On the faces problem for perfect codes

Olof Heden*

February 25, 2003

Abstract

Perfect 1-error correcting codes C in the hyper cube Z_2^n are considered. The possibilities for the number $\gamma(C)$ of code words in a k-face γ of the hyper cube are discussed. It is shown that the possibilities for the number $\gamma(C)$ depend on the dimension of the face γ , the rank of C and the dimension of the kernel of C. Especially we get an answer to a question of Sergey V. Avgustinovich whether there is a perfect code with no full (n-1)/2-face or not.

1 Introduction

We consider the direct product $Z_2^n = Z_2 \times Z_2 \times ... \times Z_2$ of the field $Z_2 = \{0, 1\}$. The elements of this direct product will be called *words* of *length* n. The *weight* of a word c, w(c), will be the number of non zero components of c. The *distance* between two words c and c', d(c, c'), will be the weight of the word c - c'.

A perfect 1-error correcting binary code of length n is a subset C of \mathbb{Z}_2^n satisfying the following condition:

To any $v \in \mathbb{Z}_2^n$ there is an unique $c \in C$ with $d(c, v) \leq 1$.

(By trivial counting arguments, the only possible values for the length of a perfect 1-error correcting binary code are $n = 2^m - 1$ where m is an integer.)

A *k*-face of the n-cube Z_2^n is the set of points

$$\Gamma^{i_1,\dots,i_t}_{\sigma_{i_1},\dots,\sigma_{i_t}} = \{ x \in Z_2^n \mid x_{i_v} = \sigma_{i_v} \quad v = 1, 2, \dots, t \},\$$

where t = n - k.

A perfect code C of length n is said to be *full* on the (n-1)/2-face γ if any point on γ is at distance at most one from an unique word of

 $C \cap \gamma$.

^{*}This research was supported by the Swedish NFR

Sergey V. Avgustinovich [1] proposed the problem whether or not there exists a perfect code C which is not full on any (n-1)/2-face of the n-cube.

Below we give a formula that relates the number of full (n-1)/2-faces to the rank of the perfect code C. We also show that the possibilities for the number of words of a perfect code on a (n-1)/2-face are related to the size of the kernel of C. We remind on the definition of rank and kernel of a perfect code.

Consider the linear span $\langle C \rangle$ of the words of C. For any code C, $\langle C \rangle$ is a linear subspace of the vector space \mathbb{Z}_2^n . The dimension of this subspace is the rank of C, rank(C).

The *kernel* of a perfect code is the set

$$ker(C) = \{ p \in \mathbb{Z}_2^n \mid p + c \in C \quad \text{for all} \quad c \in C \}.$$

The kernel is a subspace of Z_2^n .

We show in Section 3

Theorem 1 The number of full (n-1)/2-faces of a perfect 1-error correcting binary perfect code C of length n is equal to

$$(2^{n-rank(C)}-1)2^{(n-1)/2}$$
.

Further the full (n-1)/2-faces may be divided into equivalence classes, such that each class consists of $2^{(n-1)/2}$ parallel faces.

In particular no full rank perfect code will have any full face.

We also consider the orthogonal complement γ^{\perp} of a full (n-1)/2-face γ . We get the following theorem.

Theorem 2 If γ is a full (n-1)/2-face of a perfect 1-error correcting binary perfect code C of length n then $\gamma^{\perp} \cap C$ is isomorphic to an extended perfect 1-error correcting binary perfect code C of length n + 1.

The proof technique of Theorem 1 also give the following theorem.

Theorem 3 For any perfect code C of length n and any (n-1)/2-face γ

$$|C \cap \gamma| = \frac{t \cdot |ker(C)|}{2^{(n-1)/2}}$$

for some integer t.

To prove these theorems we use the technique with fourier coefficients, as described in [5] and summarized in the next section.

2 Preliminaries

2.1 Fourier coefficients

We consider a group algebra $R[x_1, x_2, ..., x_n]$. The elements of this group algebra are polynomials

$$r(x_1, x_2, ..., x_n) = \sum_{v \in \mathbb{Z}_2^n} r_v \, x_1^{v_1} x_2^{v_2} ... x_n^{v_n} \qquad v = (v_1, v_2, ..., v_n) \tag{1}$$

where the coefficients $r_v, v \in \mathbb{Z}_2^n$, belong to the set of real numbers R.

Let $y_t(x_1, x_2, ..., x_n)$, for $t \in \mathbb{Z}_2^n$, denote the polynomial

$$y_t(x_1, x_2, ..., x_n) = \frac{1}{2^n} \prod_{i=1}^n (1 - x_i)^{t_i} (1 + x_i)^{1 - t_i} \qquad t = (t_1, t_2, ..., t_n).$$

It was proved in [5] that any polynomial $r(x_1, x_2, ..., x_n)$ of $R[x_1, x_2, ..., x_n]$ has an unique expansion

$$r(x_1, x_2, ..., x_n) = \sum_{t \in \mathbb{Z}_2^n} A_t y_t(x_1, ..., x_n),$$
(2)

where $A_t \in R$ for $t \in \mathbb{Z}_2^n$. The coefficients $A_t, t \in \mathbb{Z}_2^n$, in the expansion (2) will be called the *fourier coefficients* of the polynomial $r(x_1, ..., x_n)$.

We note that the polynomials may be considered as polynomials in the ring $R[x_1, \ldots, x_n]$. We may hence make substitutions of x_i , $i = 1, 2, \ldots, n$ by real numbers, whereby equalities will remain true.

If we in the equality (2) substitute

$$x_i = \begin{cases} 1 & \text{if } d_i = 0\\ -1 & \text{if } d_i = 1 \end{cases} \qquad d = (d_1, d_2, ..., d_n) \in \mathbb{Z}_2^n, \tag{3}$$

then we get from the equations (1) and (2) that

$$A_d = \sum_{v \in \mathbb{Z}_2^n} r_v (-1)^{v \cdot d},$$
(4)

where

$$(v_1, v_2, ..., v_n) \cdot (d_1, d_2, ..., d_n) = v_1 d_1 + v_2 d_2 + ... + v_n d_n$$

To a subset C of Z_2^n we associate the polynomial

$$C(x_1, x_2, ..., x_n) = \sum_{c \in C} x_1^{c_1} x_2^{c_2} ... x_n^{c_n} \qquad c = (c_1, c_2, ..., c_n).$$

We will say that the fourier coefficients of the polynomial $C(x_1, x_2, ..., x_n)$ are the fourier coefficients of the set C.

The following result was proved in [7], see also [5].

Theorem 4 If C is a perfect 1-error correcting binary code of length n then there are integers A_0 and A_d , $d \in D = \{t \in \mathbb{Z}_2^n \mid w(t) = \frac{n+1}{2}\}$, such that

$$C(x_1, ..., x_n) = \frac{A_0}{2^n} \prod_{i=1}^n (1+x_i) + \sum_{d \in D} \frac{A_d}{2^n} \prod_{i=1}^n (1+x_i)^{1-d_i} (1-x_i)^{d_i}.$$

If we let $x_i = 1$ for i = 1, 2, ..., n in (2) and (3) we will get that

$$|C| = \sum_{c \in C} 1 = C(1, 1, ..., 1) = A_0.$$

Let $\langle d \rangle^{\perp}$ denote the set of words that are orthogonal to the word $d = (d_1, d_2, ..., d_n)$ in \mathbb{Z}_2^n , i.e.

$$\langle d \rangle^{\perp} = \{ (v_1, v_2, \dots v_n) \mid d_1 v_1 + d_2 v_2 + \dots + d_n v_n \equiv 0 \pmod{2} \}.$$

We get from equation (4) that

$$A_d = 2 | < d >^{\perp} \cap C | - |C| .$$
 (5)

Hergert [6] observed that if $d \neq 0$ is orthogonal to all words of C, then w(d) = (n+1)/2. Hence, if $\langle C \rangle$ denotes the linear span of the words of C, then we may conclude from (5) that

$$d \in \langle C \rangle^{\perp}$$
 if and only if $A_d = |C|$. (6)

2.2 Some notation

Below, a *perfect code* always will be a perfect 1-error correcting binary code in \mathbb{Z}_2^n .

We will let e_i denote a word of weight 1 with the single one in the i:th coordinate position.

Let I be a subset of $\{1, 2, ..., n\}$ and let $g = \sum_{i \in I} e_i$. Define for any word $c \in \mathbb{Z}_2^n$,

$$w_I(c) = c_1 g_1 + c_2 g_2 + \ldots + c_n g_n$$

where we do not count modulo 2. We define for any two words c and c' of Z_2^n ,

$$d_I(c,c') = w_I(c-c').$$

We also need the usual so called *dot-product* in Z_2^n : If $c = (c_1, \ldots, c_n)$ and $v = (v_1, \ldots, v_n)$ then

$$c \cdot v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n \pmod{2}$$

We will let supp(t) denote the support of a word $t = (t_1, t_2, \ldots, t_n)$, i.e.

$$supp(t) = \{i \mid t_i \neq 0\}$$

3 Proof of the theorems

From previous section we know that for any perfect code C of length n

$$C(x_1,\ldots,x_n) = \sum_{t \in D} A_t y_t(x_1,\ldots,x_n)$$
(7)

where $D = \{t \in \mathbb{Z}_{2}^{n} \mid w(t) = (n+1)/2\}$, and where

$$A_t = |\{c \in C \mid c \cdot t = 0\}| - |\{c \in C \mid c \cdot t = 1\}|$$
(8)

or equivalently

$$A_t = 2| < t >^{\perp} \cap C| - |C|.$$
(8')

We now consider a (n-1)/2-face $\gamma = \Gamma^{i_1,\ldots,i_s}_{\sigma_{i_1},\ldots,\sigma_{i_s}}$ of the *n*-cube \mathbb{Z}_2^n . Below we will let $I = \{i_1,\ldots,i_s\}, \ \sigma = (\sigma_{i_1},\ldots,\sigma_{i_s})$ and $g = \sum_{i \in I} e_i$. To count the number of words of C on γ we make the substitution

$$x_i = 1$$
 if $i \notin I$.

With this substitution we get

$$C(x_1, \dots, x_n)|_{x_i=1, i \notin I} = \sum_{\tau \in \mathbb{Z}_2^s} h_\tau x_{i_1}^{\tau_{i_1}} \dots x_{i_s}^{\tau_{i_s}} \qquad \tau = (\tau_{i_1}, \dots, \tau_{i_s})$$
(9)

where h_{τ} equals the number of words of C in the face $\Gamma_{\tau_1,\ldots,\tau_s}^{i_1,\ldots,i_s}$. The same substitution in the polynomials $y_t(x_1,\ldots,x_n)$ gives

$$y_t(x_1,\ldots,x_n)|_{x_i=1,\ i\not\in I} = \begin{cases} \frac{2^{(n-1)/2}}{2^n} \prod_{v=1}^s (1-x_{i_v}) & \text{if } t = g\\ \frac{2^{(n-1)/2}}{2^n} \prod_{v=1}^s (1+x_{i_v}) & \text{if } t = 0\\ 0 & \text{else} \end{cases}$$
(10)

Hence from (7), (9) and (10) we deduce that

$$\sum_{\tau \in \mathbb{Z}_2^s} h_{\tau} x_{i_1}^{\tau_{i_1}} \dots x_{i_s}^{\tau_{i_s}} = \frac{|C|}{2^n} 2^{(n-1)/2} \prod_{v=1}^s (1+x_{i_v}) + \frac{A_g}{2^n} 2^{(n-1)/2} \prod_{v=1}^s (1-x_{i_v}).$$

Consequently

$$h_{\tau} = \begin{cases} (|C| + A_g) 2^{-(n+1)/2} & \text{if } w(\tau) & \text{is even} \\ (|C| - A_g) 2^{-(n+1)/2} & \text{else.} \end{cases}$$
(11)

From (8') we thus have the following

Proposition For the number of words h_{τ} in the (n-1)/2-face $\Gamma^{i_1,...,i_s}_{\tau_{i_1},...,\tau_{i_s}}$ the following formula is true:

$$h_{\tau} = \begin{cases} 2| < g >^{\perp} \cap C | 2^{-(n+1)/2} & \text{if } w(\tau) & \text{is even} \\ 2(|C| - | < g >^{\perp} \cap C|) 2^{-(n+1)/2} & \text{else.} \end{cases}$$

Proof of Theorem 1: Consider a face $\gamma = \Gamma^{i_1,\dots,i_s}_{\sigma_{i_1},\dots,\sigma_{i_s}}$ where s = (n+1)/2. We assume that $w(\sigma)$ is an even number. The proof in the case $w(\sigma)$ is odd, is similar.

Assume γ is a full face. Then, with $\sigma = (\sigma_1, \ldots, \sigma_s)$,

$$h_{\sigma} = 2^{\frac{n-1}{2} - \log \frac{n+1}{2}}.$$
(12)

By the previous proposition, as $|C| = 2^{n-\log(n+1)}$, a simple calculation shows that if (12) holds then, with g as above, $|A_g|$ is maximal and $|\langle g \rangle^{\perp} \cap C|$ equals |C| or equivalently $g \in \langle C \rangle^{\perp}$.

Assume that $g \in \langle C \rangle^{\perp}$. Then $|\langle g \rangle^{\perp} \cap C|$ equals |C|, A_g is maximal and from the proposition above, (12) will be true. This implies that γ is a full face.

We have proved that γ is a full face if and only if $g \in \langle C \rangle^{\perp}$. We also get from the previous paragraph that if $\gamma = \Gamma_{\sigma_{i_1},...,\sigma_{i_s}}^{i_1,...,i_s}$, where s = (n+1)/2, is a full (n-1)/2-face, then any (n-1)/2-face $\gamma = \Gamma_{\tau_{i_1},...,\tau_{i_s}}^{i_1,...,i_s}$, where $\tau = (\tau_{i_1},\ldots,\tau_{i_s})$ has an even weight, is a full face. Theorem 1 is proved.

Remark 1 It is a triviality to show that if a perfect code has a full (n-1)/2-face then it also must have empty faces.

Definition To faces in *n*-cube Z_2^n , $\gamma = \Gamma_{\sigma_{i_1},...,\sigma_{i_s}}^{i_1,...,i_s}$ and $\gamma' = \Gamma_{\tau_{j_1},...,\tau_{j_{n-s}}}^{j_1,...,j_{n-s}}$ are said to be orthogonal to each other if

$$\{i_1,\ldots,i_s\}\cap\{j_1,\ldots,j_{n-s}\}=\emptyset.$$

We say that γ' is an orthogonal complement of γ and write $\gamma' = \gamma^{\perp}$.

Proof of Theorem 2: Assume $\gamma = \Gamma_{\sigma_{i_1},...,\sigma_{i_s}}^{i_1,...,i_s}$, s = (n+1)/2, is a full face of the perfect code C. Let as above $g = e_{i_1} + \ldots + e_{i_s}$. As γ is a full face we adopt from the previous proof that the fourier coefficient A_g equals |C|.

We now substitute x_i by -1 if $i \in \{i_1, \ldots, i_s\}$ in equation (7). As in the proof of the proposition we get

$$\sum_{\sigma \in \mathbb{Z}_2^{n-s}} h_{\sigma} x_{j_1}^{\sigma_{j_1}} \dots x_{j_{n-s}}^{\sigma_{j_{n-s}}} = \frac{A_g}{2^n} 2^{(n+1)/2} \prod_{v=1}^{n-s} (1+x_{j_v}).$$

As $A_g = |C| = 2^{n - \log(n+1)}$ we deduce that

$$h_{\sigma} = 2^{\frac{n-1}{2} - \log \frac{n+1}{2}} \tag{13}$$

for any $\sigma = (\sigma_{j_1}, \dots, \sigma_{j_{n-s}}) \in Z_2^{(n-1)/2}$.

As $g \in \langle C \rangle^{\perp}$, every word $c \in C$ will satisfy $g \cdot c \equiv 0 \mod (2)$ or equivalently

$$w_I(c) \equiv 0 \mod (2) \quad \text{where} \quad I = \{i_1, \dots, i_s\}. \tag{14}$$

As the difference between any two words of even weight is an even number we get that

$$d_I(c,c') \ge 4 \tag{15}$$

for any two words c and c' of C. The theorem is now proved by (13), (14) and (15).

Proof of Theorem 3: Let $\gamma = \Gamma_{\sigma_{i_1},...,\sigma_{i_s}}^{i_1,...,i_s}$ be any (n-1)/2-face of the hypercube. From (11) follows that the number of words of $C \cap \gamma$ depends on the fourier coefficient A_q where

$$g = e_{i_1} + \ldots + e_{i_s}$$

Consider the kernel of C. The perfect code C is the disjoint union of cosets of this kernel:

$$C = ker(C) \cup (a_1 + ker(C)) \cup (a_2 + ker(C)) \cup \ldots \cup (a_k + ker(C)).$$

For any $p \in ker(C)$ and for any g with $A_g \neq 0$, $p \cdot g = 0$, see [5]. Hence, for any $c \in a_i + ker(C)$,

$$c \cdot g = a_i \cdot g_i$$

From (8) we thus get that A_g is a multiple of the of the number of words of the kernel of C. Let t(g) denote the number of words a_i , i = 1, 2, ..., k, with $a_i \cdot g = 0$. Then, by (8'),

$$A_g = 2 \cdot |ker(C)|(1+t(g)) - |C|$$

and hence from (11) we get that the number of words in the (n-1)/2-face γ is

$$\frac{|C| + (-1)^{w(\sigma_{i_1}, \dots, \sigma_{i_s})} (2 \cdot |ker(C)| (1 + t(g)) - |C|)}{2^{(n+1)/2}}$$

As |C| is a multiple of |ker(C)|, the theorem is proved.

Remark Any perfect code has as many full 3-faces as there are words of weight 3. No full rank perfect code of length n has any full (n-1)/2-face by Theorem 1. It would be interesting to decide if, for some k with $2 \le k \le \log(n+1) - 3$, there are full rank perfect codes of length n with a full $((n+1)/2^k - 1)$ -faces.

4 Some results for d-faces

We first consider $((n+1)/2^k - 1)$ -faces. We need a notation.

Let $N_k(n, 2)$ denote the number of subspaces of dimension k of a vector space of dimension n over the finite field Z_2 . By [3]

$$N_k(n,2) = \prod_{i=0}^{k-1} \frac{2^{n-i} - 1}{2^{i+1} - 1}$$

Theorem 5 Let C be a perfect code of length n. If the rank of C equals r then, for any integer k in the interval $1 \le k \le n - r$, there are at least $N_k(n - r, 2)$ different equivalence classes of full $((n + 1)/2^k - 1)$ -faces. Each such equivalence class contains $2^{n-k+1-2^{-k}(n+1)}$ full and mutually parallel $((n + 1)/2^k - 1)$ -faces.

Proof: We consider the dual space C^{\perp} of C. The dimension of C^{\perp} equals n - r and any word of C^{\perp} has weight (n + 1)/2, see [6]. As C^{\perp} is a simplex code, [6], it follows that to any subspace L of dimension k of C^{\perp} there is exactly one subset $J = \{j_1, j_2, \ldots, j_{\mu}\}, \mu = (n + 1)/2^k - 1$, of $\{1, 2, \ldots, n\}$ such that the support of any of the words in L has an empty intersection with the set J.

We now proceed as in the proof of Theorem 1. In equation (7) we perform the substitution

$$x_j = 1$$
 if $j \in J$

We know from (5), that for any word g of C^{\perp} , $A_g = |C|$. By trivial counting arguments, as in the proof of Theorem 1, we get that the face

$$\Gamma^{i_1,\dots,i_t}_{\sigma_{i_1},\dots,\sigma_{i_t}} = \{ x \in Z_2^n \mid x_{i_v} = \sigma_{i_v} \quad v = 1, 2, \dots, t \},\$$

where

$$\{i_1, i_2, \dots, i_t\} = \{1, 2, \dots, n\} \setminus J_s$$

is a full $((n+1)/2^k - 1)$ -face if and only if the word

$$g = e_{\sigma_{i_1}} + e_{\sigma_{i_2}} + \ldots + e_{\sigma_{i_t}}$$

belongs to L^{\perp} . As the dimension of L^{\perp} equals n - k, the number of such words g will be

$$\frac{2^{n-\kappa}}{2^{(n+1)/2^k-1}}$$

(where $2^{(n+1)/2^k-1}$ simply is the number of words of length $(n+1)/2^k-1$).

Finally we consider the most general case. We give a formula for the number of words of a perfect code on a *d*-face γ , for any integer *d*. The derivation of this formula, which is very similar to the proof of Theorem 3, will be omitted.

Lemma Let C be a perfect code of length n and assume

$$C = ker(C) \cup (a_1 + ker(C)) \cup (a_2 + ker(C)) \cup \ldots \cup (a_k + ker(C)).$$

Let for any $g \in \mathbb{Z}_2^n$, t(g) denote the number of words in the set $\{a_1, a_2, \ldots, a_k\}$ that are orthogonal to the word g. The number of words of C on a d-face $\gamma = \Gamma_{\sigma_{i_1}, \ldots, \sigma_{i_s}}^{i_1, \ldots, i_s}$ equals

$$|C \cap \gamma| = 2^{d - \log(n+1)} + \sum_{\substack{g, \\ supp(g) \subseteq \{i_1, \dots, i_s\} \\ w(g) = (n+1)/2}} 2^{d-n} (-1)^{\sigma \cdot g} (2|ker(C)|(1+t(g)) - |C|)$$

where $\sigma = (\sigma_{i_1}, \ldots, \sigma_{i_s}).$

We give two corollaries of this Lemma. The first shows that the number of words on a face is related to the size of the kernel.

Corollary 1 Let C be any perfect code of length n. The number of words on a d-face γ will be equal to

$$t \cdot 2^{d-n} |ker(C)|$$

for some integer t.

Corollary 2 Let C be a perfect code of length n. The number of words of C on a d-face $\gamma = \Gamma^{i_1,...,i_s}_{\sigma_{i_1},...,\sigma_{i_s}}$, s = n - d, equals

 $2^{d-\log(n+1)}$

if and only if t(g) = (k-1)/2 for all g with w(g) = (n+1)/2 and $supp(g) \subseteq \{i_1, \ldots, i_s\}$.

By Theorem 4, if $A_g \neq 0$ then w(g) = (n+1)/2. Hence, as $A_0 = |C|$ we get the following Corollary already proved by Avgustinovich and Vasilieva [2].

Corollary 3 (Avgustinovich-Vasilieva) Let C be a perfect code of length n. For any d > (n-1)/2, the number of words on a d-face will be

$$2^{d-\log(n+1)}$$

Example We consider the case $d = \log(n + 1)$. We get from the Corollary 2 that if C is a perfect code of length n and $\{i_1, \ldots, i_s\}$, s = n - d, a subset of the set $\{1, 2, \ldots, n\}$ such that t(g) = (k - 1)/2, (where k is as in the Lemma) for any word gwith w(g) = (n + 1)/2 and $supp(g) \subseteq \{i_1, \ldots, i_s\}$, then the number of words of C on the d-face $\gamma = \Gamma^{i_1, \ldots, i_s}_{\sigma_{i_1}, \ldots, \sigma_{i_s}}$ for any word $(\sigma_{i_1}, \ldots, \sigma_{i_s})$, will be equal to one. This means that the perfect code C is systematic. The converse statement will also be true.

Remark 1 Theorem 1 can rather easily be proved also by using the Corollary 3.

Remark 2 We also very much would like to mention that Theorem 1, Theorem 2, Corollary 2 and Corollary 3 are easy and immediate consequences of the results of [4]. Just put $x_i = 1$, in the equation (7), for $i \in J$ where J is a suitable chosen subset of the set of positions $\{1, 2, ..., n\}$.

Acknowledgment. I am grateful to Sergey V. Avgustinovich for supporting this study and for comments on a previous version of this note.

References

- [1] S.V. Avgustinovich, private comunication, Stockholm, November 1, 2002.
- [2] S.V. Avgustinovich, private comunication.
- [3] P. Dembowski, Finite Geometries, Springer-verlag Berlin Heidelberg NewYork 1968.
- [4] O. Heden, A generalized Lloyd theorem and mixed perfect codes, Math. Scand. 37(1975)13-26.
- [5] O. Heden, On the reconstruction of perfect codes, Discrete mathematics 256 (2002) 479-485.
- [6] F. Hergert, Algebraische Methoden fur nichtlineare Codes, Dissertion Darmstadt 1985.
- [7] J-E. Roos, An algebraic study of group and nongroup error-correcting codes, Information and Control 8(1965) 195-214.

Olof Heden, Department of Mathematics, KTH, S-100 44 Stockholm, Sweden (olohed@math.kth.se)