On the faces problem for perfect codes

Olof Heden*

February 25, 2003

Abstract

Perfect 1-error correcting codes C in the hyper cube Z_{2}^{n} are considered. The possibilities for the number $\gamma(C)$ of code words in a k-face γ of the hyper cube are discussed. It is shown that the possibilities for the number $\gamma(C)$ depend on the dimension of the face γ, the rank of C and the dimension of the kernel of C. Especially we get an answer to a question of Sergey V. Avgustinovich whether there is a perfect code with no full $(n-1) / 2$-face or not.

1 Introduction

We consider the direct product $Z_{2}^{n}=Z_{2} \times Z_{2} \times \ldots \times Z_{2}$ of the field $Z_{2}=\{0,1\}$. The elements of this direct product will be called words of length n. The weight of a word $c, w(c)$, will be the number of non zero components of c. The distance between two words c and $c^{\prime}, d\left(c, c^{\prime}\right)$, will be the weight of the word $c-c^{\prime}$.

A perfect 1-error correcting binary code of length n is a subset C of Z_{2}^{n} satisfying the following condition:

$$
\text { To any } v \in Z_{2}^{n} \text { there is an unique } c \in C \text { with } d(c, v) \leq 1 \text {. }
$$

(By trivial counting arguments, the only possible values for the length of a perfect 1 -error correcting binary code are $n=2^{m}-1$ where m is an integer.)

A k-face of the n-cube Z_{2}^{n} is the set of points

$$
\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{t}}}^{i_{1}, i_{t}}=\left\{x \in Z_{2}^{n} \mid x_{i_{v}}=\sigma_{i_{v}} \quad v=1,2, \ldots, t\right\}
$$

where $t=n-k$.
A perfect code C of length n is said to be full on the $(n-1) / 2$-face γ if any point on γ is at distance at most one from an unique word of

$$
C \cap \gamma .
$$

[^0]Sergey V. Avgustinovich [1] proposed the problem whether or not there exists a perfect code C which is not full on any $(n-1) / 2$-face of the n-cube.

Below we give a formula that relates the number of full $(n-1) / 2$-faces to the rank of the perfect code C. We also show that the possibilities for the number of words of a perfect code on a $(n-1) / 2$-face are related to the size of the kernel of C. We remind on the definition of rank and kernel of a perfect code.

Consider the linear span $<C>$ of the words of C. For any code $C,<C>$ is a linear subspace of the vector space Z_{2}^{n}. The dimension of this subspace is the rank of $C, \operatorname{rank}(C)$.

The kernel of a perfect code is the set

$$
\operatorname{ker}(C)=\left\{p \in Z_{2}^{n} \mid p+c \in C \quad \text { for all } \quad c \in C\right\}
$$

The kernel is a subspace of Z_{2}^{n}.
We show in Section 3
Theorem 1 The number of full $(n-1) / 2$-faces of a perfect 1-error correcting binary perfect code C of length n is equal to

$$
\left(2^{n-\operatorname{rank}(C)}-1\right) 2^{(n-1) / 2} .
$$

Further the full $(n-1) / 2$-faces may be divided into equivalence classes, such that each class consists of $2^{(n-1) / 2}$ parallel faces.

In particular no full rank perfect code will have any full face.
We also consider the orthogonal complement γ^{\perp} of a full $(n-1) / 2$-face γ. We get the following theorem.

Theorem 2 If γ is a full ($n-1$)/2-face of a perfect 1-error correcting binary perfect code C of length n then $\gamma^{\perp} \cap C$ is isomorphic to an extended perfect 1-error correcting binary perfect code C of length $n+1$.

The proof technique of Theorem 1 also give the following theorem.
Theorem 3 For any perfect code C of length n and any $(n-1) / 2$-face γ

$$
|C \cap \gamma|=\frac{t \cdot|\operatorname{ker}(C)|}{2^{(n-1) / 2}}
$$

for some integer t.
To prove these theorems we use the technique with fourier coefficients, as described in [5] and summarized in the next section.

2 Preliminaries

2.1 Fourier coefficients

We consider a group algebra $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. The elements of this group algebra are polynomials

$$
\begin{equation*}
r\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{v \in Z_{2}^{n}} r_{v} x_{1}^{v_{1}} x_{2}^{v_{2}} \ldots x_{n}^{v_{n}} \quad v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \tag{1}
\end{equation*}
$$

where the coefficients $r_{v}, v \in Z_{2}^{n}$, belong to the set of real numbers R.
Let $y_{t}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, for $t \in Z_{2}^{n}$, denote the polynomial

$$
y_{t}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{2^{n}} \prod_{i=1}^{n}\left(1-x_{i}\right)^{t_{i}}\left(1+x_{i}\right)^{1-t_{i}} \quad t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)
$$

It was proved in [5] that any polynomial $r\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has an unique expansion

$$
\begin{equation*}
r\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{t \in Z_{2}^{n}} A_{t} y_{t}\left(x_{1}, \ldots, x_{n}\right) \tag{2}
\end{equation*}
$$

where $A_{t} \in R$ for $t \in Z_{2}^{n}$. The coefficients $A_{t}, t \in Z_{2}^{n}$, in the expansion (2) will be called the fourier coefficients of the polynomial $r\left(x_{1}, \ldots, x_{n}\right)$.

We note that the polynomials may be considered as polynomials in the ring $R\left[x_{1}, \ldots, x_{n}\right]$. We may hence make substitutions of $x_{i}, i=1,2, \ldots, n$ by real numbers, whereby equalities will remain true.

If we in the equality (2) substitute

$$
x_{i}=\left\{\begin{array}{rlr}
1 & \text { if } & d_{i}=0 \tag{3}\\
-1 & \text { if } & d_{i}=1
\end{array} \quad d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in Z_{2}^{n}\right.
$$

then we get from the equations (1) and (2) that

$$
\begin{equation*}
A_{d}=\sum_{v \in Z_{2}^{n}} r_{v}(-1)^{v \cdot d}, \tag{4}
\end{equation*}
$$

where

$$
\left(v_{1}, v_{2}, \ldots, v_{n}\right) \cdot\left(d_{1}, d_{2}, \ldots, d_{n}\right)=v_{1} d_{1}+v_{2} d_{2}+\ldots+v_{n} d_{n}
$$

To a subset C of Z_{2}^{n} we associate the polynomial

$$
C\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{c \in C} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}} \quad c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) .
$$

We will say that the fourier coefficients of the polynomial $C\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are the fourier coefficients of the set C.

The following result was proved in [7], see also [5].
Theorem 4 If C is a perfect 1-error correcting binary code of length n then there are integers A_{0} and $A_{d}, d \in D=\left\{t \in Z_{2}^{n} \left\lvert\, w(t)=\frac{n+1}{2}\right.\right\}$, such that

$$
C\left(x_{1}, \ldots, x_{n}\right)=\frac{A_{0}}{2^{n}} \prod_{i=1}^{n}\left(1+x_{i}\right)+\sum_{d \in D} \frac{A_{d}}{2^{n}} \prod_{i=1}^{n}\left(1+x_{i}\right)^{1-d_{i}}\left(1-x_{i}\right)^{d_{i}} .
$$

If we let $x_{i}=1$ for $i=1,2, . ., n$ in (2) and (3) we will get that

$$
|C|=\sum_{c \in C} 1=C(1,1, \ldots, 1)=A_{0}
$$

Let $\langle d\rangle^{\perp}$ denote the set of words that are orthogonal to the word $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ in Z_{2}^{n}, i.e.

$$
<d>^{\perp}=\left\{\left(v_{1}, v_{2}, \ldots v_{n}\right) \mid d_{1} v_{1}+d_{2} v_{2}+\ldots+d_{n} v_{n} \equiv 0(\bmod 2)\right\}
$$

We get from equation (4) that

$$
\begin{equation*}
A_{d}=2\left|<d>^{\perp} \cap C\right|-|C| \tag{5}
\end{equation*}
$$

Hergert [6] observed that if $d \neq 0$ is orthogonal to all words of C, then $w(d)=$ $(n+1) / 2$. Hence, if $\langle C>$ denotes the linear span of the words of C, then we may conclude from (5) that

$$
\begin{equation*}
d \in<C>^{\perp} \quad \text { if and only if } A_{d}=|C| \tag{6}
\end{equation*}
$$

2.2 Some notation

Below, a perfect code always will be a perfect 1-error correcting binary code in Z_{2}^{n}.
We will let e_{i} denote a word of weight 1 with the single one in the i:th coordinate position.

Let I be a subset of $\{1,2, \ldots, n\}$ and let $g=\sum_{i \in I} e_{i}$. Define for any word $c \in Z_{2}^{n}$,

$$
w_{I}(c)=c_{1} g_{1}+c_{2} g_{2}+\ldots+c_{n} g_{n}
$$

where we do not count modulo 2 . We define for any two words c and c^{\prime} of Z_{2}^{n},

$$
d_{I}\left(c, c^{\prime}\right)=w_{I}\left(c-c^{\prime}\right)
$$

We also need the usual so called dot-product in Z_{2}^{n} : If $c=\left(c_{1}, \ldots, c_{n}\right)$ and $v=$ $\left(v_{1}, \ldots, v_{n}\right)$ then

$$
c \cdot v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}(\bmod 2) .
$$

We will let $\operatorname{supp}(t)$ denote the support of a word $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, i.e.

$$
\operatorname{supp}(t)=\left\{i \mid t_{i} \neq 0\right\} .
$$

3 Proof of the theorems

From previous section we know that for any perfect code C of length n

$$
\begin{equation*}
C\left(x_{1}, \ldots, x_{n}\right)=\sum_{t \in D} A_{t} y_{t}\left(x_{1}, \ldots, x_{n}\right) \tag{7}
\end{equation*}
$$

where $D=\left\{t \in Z_{2}^{n} \mid w(t)=(n+1) / 2\right\}$, and where

$$
\begin{equation*}
A_{t}=|\{c \in C \mid c \cdot t=0\}|-|\{c \in C \mid c \cdot t=1\}| \tag{8}
\end{equation*}
$$

or equivalently

$$
A_{t}=2\left|<t>^{\perp} \cap C\right|-|C| .
$$

We now consider a $(n-1) / 2$-face $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i}}^{i_{1}, \ldots, i_{s}}$ of the n-cube Z_{2}^{n}. Below we will let $I=\left\{i_{1}, \ldots, i_{s}\right\}, \sigma=\left(\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}\right)$ and $g=\sum_{i \in I} e_{i}$. To count the number of words of C on γ we make the substitution

$$
x_{i}=1 \quad \text { if } \quad i \notin I .
$$

With this substitution we get

$$
\begin{equation*}
\left.C\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=1, i \notin I}=\sum_{\tau \in Z_{2}^{s}} h_{\tau} x_{i_{1}}^{\tau_{i_{1}}} \ldots x_{i_{s}}^{\tau_{i_{s}}} \quad \tau=\left(\tau_{i_{1}}, \ldots, \tau_{i_{s}}\right) \tag{9}
\end{equation*}
$$

where h_{τ} equals the number of words of C in the face $\Gamma_{\tau_{1}, \ldots, \tau_{s}}^{i_{1}, \ldots, i_{s}}$. The same substitution in the polynomials $y_{t}\left(x_{1}, \ldots, x_{n}\right)$ gives

$$
\left.y_{t}\left(x_{1}, \ldots, x_{n}\right)\right|_{x_{i}=1, i \notin I}=\left\{\begin{array}{lll}
\frac{2^{(n-1) / 2}}{2^{n}} \Pi_{v=1}^{s}\left(1-x_{i_{v}}\right) & \text { if } & t=g \tag{10}\\
\frac{2^{(n-1) / 2}}{2^{n}} \Pi_{v=1}^{s}\left(1+x_{i_{v}}\right) & \text { if } & t=0 \\
0 \quad \text { else } & \text {. }
\end{array} .\right.
$$

Hence from (7), (9) and (10) we deduce that

$$
\sum_{\tau \in Z_{2}^{s}} h_{\tau} x_{i_{1}}^{\tau_{i_{1}}} \ldots x_{i_{s}}^{\tau_{i_{s}}}=\frac{|C|}{2^{n}} 2^{(n-1) / 2} \Pi_{v=1}^{s}\left(1+x_{i_{v}}\right)+\frac{A_{g}}{2^{n}} 2^{(n-1) / 2} \Pi_{v=1}^{s}\left(1-x_{i_{v}}\right)
$$

Consequently

$$
h_{\tau}= \begin{cases}\left(|C|+A_{g}\right) 2^{-(n+1) / 2} & \text { if } \quad w(\tau) \quad \text { is even } \tag{11}\\ \left(|C|-A_{g}\right) 2^{-(n+1) / 2} & \text { else. }\end{cases}
$$

From (8^{\prime}) we thus have the following
Proposition For the number of words h_{τ} in the $(n-1) / 2-f a c e \Gamma_{\tau_{\tau_{1}}, \ldots, \tau_{i_{s}}}^{i_{1}, \ldots, i_{s}}$ the following formula is true:

$$
h_{\tau}=\left\{\begin{array}{l}
2\left|<g>^{\perp} \cap C\right| 2^{-(n+1) / 2} \text { if } w(\tau) \text { is even } \\
2\left(|C|-\left|<g>^{\perp} \cap C\right|\right) 2^{-(n+1) / 2} \text { else. }
\end{array}\right.
$$

Proof of Theorem 1: Consider a face $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}}^{i_{1}, \ldots, i_{s}}$ where $s=(n+1) / 2$. We assume that $w(\sigma)$ is an even number. The proof in the case $w(\sigma)$ is odd, is similar.

Assume γ is a full face. Then, with $\sigma=\left(\sigma_{1}, \ldots, \sigma_{s}\right)$,

$$
\begin{equation*}
h_{\sigma}=2^{\frac{n-1}{2}-\log \frac{n+1}{2}} . \tag{12}
\end{equation*}
$$

By the previous proposition, as $|C|=2^{n-\log (n+1)}$, a simple calculation shows that if (12) holds then, with g as above, $\left|A_{g}\right|$ is maximal and $|<g\rangle^{\perp} \cap C \mid$ equals $|C|$ or equivalently $g \in<C>^{\perp}$.

Assume that $g \in<C>^{\perp}$. Then $\left|<g>^{\perp} \cap C\right|$ equals $|C|, A_{g}$ is maximal and from the proposition above, (12) will be true. This implies that γ is a full face.

We have proved that γ is a full face if and only if $g \in<C>^{\perp}$. We also get from the previous paragraph that if $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}}^{i_{1}, \ldots, i_{s}}$, where $s=(n+1) / 2$, is a full $(n-1) / 2$-face, then any $(n-1) / 2$-face $\gamma=\Gamma_{\tau_{i_{1}}, \ldots, \tau_{i}}^{i_{1}, \ldots, \tau_{s}}$, where $\tau=\left(\tau_{i_{1}}, \ldots, \tau_{i_{s}}\right)$ has an even weight, is a full face. Theorem 1 is proved.

Remark 1 It is a triviality to show that if a perfect code has a full $(n-1) / 2$-face then it also must have empty faces.

Definition To faces in n-cube $Z_{2}^{n}, \gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}}^{i_{1}, \ldots, i_{s}}$ and $\gamma^{\prime}=\Gamma_{\tau_{\tau_{1}}, \ldots, \tau_{j_{n-s}}}^{j_{1}, \ldots, j_{n-s}}$ are said to be orthogonal to each other if

$$
\left\{i_{1}, \ldots, i_{s}\right\} \cap\left\{j_{1}, \ldots, j_{n-s}\right\}=\emptyset .
$$

We say that γ^{\prime} is an orthogonal complement of γ and write $\gamma^{\prime}=\gamma^{\perp}$.
Proof of Theorem 2: Assume $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}}^{i_{1}, \ldots, i_{s}}, s=(n+1) / 2$, is a full face of the perfect code C. Let as above $g=e_{i_{1}}+\ldots+e_{i_{s}}$. As γ is a full face we adopt from the previous proof that the fourier coefficient A_{g} equals $|C|$.

We now substitute x_{i} by -1 if $i \in\left\{i_{1}, \ldots, i_{s}\right\}$ in equation (7). As in the proof of the proposition we get

$$
\sum_{\sigma \in Z_{2}^{n-s}} h_{\sigma} x_{j_{1}}^{\sigma_{j_{1}}} \ldots x_{j_{n-s}}^{\sigma_{j_{n-s}}}=\frac{A_{g}}{2^{n}} 2^{(n+1) / 2} \Pi_{v=1}^{n-s}\left(1+x_{j_{v}}\right)
$$

As $A_{g}=|C|=2^{n-\log (n+1)}$ we deduce that

$$
\begin{equation*}
h_{\sigma}=2^{\frac{n-1}{2}-\log \frac{n+1}{2}} \tag{13}
\end{equation*}
$$

for any $\sigma=\left(\sigma_{j_{1}}, \ldots, \sigma_{j_{n-s}}\right) \in Z_{2}^{(n-1) / 2}$.

As $g \in<C>^{\perp}$, every word $c \in C$ will satisfy $g \cdot c \equiv 0 \bmod (2)$ or equivalently

$$
\begin{equation*}
w_{I}(c) \equiv 0 \bmod (2) \quad \text { where } \quad I=\left\{i_{1}, \ldots, i_{s}\right\} . \tag{14}
\end{equation*}
$$

As the difference between any two words of even weight is an even number we get that

$$
\begin{equation*}
d_{I}\left(c, c^{\prime}\right) \geq 4 \tag{15}
\end{equation*}
$$

for any two words c and c^{\prime} of C. The theorem is now proved by (13), (14) and (15).
Proof of Theorem 3: Let $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}}^{i_{1}, \ldots, i_{s}}$ be any $(n-1) / 2$-face of the hypercube. From (11) follows that the number of words of $C \cap \gamma$ depends on the fourier coefficient A_{g} where

$$
g=e_{i_{1}}+\ldots+e_{i_{s}} .
$$

Consider the kernel of C. The perfect code C is the disjoint union of cosets of this kernel:

$$
C=\operatorname{ker}(C) \cup\left(a_{1}+\operatorname{ker}(C)\right) \cup\left(a_{2}+\operatorname{ker}(C)\right) \cup \ldots \cup\left(a_{k}+\operatorname{ker}(C)\right) .
$$

For any $p \in \operatorname{ker}(C)$ and for any g with $A_{g} \neq 0, p \cdot g=0$, see [5]. Hence, for any $c \in a_{i}+\operatorname{ker}(C)$,

$$
c \cdot g=a_{i} \cdot g
$$

From (8) we thus get that A_{g} is a multiple of the of the number of words of the kernel of C. Let $t(g)$ denote the number of words $a_{i}, i=1,2, \ldots, k$, with $a_{i} \cdot g=0$. Then, by (8^{\prime}),

$$
A_{g}=2 \cdot|\operatorname{ker}(C)|(1+t(g))-|C|
$$

and hence from (11) we get that the number of words in the $(n-1) / 2$-face γ is

$$
\frac{|C|+(-1)^{w\left(\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}\right)}(2 \cdot|\operatorname{ker}(C)|(1+t(g))-|C|)}{2^{(n+1) / 2}}
$$

As $|C|$ is a multiple of $|\operatorname{ker}(C)|$, the theorem is proved.
Remark Any perfect code has as many full 3 -faces as there are words of weight 3 . No full rank perfect code of length n has any full $(n-1) / 2$-face by Theorem 1 . It would be interesting to decide if, for some k with $2 \leq k \leq \log (n+1)-3$, there are full rank perfect codes of length n with a full $\left((n+1) / 2^{k}-1\right)$-faces.

4 Some results for d-faces

We first consider $\left((n+1) / 2^{k}-1\right)$-faces. We need a notation.
Let $N_{k}(n, 2)$ denote the number of subspaces of dimension k of a vector space of dimension n over the finite field Z_{2}. By [3]

$$
N_{k}(n, 2)=\prod_{i=0}^{k-1} \frac{2^{n-i}-1}{2^{i+1}-1}
$$

Theorem 5 Let C be a perfect code of length n. If the rank of C equals r then, for any integer k in the interval $1 \leq k \leq n-r$, there are at least $N_{k}(n-r, 2)$ different equivalence classes of full $\left((n+1) / 2^{k}-1\right)$-faces. Each such equivalence class contains $2^{n-k+1-2^{-k}(n+1)}$ full and mutually parallel $\left((n+1) / 2^{k}-1\right)$-faces.

Proof: We consider the dual space C^{\perp} of C. The dimension of C^{\perp} equals $n-r$ and any word of C^{\perp} has weight $(n+1) / 2$, see [6]. As C^{\perp} is a simplex code, [6], it follows that to any subspace L of dimension k of C^{\perp} there is exactly one subset $J=\left\{j_{1}, j_{2}, \ldots, j_{\mu}\right\}, \mu=(n+1) / 2^{k}-1$, of $\{1,2, \ldots, n\}$ such that the support of any of the words in L has an empty intersection with the set J.

We now proceed as in the proof of Theorem 1. In equation (7) we perform the substitution

$$
x_{j}=1 \quad \text { if } \quad j \in J .
$$

We know from (5), that for any word g of $C^{\perp}, A_{g}=|C|$. By trivial counting arguments, as in the proof of Theorem 1, we get that the face

$$
\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{t}}}^{i_{1}, i_{2}}=\left\{x \in Z_{2}^{n} \mid x_{i_{v}}=\sigma_{i_{v}} \quad v=1,2, \ldots, t\right\}
$$

where

$$
\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}=\{1,2, \ldots, n\} \backslash J
$$

is a full $\left((n+1) / 2^{k}-1\right)$-face if and only if the word

$$
g=e_{\sigma_{i_{1}}}+e_{\sigma_{i_{2}}}+\ldots+e_{\sigma_{i_{t}}}
$$

belongs to L^{\perp}. As the dimension of L^{\perp} equals $n-k$, the number of such words g will be

$$
\frac{2^{n-k}}{2^{(n+1) / 2^{k}-1}}
$$

(where $2^{(n+1) / 2^{k}-1}$ simply is the number of words of length $(n+1) / 2^{k}-1$).

Finally we consider the most general case. We give a formula for the number of words of a perfect code on a d-face γ, for any integer d. The derivation of this formula, which is very similar to the proof of Theorem 3, will be omitted.

Lemma Let C be a perfect code of length n and assume

$$
C=k e r(C) \cup\left(a_{1}+\operatorname{ker}(C)\right) \cup\left(a_{2}+\operatorname{ker}(C)\right) \cup \ldots \cup\left(a_{k}+\operatorname{ker}(C)\right) .
$$

Let for any $g \in Z_{2}^{n}, t(g)$ denote the number of words in the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ that are orthogonal to the word g. The number of words of C on a d-face $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}}^{i_{1}, \ldots i_{s}}$ equals

$$
|C \cap \gamma|=2^{d-\log (n+1)}+\sum_{\substack{g, s u p p(g)=\left\{i_{1}, \ldots, i_{s}\right\} \\ w(g)=(n+1) / 2}} 2^{d-n}(-1)^{\sigma \cdot g}(2|\operatorname{ker}(C)|(1+t(g))-|C|)
$$

where $\sigma=\left(\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}\right)$.
We give two corollaries of this Lemma. The first shows that the number of words on a face is related to the size of the kernel.

Corollary 1 Let C be any perfect code of length n. The number of words on a d-face γ will be equal to

$$
t \cdot 2^{d-n}|\operatorname{ker}(C)|
$$

for some integer t.
Corollary 2 Let C be a perfect code of length n. The number of words of C on a d-face $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}}^{i_{1}, \ldots, i_{s}}, s=n-d$, equals

$$
2^{d-\log (n+1)}
$$

if and only ift $(g)=(k-1) / 2$ for all g with $w(g)=(n+1) / 2$ and $\operatorname{supp}(g) \subseteq\left\{i_{1}, \ldots, i_{s}\right\}$.
By Theorem 4 , if $A_{g} \neq 0$ then $w(g)=(n+1) / 2$. Hence, as $A_{0}=|C|$ we get the following Corollary already proved by Avgustinovich and Vasilieva [2].

Corollary 3 (Avgustinovich-Vasilieva) Let C be a perfect code of length n. For any $d>(n-1) / 2$, the number of words on a d-face will be

$$
2^{d-\log (n+1)}
$$

Example We consider the case $d=\log (n+1)$. We get from the Corollary 2 that if C is a perfect code of length n and $\left\{i_{1}, \ldots, i_{s}\right\}, s=n-d$, a subset of the set $\{1,2, \ldots, n\}$ such that $t(g)=(k-1) / 2$, (where k is as in the Lemma) for any word g with $w(g)=(n+1) / 2$ and $\operatorname{supp}(g) \subseteq\left\{i_{1}, \ldots, i_{s}\right\}$, then the number of words of C on the d-face $\gamma=\Gamma_{\sigma_{i_{1}}, \ldots, \sigma_{i_{S}}}^{i_{1}, \ldots, i_{s}}$ for any word $\left(\sigma_{i_{1}}, \ldots, \sigma_{i_{s}}\right)$, will be equal to one. This means that the perfect code C is systematic. The converse statement will also be true.

Remark 1 Theorem 1 can rather easily be proved also by using the Corollary 3.
Remark 2 We also very much would like to mention that Theorem 1, Theorem 2, Corollary 2 and Corollary 3 are easy and immediate consequences of the results of [4]. Just put $x_{i}=1$, in the equation (7), for $i \in J$ where J is a suitable chosen subset of the set of positions $\{1,2, \ldots, n\}$.

Acknowledgment. I am grateful to Sergey V. Avgustinovich for supporting this study and for comments on a previous version of this note.

References

[1] S.V. Avgustinovich, private comunication, Stockholm, November 1, 2002.
[2] S.V. Avgustinovich, private comunication.
[3] P. Dembowski, Finite Geometries, Springer-verlag Berlin Heidelberg NewYork 1968.
[4] O. Heden, A generalized Lloyd theorem and mixed perfect codes, Math. Scand. 37(1975)13-26.
[5] O. Heden, On the reconstruction of perfect codes, Discrete mathematics 256 (2002) 479-485.
[6] F. Hergert, Algebraische Methoden fur nichtlineare Codes, Dissertion Darmstadt 1985.
[7] J-E. Roos, An algebraic study of group and nongroup error-correcting codes, Information and Control 8(1965) 195-214.

Olof Heden, Department of Mathematics, KTH, S-100 44 Stockholm, Sweden (olohed@math.kth.se)

[^0]: *This research was supported by the Swedish NFR

