2)1/2
cosh−1

(
w − t

(t2 − 1)1/2

)
,

we can easily derive a closed expression for Ft(w). If we denote the function in (6.13) by Gt(w), then we
have

(6.14) Ft(w2) =
d

dw
(wGt(w)).

Thus, if Ft were rational, then d/dw(wGt(w2) would be as well. But, it is not; indeed, it is not even
algebraic, and the same is therefore true of Ft(w). We do not insist on all details, because the same
conclusion follows from our earlier results: We have shown (cf. the proof of Theorem (2.1)) that the
solution to the Dirichlet problem (1.1) in R3 with data f(x) = 1/(2− x1) (and the same could be easily
be shown with data ft(x) = 1/(t − x1) and t not in the segment [−1, 1]) restricted to the x1-axis is
not algebraic. By using the Heine expansion (6.11) and solving the Dirichlet problem as in the proof
of Theorem 6.1, we conclude that the Nehari transform Ft(w) (given by (6.12)) is not algebraic. The
argument sketched in this section yields an alternative proof, and interpretation, of Theorem 2.1, and
we have given it here to show the link with ultraspherical polynomials and the Nehari transform. From
a purely technical point of view, it appears that our earlier method, based on the Poisson integral, is
simpler and also does not rely on the knowledge of Heine’s expansion and (6.13).

One could also, as a tour de force, solve the axially symmetric Dirichlet problem (1.1) in Rn, for all
odd n greater than 1, with the special data

1
(t− x1)(n−1)/2
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by an explicit series of Legendre functions as follows. By differentiating (6.11) r times with respect to z,
we obtain an expansion of the function

1
(t− z)r+1

in terms of rth order derivatives of Legendre polynomials Pn, which in view of the recursion formula (6.2)
are ultraspherical polynomials with parameter λ = r + 1/2 and that correspond to zonal harmonics in
the ball in dimension 2r+3. Observe that for odd n larger than 3, the exponent (n−1)/2 is smaller than
that, 2k − 1 = n − 2, appearing as the exponent in Theorem 2.1. Thus, for odd n ≥ 5, it may seem at
first glance that we do not get an alternative approach to Theorem 2.1 using the expansion (6.11). But,
in fact, we can explicitly obtain the expansion of 1/(t − z)s for every integer s ≥ (n − 2)/2 in terms of
ultraspherical polynomials with parameter λ = (n − 2)/2 if we differentiate (6.11) (n − 3)/2 times with
respect to z and s− (n− 3)/2 times with respect to t. Presumably this could lead to an alternative proof
of Theorem (2.1) and also further generalizations, but we shall not pursue that here.
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