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Abstract

Perfect 1-error correcting codes C' in the hyper cube Z3' are considered. The
possibilities for the number v(C') of code words in a k-face  of the hyper cube
are discussed. It is shown that the possibilities for the number «(C') depend on
the dimension of the face «, the rank of C' and the dimension of the kernel of C.
Especially we get an answer to a question of Sergey V. Avgustinovich whether
there is a perfect code with no full (n — 1)/2-face or not.

1 Introduction

We consider the direct product Z} = Zy x Zy X ... X Zy of the field Zy = {0,1}. The
elements of this direct product will be called words of length n. The weight of a word
¢, w(c), will be the number of non zero components of ¢. The distance between two
words ¢ and ¢, d(c, ), will be the weight of the word ¢ — ¢'.

A perfect 1-error correcting binary code of length n is a subset C' of Z} satisfying
the following condition:

To any v € Z there is an unique ¢ € C with d(c,v) < 1.

(By trivial counting arguments, the only possible values for the length of a perfect
l-error correcting binary code are n = 2™ — 1 where m is an integer.)
A k-face of the n-cube Z7 is the set of points

I"L'la“'?it — {fL’ € Zgl | Ii” =i

Tiq 5oy Tiy

where t =n — k.
A perfect code C' of length n is said to be full on the (n — 1)/2-face v if any point
on 7 is at distance at most one from an unique word of
CnNn.
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Sergey V. Avgustinovich [1] proposed the problem whether or not there exists a
perfect code C' which is not full on any (n — 1)/2-face of the n-cube.

Below we give a formula that relates the number of full (n — 1)/2-faces to the rank
of the perfect code C'. We also show that the possibilities for the number of words of a
perfect code on a (n — 1)/2-face are related to the size of the kernel of C. We remind
on the definition of rank and kernel of a perfect code.

Consider the linear span < C' > of the words of C'. For any code C, < C' > is a
linear subspace of the vector space ZF. The dimension of this subspace is the rank of
C, rank(C).

The kernel of a perfect code is the set

ker(C)={pe Z} |p+ceC foral ceC}.

The kernel is a subspace of Z3'.
We show in Section 3

Theorem 1 The number of full (n—1)/2-faces of a perfect 1-error correcting binary
perfect code C of length n is equal to
<2n—rank(C) . 1)2(n—1)/2
Further the full (n —1)/2-faces may be divided into equivalence classes, such that each

class consists of 2"/ parallel faces.
In particular no full rank perfect code will have any full face.

We also consider the orthogonal complement v+ of a full (n — 1)/2-face v. We get
the following theorem.

Theorem 2 If v is a full (n—1)/2-face of a perfect 1-error correcting binary perfect
code C' of length n then v+ N C is isomorphic to an extended perfect 1-error correcting
binary perfect code C' of length n + 1.

The proof technique of Theorem 1 also give the following theorem.

Theorem 3 For any perfect code C' of length n and any (n — 1)/2-face ~

t-|ker(C)|

[CNoyl= o(n—1)/2

for some integer t.

To prove these theorems we use the technique with fourier coefficients, as described
in [5] and summarized in the next section.



2 Preliminaries

2.1 Fourier coefficients

We consider a group algebra R[xy,zs, ..., x,]. The elements of this group algebra are
polynomials

P21, T2, ey ) = Y Ty AV TRzl v = (v, V2, ..., Up) (1)
vEZLY

where the coefficients r,, v € Z7, belong to the set of real numbers R.
Let y(x1, x2, ..., z,), for t € Z3, denote the polynomial

1 /2 .
yt(xl,xg,..., n 271_[ 1—1'1 1—{—$1) ti t= (tl,tg,...,tn).

It was proved in [5] that any polynomial r(z1,zs, ..., x,) of R[z1,xs,...,x,] has an
unique expansion

r(x1, Ty .oy Ty) = Z Ary(zy, .y Th), (2)

tezy

where A; € R for t € ZI'. The coefficients A;, t € ZI', in the expansion (2) will be
called the fourier coefficients of the polynomial r(xy, ..., z,).

We note that the polynomials may be considered as polynomials in the ring R[z1, . .., x,].

We may hence make substitutions of x;, 7 = 1,2, ..., n by real numbers, whereby equal-
ities will remain true.
If we in the equality (2) substitute

1if d =0 )
xl:{_l lf dzzl d:<d17d27,dn)€ZQ, (3)

then we get from the equations (1) and (2) that

Ag= Y r(-1)" (4)

vEZLY

where
(’U17’UQ, ...,Un) . (dl,dz, ,dn> = Uldl -+ U2d2 + ...+ ’Undn.

To a subset C of Z3 we associate the polynomial

C(z1, o, ooy ) = > a2l c=(c1,C2, ey Cn)-
ceC

We will say that the fourier coefficients of the polynomial C(zy, s, ...,x,) are the
fourier coefficients of the set C'.



The following result was proved in [7], see also [5].

Theorem 4 If C is a perfect 1-error correcting binary code of length n then there
are integers Ag and Aq, d € D = {t € Z} | w(t) =1} such that

C(x1, ..., Tp) Q—OH 1+x;) + Z on H (14 ;) di (1—x,) )

deD i=1
If welet z; =1 fori=1,2,..,nin (2) and (3) we will get that
Cl=> 1=C(1,1,..,1) = A,.

ceC
Let < d >* denote the set of words that are orthogonal to the word d = (dy, ds, ..., d,,)
in Z, i.e.
< d>T={(v,v9,..0) | dyvy + dovy + ... + dpv, = 0 (mod 2)}.
We get from equation (4) that
Ag=2|<d>tnC|—|C]. (5)
Hergert [6] observed that if d # 0 is orthogonal to all words of C, then w(d) =

(n+1)/2. Hence, if < C' > denotes the linear span of the words of C', then we may
conclude from (5) that

d €< C >+ ifand only if Ay =|C]|. (6)

2.2 Some notation

Below, a perfect code always will be a perfect 1-error correcting binary code in Z7.
We will let e; denote a word of weight 1 with the single one in the i:th coordinate
position.
Let I be a subset of {1,2,...,n} and let g = >,c; €;. Define for any word ¢ € Z¥,
wr(c) = c1g1 + 292 + ... + Cun
where we do not count modulo 2. We define for any two words ¢ and ¢’ of Z7,
di(e,d) =wi(c— ).

We also need the usual so called dot-product in Z%: If ¢ = (c1,...,¢,) and v =
(v1,...,v,) then
¢ v =y + CUg + ... + v, (mod 2).

We will let supp(t) denote the support of a word t = (t1,1s,...,t,), i.e.
supp(t) = {i | 1 # 0},



3 Proof of the theorems
From previous section we know that for any perfect code C' of length n

Clzr,...,xn) = > Ay, ..., 2) (7)

teD

where D = {t € Z} | w(t) = (n+ 1)/2}, and where

Ai=HcelClc-t=0}—|{ceC|c-t=1} (8)

or equivalently
A =2 <t>TnC|—|C). (8
We now consider a (n — 1)/2-face v = F“v"’szms of the n-cube ZZ. Below we will let
I =Aiy,...,is}, 0 = (04y,...,04,) and g = > c; €;. To count the number of words of

C on v we make the substitution
$¢::1 if ¢ g‘L
With this substitution we get

@=1,i¢l — Z h lﬁl - T = (7—217 s 7Tis) (9)

TEZS

C(xy,...,xy,)

where h, equals the number of words of C' in the face I‘”Tll ’’’’’’’’’ ts . The same substitution
in the polynomials y(x1, ..., z,) gives

(n— 1>/2HS (1 l’iv) 1f t:g
Y21, Tp) L i Y IWHf) A+, if t=0- (10)
0 else
Hence from (7), (9) and (10) we deduce that
O 4

ST heant.alt = | | (=D2715_ (14 2;,) + 220072115 (1 — 2,).

TEZS 2"
Consequently

b (|C| + A,)2=(m+D/2if (1) is even (11)
T (0] = A2~ D2 else.

From (8') we thus have the following

Proposition For the number of words h. in the (n—1)/2-face F“";;jf}is the following
formula is true:

b 2] < g >t ﬂC|2’ (D2 4f w(r) s even
i 2(1C| — | < g >t nC)2=+D/2 else.
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Proof of Theorem 1: Consider a face v = Fﬁ}i’l';ﬁffai where s = (n +1)/2. We

assume that w(o) is an even number. The proof in the case w(o) is odd, is similar.
Assume 7 is a full face. Then, with o = (0y,...,0),

n+1

hy =27 85 (12)

By the previous proposition, as |C| = 27718("*1) 4 simple calculation shows that if
(12) holds then, with g as above, |A,| is maximal and | < g >* NC| equals |C| or
equivalently g €< C' >*.

Assume that g €< C >*. Then | < g >* NC| equals |C|, A, is maximal and from
the proposition above, (12) will be true. This implies that ~ is a full face.

We have proved that « is a full face if and only if g €< C' >*. We also get from the
previous paragraph that if v = I’ﬁ}i’l';:jffais, where s = (n+1)/2, is a full (n — 1)/2-face,
then any (n — 1)/2-face v = F%l“ﬂs, where 7 = (7;,, ..., 7;,) has an even weight, is a
full face. Theorem 1 is proved.

Remark 1 It is a triviality to show that if a perfect code has a full (n — 1)/2-face
then it also must have empty faces.

Definition To faces in n-cube Z3, y = I'", and o/ =T'/1=J2-= are said to be

+0ig Ti1oTin—s

orthogonal to each other if

irye iy OV s} = 0.

We say that 7/ is an orthogonal complement of v and write + = ~+.

Proof of Theorem 2: Assume 7y = Ff}i’l‘;'_fjais, s = (n+1)/2, is a full face of the
perfect code C. Let as above g =e¢;, +...+¢;,. As v is a full face we adopt from the
previous proof that the fourier coefficient A, equals |C|.

We now substitute z; by —1 if ¢ € {i1,...,is} in equation (7). As in the proof of

the proposition we get

A

Y howilt oy = AP (L ).
oc€Zy™*?
As A, = |C| = 27 1e(n*+D) we deduce that
h, = 2"7 ~lg "5 (13)



As g €< C >, every word ¢ € C will satisfy g - ¢ = 0 mod (2) or equivalently
wr(c) =0 mod (2) where I ={iy,...,is}. (14)
As the difference between any two words of even weight is an even number we get that
di(c,c) > 4 (15)
for any two words ¢ and ¢ of C'. The theorem is now proved by (13), (14) and (15).

Proof of Theorem 3: Let v = I'",  be any (n — 1)/2-face of the hypercube.

From (11) follows that the number of words of C N~ depends on the fourier coefficient
A, where

g==e€; +...+te.
Consider the kernel of C'. The perfect code C' is the disjoint union of cosets of this
kernel:

C = ker(C)U (a1 + ker(C)) U (ag + ker(C)) U... U (ag + ker(C)).

For any p € ker(C) and for any g with A; # 0, p- g = 0, see [5]. Hence, for any
c € a; + ker(C),
C-g=2a;-g.
From (8) we thus get that A, is a multiple of the of the number of words of the kernel
of C. Let t(g) denote the number of words a;, i = 1,2, ..., k, with a; - ¢ = 0. Then,
by (87),
Ag =2 |ker(C)|(1+t(g9)) — C]

and hence from (11) we get that the number of words in the (n — 1)/2-face ~ is

|C] + (=1)“Cn7)(2 - |ker(C)|(1 4 t(g)) — |C])
o(nt1)/2 ‘

As |C] is a multiple of |ker(C)|, the theorem is proved.

Remark Any perfect code has as many full 3-faces as there are words of weight
3. No full rank perfect code of length n has any full (n — 1)/2-face by Theorem 1. It
would be interesting to decide if, for some k with 2 < k <'log(n + 1) — 3, there are
full rank perfect codes of length n with a full ((n + 1)/2% — 1)-faces.



4 Some results for d-faces

We first consider ((n + 1)/2% — 1)-faces. We need a notation.
Let Ng(n,2) denote the number of subspaces of dimension k of a vector space of
dimension n over the finite field Zy. By [3]

k—lzn—i__l
Nk(n72) = H 2i+1 _ 1
1=0

Theorem 5 Let C' be a perfect code of length n. If the rank of C' equals r then, for
any integer k in the interval 1 < k < n — r, there are at least Ny(n — r,2) different

equivalence classes of full ((n+1)/2% —1)-faces. Each such equivalence class contains
o=k H1=2F 0t )l and mutually parallel ((n +1)/2% — 1)-faces.

Proof: We consider the dual space C+ of C. The dimension of C* equals n — r
and any word of C* has weight (n + 1)/2, see [6]. As C* is a simplex code, [6],
it follows that to any subspace L of dimension k of C* there is exactly one subset
J={j1,J2,-- du}, p=(n+1)/2" — 1, of {1,2,...,n} such that the support of any
of the words in L has an empty intersection with the set J.

We now proceed as in the proof of Theorem 1. In equation (7) we perform the
substitution

JU =1 if j € J.

We know from (5), that for any word g of C*+, A, = |C|. By trivial counting arguments,
as in the proof of Theorem 1, we get that the face

where
{il,ig,.. .,it} = {17 2,.. .,71} \ J;
is a full ((n+ 1)/2% — 1)-face if and only if the word

g =¢€g, tEs t...1¢,

belongs to L*. As the dimension of L* equals n — k, the number of such words ¢ will

be
2n—k

9(n+1)/2k—1

(where 20t1/2*~1 gimply is the number of words of length (n + 1)/2%F — 1).



Finally we consider the most general case. We give a formula for the number of
words of a perfect code on a d-face v, for any integer d. The derivation of this formula,
which is very similar to the proof of Theorem 3, will be omitted.

Lemma Let C be a perfect code of length n and assume
C = ker(C)U (ay + ker(C)) U (ag + ker(C)) U... U (ag + ker(C)).

Let for any g € Z§, t(g) denote the number of words in the set {ay,as, . ..,ar} that are
orthogonal to the word g. The number of words of C on a d-face v = Ff}i """ s . equals

100 g4

€Nyl =207t 37 207 (=1)79 (2l ker (C)|(1 + t(g)) — |C1)
supp(g)gg{i1 77777 is}
w(g)=(n+1)/2
where 0 = (04, ...,0:,).

We give two corollaries of this Lemma. The first shows that the number of words
on a face is related to the size of the kernel.

Corollary 1 Let C' be any perfect code of length n. The number of words on a
d-face v will be equal to
t- 297" ker(O)|

for some integer t.

Corollary 2 Let C' be a perfect code of length n. The number of words of C' on a

iyt .
d-face v = Falil,_._fais, s=n—d, equals

delog(nJrl)
if and only ift(g) = (k—1)/2 for all g withw(g) = (n+1)/2 and supp(g) C {i1,...,is}.

By Theorem 4, if A; # 0 then w(g) = (n+ 1)/2. Hence, as Ay = |C] we get the
following Corollary already proved by Avgustinovich and Vasilieva [2].

Corollary 3 (Avgustinovich-Vasilieva) Let C' be a perfect code of length n. For any
d > (n —1)/2, the number of words on a d-face will be

2dflog(n+1) )



Example We consider the case d = log(n 4+ 1). We get from the Corollary 2 that
if C' is a perfect code of length n and {iy,...,is}, s = n — d, a subset of the set
{1,2,...,n} such that t(g) = (k — 1)/2, (where k is as in the Lemma) for any word ¢
with w(g) = (n + 1)/2 and supp(g) C {i1,...,is}, then the number of words of C' on
the d-face v = Tt for any word (oy,...,0;,), will be equal to one. This means

that the perfect code (' is systematic. The converse statement will also be true.

Remark 1 Theorem 1 can rather easily be proved also by using the Corollary 3.

Remark 2 We also very much would like to mention that Theorem 1, Theorem 2,
Corollary 2 and Corollary 3 are easy and immediate consequences of the results of [4].
Just put z; = 1, in the equation (7), for i € J where J is a suitable chosen subset of
the set of positions {1,2,...,n}.
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