Position Dependent NLS Hierarchies: Involutivity, Commutation Relations, Renormalisation and Classical Invariants

Torbjörn Kolsrud
Department of Mathematics
Royal Institute of Technology
SE-100 44 Stockholm, Sweden
kolsrud@math.kth.se

May - October 2005

Abstract

We consider a family of explicitly position dependent hierarchies $\left(I_{n}\right)_{0}^{\infty}$, containing the NLS (non-linear Schrödinger) hierarchy. All $\left(I_{n}\right)_{0}^{\infty}$ are involutive and fulfill $\mathrm{D} I_{n}=n I_{n-1}$, where $\mathrm{D}=D^{-1} V_{0}, V_{0}$ being the Hamiltonian vector field $v \frac{\delta}{\delta v}-u \frac{\delta}{\delta u}$ afforded by the common ground state $I_{0}=u v$. The construction requires renormalisation of certain function parameters.

It is shown that the 'quantum space' $\mathbb{C}\left[I_{0}, I_{1}, \ldots\right]$ projects down to its classical counterpart $\mathbb{C}[p]$, with $p=I_{1} / I_{0}$, the momentum density. The quotient is the kernel of D . It is identified with classical semiinvariants for forms in two variables.

Introduction: Consider in $1+1$ dimensions the (free) heat equation system (u and v are functions of time, t, and space q)

$$
\begin{equation*}
\dot{u}+\frac{1}{2} u^{\prime \prime}=0 ; \quad-\dot{v}+\frac{1}{2} v^{\prime \prime}=0 \tag{1}
\end{equation*}
$$

With appropriate 'boundary conditions' on u and v (e.g. rapid decrease at infinity or periodicity), all $I_{n}:=\frac{1}{2}\left(u^{(n)} v+(-1)^{n} u v^{(n)}\right)$ are conservation laws:

$$
\begin{equation*}
\frac{d}{d t} \int I_{n} d q=0, \quad n=0,1,2, \ldots \tag{2}
\end{equation*}
$$

This is an immediate consequence of the equations being invariant under space translations. There is an additional first order conservation law, viz. $t I_{1}-q I_{0}$.

The counterpart of $\left(I_{n}\right)_{0}^{\infty}$ for the free classical (Newton) equation $\ddot{q}=0$ is the sequence $\left(p^{n}\right)_{0}^{\infty}$, of constants of motion. ($p=\dot{q}$, as usual.) Obviously, all p^{n} commute in the Poisson bracket

$$
\begin{equation*}
\{\xi, \eta\}:=\frac{\partial \xi}{\partial p} \frac{\partial \eta}{\partial q}-\frac{\partial \xi}{\partial q} \frac{\partial \eta}{\partial p} \tag{3}
\end{equation*}
$$

The additional first order (in p) constant of motion $p t-q$ satisfies

$$
\begin{equation*}
\left\{p t-q, p^{n}\right\}=n p^{n-1}=d p^{n} / d p \tag{4}
\end{equation*}
$$

(t is looked upon as a parameter.)
Similarly, with the (field theory) bracket $\{F, G\}:=\int\left(\frac{\delta F}{\delta u} \frac{\delta G}{\delta v}-\frac{\delta F}{\delta v} \frac{\delta G}{\delta u}\right) d q$, we have

$$
\begin{equation*}
\left\{t I_{1}-q I_{0}, I_{n}\right\}=\left\{-q I_{0}, I_{n}\right\}=: \mathrm{D} I_{n}=n I_{n-1} \tag{5}
\end{equation*}
$$

This is of course related to $\langle 1, p, p t-q\rangle$ and $\left\langle I_{0}, I_{1}, t I_{1}-q I_{0}\right\rangle$, respectively, being representations of the Heisenberg algebra.

Suppose now that we form $\mathbb{C}\left[I_{0}, I_{1}, I_{2}, \ldots.\right]$: all polynomials in the variables $I_{0}, I_{1}, I_{2}, \ldots$. What, if any, is the relation to the classical version, viz. $\mathbb{C}[p]$, all polynomials in p ?

Below it is shown that there is a projection

$$
\begin{equation*}
\mathbb{C}\left[I_{0}, I_{1}, I_{2}, \ldots .\right] \rightarrow \mathbb{C}\left[I_{1} / I_{0}\right] \simeq \mathbb{C}[p] \tag{6}
\end{equation*}
$$

with 'fibre' ker D, which in its turn is related to the classical 19th century semi-invariants of Cayley and others. See Gurevich [9], Ibragimov [10], Olver [27, 28].

The paper is devoted to this and some related questions, among them renormalisation, for a wider class of commuting conservation laws, containing a version of the non-linear Schrödinger hierarchy, NLS.

As background serve the papers on invariance properties, including behaviour under mappings between manifolds, for Schrödinger and related diffusion processes $[4,6,14,16,17,18,22,30,31]$, in particular the case of Gaussian diffusions $[2,3,18]$. At the centre of much of this is the heat Lie algebra, first described by Lie in 1881 [21]. See e.g. Ibragimov [10, 11, 12] and Olver [28]. Other general background references are [2], [6] and [19, 20], and for the NLS equation primarily [7], together with [23, 24] and [32].

1 Outline and formulation of results

Consider all C^{∞} curves $(u(q), v(q)), q \in \mathbb{R}$, in \mathbb{C}^{2}. We are interested in functionals or differential functions of the form $F=f\left(q, u, u_{1}, \ldots, u_{n} ; v, v_{1}, \ldots, v_{n}\right)$, where $u_{j}=u^{(j)}, v_{j}=v^{(j)}$ and where it is understood that all the u_{i} and v_{j} depend on q, the coordinate in the base space. Here f is C^{∞} in the appropriate space, a jet bundle. With $D=d / d q$ we form variational derivatives:

$$
\begin{equation*}
\frac{\delta F}{\delta u}=\frac{\partial F}{\partial u}-D \frac{\partial F}{\partial u_{1}}+D^{2} \frac{\partial F}{\partial u_{2}}+\ldots ., \quad \frac{\delta F}{\delta v}=\frac{\partial F}{\partial v}-D \frac{\partial F}{\partial v_{1}}+D^{2} \frac{\partial F}{\partial v_{2}}+\ldots \tag{7}
\end{equation*}
$$

The variational gradient δF of F is the transpose of the vector $(\delta F / \delta u, \delta F / \delta v)$. Two functionals F and G are identified whenever $\delta(F-G)=0$. This is equivalent to saying that $F-G \in \operatorname{im} D$. The interpretation is that we have put extra 'gauge' conditions on u and v, e.g. on their behaviour at infinity.

The bracket is, when emphasising the Hamiltonian densities F and G,

$$
\begin{equation*}
\{F, G\}:=\frac{\delta F}{\delta u} \frac{\delta G}{\delta v}-\frac{\delta F}{\delta v} \frac{\delta G}{\delta u}(\bmod \operatorname{im} D) . \tag{8}
\end{equation*}
$$

We will also use the more customary representation $\int\left(\frac{\delta F}{\delta u} \frac{\delta G}{\delta v}-\frac{\delta F}{\delta v} \frac{\delta G}{\delta u}\right) d q$ of the bracket. In this picture the central objects are Hamiltonians $\int F, \int G \ldots$
Remark: Everything we do here could be done for for general elements u and v in a commutative algebra, not necessarily $C^{\infty}(\mathbb{R})$, with a derivation.

We shall consider sequences of functionals $I_{0}, I_{1}, I_{2}, \ldots$ given by a (recursion or) creation operator C :

$$
\begin{equation*}
I_{n}=C I_{n-1}=C^{n} I_{0}, \quad n \geq 0 \tag{i}
\end{equation*}
$$

or, infinitesimally, $\delta I_{n}=C \delta I_{n-1}$. Throughout this paper, we will have

$$
\begin{equation*}
I_{0}=u v . \tag{9}
\end{equation*}
$$

The operator D given by

$$
\begin{equation*}
\mathrm{D} F:=D^{-1}\left(v \frac{\delta F}{\delta v}-u \frac{\delta F}{\delta u}\right)=\left\{-q I_{0}, F\right\} \tag{10}
\end{equation*}
$$

is well defined on the space $\overline{\mathcal{A}}$ of equivalence classes of functionals that commute with I_{0}. We want the I_{n} to satisfy
(ii) $\mathrm{D} I_{n}=n I_{n-1}, \quad n \geq 0$.

Together, properties (i) and (ii) yield a representation of the Heisenberg algebra: we have $[\mathrm{D}, C]=1$ (the identity) on $\bigoplus_{n \geq 0} \mathbb{C} I_{n}$. D is the annihilation operator. There are traces of (ii) in Dickey's book [5], in connection with the KdV equation.

We also want the I_{n} to be involutive, i.e. to commute:

$$
\text { (iii) } \quad\left\{I_{n}, I_{m}\right\}=0, \quad \text { all } \quad n, m \geq 0 \text {. }
$$

Properties (ii) and (iii) imply that the expected value of position, q, taken in the (ground) state I_{0},

$$
\begin{equation*}
\langle q\rangle=\int q I_{0} d q \tag{11}
\end{equation*}
$$

fulfills the free Newton equations

$$
\begin{equation*}
\frac{d^{2}\langle q\rangle}{d t_{n} d t_{m}}=0, \quad \text { all } \quad n, m \geq 0 \tag{12}
\end{equation*}
$$

Here t_{n} is the 'time' obtained using the Hamiltonian I_{n}. Property (iii) means that for any $m, n, d I_{n} / d t_{m}=0$ in the space of equivalent functionals: each I_{n} is a conservation law w.r.t. any choice of time t_{m}.

Define an auxiliary creation operator \hat{C} by

$$
\hat{C} \delta F:=\left(\frac{\delta \hat{C} F}{\delta u}, \frac{\delta \hat{C} F}{\delta v}\right)^{\top}=\left(\begin{array}{cc}
-D & 0 \tag{13}\\
0 & D
\end{array}\right) \delta F-2 \lambda\binom{v}{u} \mathrm{D} F,
$$

where λ is a (real or complex) parameter. (This is a slight adaption of [8].)
Let the sequence of functionals \hat{I}_{n} be given by

$$
\begin{equation*}
\hat{I}_{n}=\hat{C}^{n} I_{0}, \quad n \geq 0 \tag{14}
\end{equation*}
$$

Consider two special cases:
$\lambda=0$ leads to the free case (we write $D^{\dagger}=-D$)

$$
\begin{equation*}
\hat{I}_{n}(0)=\frac{1}{2}\left(u_{n} v+(-1)^{n} u v_{n}\right)=\frac{1}{2}\left(D^{n} u \cdot v+u D^{\dagger n} v\right) . \tag{15}
\end{equation*}
$$

For real non-zero λ, say $\lambda=1$, we get a version of the NLS (non-linear Schrödinger) hierarchy (Faddeev-Takhtajan [8]). $\hat{I}_{0}=I_{0}$ and \hat{I}_{1} are the
same, whereas the next few are

$$
\begin{aligned}
& \hat{I}_{2}=\hat{I}_{2}(0)-u^{2} v^{2}, \quad \hat{I}_{3}=\hat{I}_{3}(0)-\frac{3}{2} u v\left(u_{1} v-u v_{1}\right), \\
& \hat{I}_{4}=\hat{I}_{4}(0)-u v\left(u_{2} v+u v_{2}\right)+4 u u_{1} v v_{1}+2 u^{3} v^{3}, \\
& \hat{I}_{5}=\hat{I}_{5}(0)+5 u v\left(u_{2} v_{1}-u_{1} v_{2}\right)+5 u^{2} v^{2}\left(u_{1} v-u v_{1}\right), \\
& \hat{I}_{6}= \\
& \quad \hat{I}_{6}(0)-3\left(u u_{2} v_{1}^{2}+u_{1}^{2} v v_{2}\right)-12 u u_{2} v v_{2}+5 u_{1}^{2} v_{1}^{2} \\
& \quad \quad-\left(u_{2}^{2} v^{2}+u^{2} v_{2}^{2}\right)-50 u^{2} u_{1} v^{2} v_{1}-10 u v\left(u_{1}^{2} v^{2}+u^{2} v_{1}^{2}\right)-5 u^{4} v^{4} .
\end{aligned}
$$

Here, \hat{I}_{2} is the Hamiltonian for the NLS equations. I_{3} leads to KdV upon putting $v \equiv 1$. The entire KdV hierarchy can be deduced from the oddindexed \hat{I}_{n}.

We introduce an extended family $I_{n}=I_{n}(\lambda, \phi), n \geq 0$ as follows: Let $\phi \in C^{\infty}(\mathbb{R})$ and put

$$
\begin{equation*}
\Lambda=D+\phi, \quad \Lambda^{\dagger}=-D+\phi \tag{16}
\end{equation*}
$$

We note in passing that $\left[\Lambda, \Lambda^{\dagger}\right]=2 \phi^{\prime}$ (as a multiplication operator). The case when $\phi=q$ (or a first order polynomial in q) gives the Heisenberg algebra.

We define

$$
C \delta F=\left(\begin{array}{cc}
\Lambda^{\dagger} & 0 \tag{17}\\
0 & \Lambda
\end{array}\right) \delta F-2 \lambda\binom{v}{u} \mathrm{D} F
$$

with the above requirement on F. One finds

$$
\begin{equation*}
I_{1}=\hat{I}_{1}+\phi \hat{I}_{0} \quad \text { and } \quad I_{2}=\hat{I}_{2}+2 \phi \hat{I}_{1}+\phi^{2} \hat{I}_{0} . \tag{18}
\end{equation*}
$$

Below we shall prove
Theorem 1 For $n \geq 3$, there are polynomials $\psi_{n}=\psi_{n}\left(\phi, \phi^{\prime}, \ldots, \phi^{(n-1)}\right)$ of degree $n-2$, such that

$$
\begin{equation*}
I_{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\phi^{k}-\psi_{k}\right) \hat{I}_{n-k}, \quad n=0,1,2, \ldots \tag{19}
\end{equation*}
$$

By definition $\psi_{0}=\psi_{1}=\psi_{2}=0$.
The properties (ii) and (iii) hold in the general case:
Theorem $2\left\{I_{n}, I_{m}\right\}=0$ for all $n, m \geq 0$, and $\mathrm{D} I_{n}=n I_{n-1}$ for all $n \geq 0$.

We shall also make use of the following result. Needless to say, it holds in the sense of equivalence of functionals.

Theorem 3 For any $f \in C^{\infty}\left(\mathbb{C}^{n+1}\right)$ we have

$$
\begin{equation*}
\mathrm{D}\left(f\left(I_{0}, I_{1}, \ldots, I_{n}\right)\right)=\sum_{\nu=0}^{n} \frac{\partial f}{\partial I_{\nu}}\left(I_{0}, I_{1}, \ldots, I_{n}\right) \nu I_{\nu-1} \tag{20}
\end{equation*}
$$

This leads to a bundle where the 'quantum space' $\mathbb{C}\left[I_{0}, I_{1}, I_{2}, \ldots\right]$ of all polynomials in the variables (conservation laws) I_{n}, projects down to the 'classical space' $\mathbb{C}\left[I_{1} / I_{0}\right]$. The fibre is the kernel of D and may be identified with classical semi-invariants. We refer to the precise details in $\S 5$ below.

2 Preliminaries and background.

2.1 Symmetries and conservation laws for linear heat equations.

Assume that u and v satisfy

$$
\begin{equation*}
\dot{u}+\frac{1}{2} u^{\prime \prime}-V u=0 ; \quad-\dot{v}+\frac{1}{2} v^{\prime \prime}-V v=0 \tag{21}
\end{equation*}
$$

where V is a given, smooth, potential. Then

$$
\begin{equation*}
\frac{d}{d t} \int u v d q=0 \tag{22}
\end{equation*}
$$

assuming sufficently rapid decrease at infinity of u and v. Let $f=f(t, q)$ and put $K f=\dot{f}+\frac{1}{2} f^{\prime \prime}-V f$. It is easy to show (see Brandão and Kolsrud [4]) that

$$
\begin{equation*}
\frac{d}{d t} \int f u v d q=\int \partial f u v d q=\int \partial^{*} f u v d q \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
\partial f: & =\frac{1}{u} K(f u)=\dot{f}+\frac{1}{2} f^{\prime \prime}+\frac{u^{\prime}}{u} f, \tag{24}\\
\partial^{*} f: & =-\frac{1}{v} K^{\dagger}(f v)=\dot{f}-\frac{1}{2} f^{\prime \prime}-\frac{v^{\prime}}{v} f . \tag{25}
\end{align*}
$$

The first identity can be written

$$
\begin{equation*}
\partial=u^{-1} K u \quad \text { or } \quad u \partial u^{-1}=K . \tag{26}
\end{equation*}
$$

Suppose the linear PDO $\Lambda=T \partial_{t}+Q \partial_{q}+U$ belongs to the heat Lie algebra of K :

$$
\begin{equation*}
[K, \Lambda]=K \Lambda-\Lambda K=\Phi \cdot K \tag{27}
\end{equation*}
$$

for some function $\Phi=\Phi_{\Lambda}$. Using $u \partial u^{-1}=K$ we obtain

$$
\begin{equation*}
u \partial(\Lambda u / u)=K \Lambda u=([K, \Lambda]+\Lambda K) u=\left(\Phi_{\Lambda}+\Lambda\right) K u=0 . \tag{28}
\end{equation*}
$$

This is an alternative way of expressing that $\Lambda u \cdot v$ is the density of a conservation law:

$$
\begin{equation*}
\frac{d}{d t} \int \Lambda u \cdot v d q=\int \partial\left(u^{-1} \Lambda u\right) \cdot u v d q=\int\left(\Phi_{\Lambda}+\Lambda\right) K u \cdot u v d q=0 . \tag{29}
\end{equation*}
$$

In more detail, the equation $\partial(\Lambda u / u)=0$ above may be written

$$
\begin{equation*}
\partial\left(T \frac{\dot{u}}{u}+Q \frac{u^{\prime}}{u}+U\right)=0 \tag{30}
\end{equation*}
$$

very much as in the classical case, where the Noether theorem leads to a constant of motion of the form $E T+T p+U$, where $E=-\frac{1}{2} p^{2}+V$ (Euclidean convention) and $p=\dot{q}$. The coefficients $\dot{u} u^{-1}=-\frac{1}{2} u^{\prime \prime} u^{-1}+V$ and $u^{\prime} u^{-1}$ are, respectively, the energy density and the momentum density in a form that emphasises the backward motion, and the classical total time derivative is replaced by ∂.

The basic density is the ground state $I_{0}=u v$, and for instance $u^{\prime} v=\frac{u^{\prime}}{u} \cdot I_{0}$ is an equivalent form for $\frac{1}{2}\left(u_{1} v-u v_{1}\right)=\hat{I}_{1}(0)$. We write \bar{p} for the moment density u^{\prime} / u. Then we have the Euclidean Newton/Hamilton equations (cf Landau-Lifshitz [20], Eq. (19.3))

$$
\begin{equation*}
\partial q=\bar{p}=-H_{\bar{p}}, \quad \partial p=V^{\prime}=H_{q}, \tag{31}
\end{equation*}
$$

with H denoting the Euclidean Hamiltonian $-\frac{1}{2} p^{2}+V$. Similarly the energy density \bar{E} satisfies $\partial \bar{E}=\dot{V}$.

Repeating the argument above one finds that for Λ_{j} in the Lie algebra of K and $s_{j} \geq 0$ integers, we have

$$
\begin{equation*}
\frac{d}{d t} \int \Lambda_{1}^{s_{1}} \cdots \Lambda_{m}^{s_{m}} u \cdot v d q=0 \tag{32}
\end{equation*}
$$

i.e. $\Lambda_{1}^{s_{1}} \cdots \Lambda_{m}^{s_{m}} u \cdot v$ is the density of a conservation law. Its probabilistic version is that $\Lambda_{1}^{s_{1}} \cdots \Lambda_{m}^{s_{m}} u / u$ is a martingale for a certain diffusion process.

2.2 The operator D.

Consider a slightly more general situation, in which our space is built from one independent variable q and m dependent variables $u^{\alpha}, \alpha=1, \ldots, m$. We define \mathcal{A} as all smooth $\left(C^{\infty}\right)$ functions of the variables q and u_{j}^{α}, where $j=0, \ldots, n$, so that the order n is arbitrary but finite.

Given a (canonical) vector field

$$
\begin{equation*}
X=a^{\alpha} \frac{\partial}{\partial u^{\alpha}}, \quad a^{\alpha} \in \mathcal{A} \tag{33}
\end{equation*}
$$

together with its (infinite order) extension (prolongation), Ibragimov [10-12] or Olver [26],

$$
\begin{equation*}
\widetilde{X}=\sum_{k \geq 0} a_{k}^{\alpha} \frac{\partial}{\partial u_{k}^{\alpha}}, \quad a_{k}^{\alpha}=D^{k} a^{\alpha} . \tag{34}
\end{equation*}
$$

(Any vector field as above lifts in a canonical way to a vector field on the appropriate jet bundle.) Summation over the repeated index $\alpha=1, \ldots, m$ is understood.

Write Ξ for the variational counterpart of X :

$$
\begin{equation*}
\Xi=a^{\alpha} \frac{\delta}{\delta u^{\alpha}} . \tag{35}
\end{equation*}
$$

Lemma 1 For $I \in \mathcal{A}$ we have

$$
(\widetilde{X}-\Xi) I=D \sum_{k \geq 0} \hat{a}_{k}^{\alpha} \frac{\partial I}{\partial u_{k+1}^{\alpha}},
$$

where \hat{a}_{k}^{α} denotes the differential operator

$$
\hat{a}_{k}^{\alpha}:=D^{k} a^{\alpha}-D^{k-1} a^{\alpha} D+\ldots+a^{\alpha}(-D)^{k}
$$

Proof: Fix I. It suffices to consider the case when I only depends on one variable u and its derivatives. Write $\partial_{j} I=\partial I / \partial u_{j}$. Then

$$
\begin{aligned}
& (\widetilde{X}-\Xi) I=\sum_{k=0}^{\infty}\left(D^{k} a \partial_{k} I-a(-D)^{k} \partial_{k} I\right)=\left(D a \partial_{1} I+a D \partial_{1} I\right) \\
+ & \left(D^{2} a \partial_{2} I-a D^{2} \partial_{2} I\right)+\ldots+\left(D^{n} a \partial_{n} I+(-1)^{n-1} D^{n} \partial_{n} I\right)+\ldots \\
= & D\left(a \partial_{1} I+\left(D a \partial_{2} I-a D \partial_{2} I\right)+\left(D^{2} a \partial_{3} I-D a D \partial_{3} I+a D^{2} \partial_{3} I\right)+\ldots .\right.
\end{aligned}
$$

as stated.
We define the operator

$$
\begin{equation*}
\mathrm{D}_{X}:=D^{-1}(\Xi-\widetilde{X}) . \tag{36}
\end{equation*}
$$

The following is a key result:
Theorem 4 On the space of equivalence classes of functionals $\overline{\mathcal{A}}=\mathcal{A} / D \mathcal{A}$, we have

$$
\begin{equation*}
\mathrm{D}_{X}=-\sum_{k \geq 0}(k+1) a_{k}^{\alpha} \frac{\partial}{\partial u_{k+1}^{\alpha}} . \tag{37}
\end{equation*}
$$

In particular, D_{X} is a derivation on $\overline{\mathcal{A}}$.
Proof: Clearly

$$
\left(D^{k} a^{\alpha}-D^{k-1} a^{\alpha} D+\ldots+a^{\alpha}(-D)^{k}\right) \frac{\partial I}{\partial u_{k+1}^{\alpha}}
$$

is equivalent to

$$
(k+1) D^{k} a^{\alpha} \frac{\partial I}{\partial u_{k+1}^{\alpha}}
$$

modulo the image of D.
Corollary 1 If $\widetilde{X} I=0$, then

$$
\begin{equation*}
\mathrm{D}_{X} I=D^{-1} \Xi I=D^{-1} a^{\alpha} \frac{\delta I}{\delta u^{\alpha}} . \tag{38}
\end{equation*}
$$

In particular, for $X=v \partial / \partial v-u \partial / \partial u$ and $I_{0}=u v$, we have

$$
\begin{equation*}
\mathrm{D}_{X} I=D^{-1}\left(v \frac{\delta I}{\delta v}-u \frac{\delta I}{\delta u}\right)=\mathrm{D} I=\left\{-q I_{0}, I\right\} \tag{39}
\end{equation*}
$$

provided $\widetilde{X} I=0$.
Definition: Let $m=2$. A differential function on the form constant times

$$
u_{0}^{s_{0}} u_{1}^{s_{1}} \cdots u_{N}^{s_{N}} v_{0}^{t_{0}} v_{1}^{t_{1}} \cdots t_{N}^{t_{N}}
$$

where $s_{j}, t_{k} \in \mathbb{N}$, is a balanced monomial if the number of $u_{j} \mathrm{~S}$ and $v_{k} \mathrm{~s}$ are equal, i.e., if $\sum s_{j}=\sum t_{k}$. A finite sum of balanced monomials is a balanced polynomial.

Corollary 2 Let $X=v \partial / \partial v-u \partial / \partial u$. Any functional of the form $I=$ $f\left(A_{1}, \ldots, A_{N}\right)$, where f is C^{∞} and A_{j} are balanced polynomials, satisfies $\widetilde{X} I=$ 0. Consequently,

$$
\begin{equation*}
\mathrm{D} I=\sum_{k \geq 0}(k+1)\left(u_{k+1} \frac{\partial I}{\partial u_{k}}-v_{k+1} \frac{\partial I}{\partial v_{k}}\right) \tag{40}
\end{equation*}
$$

for such I.
Proof. It suffices to show that $\tilde{X} F=0$ for any balanced monomial F. Thus, consider $F=u^{s_{0}} u_{1}^{s_{1}} \cdots u_{N}^{s_{N}} v^{t_{0}} v_{1}^{t_{1}} \cdots v_{N}^{t_{N}}$ with $\sum s_{n}=\sum t_{n}$. Then

$$
\widetilde{X} F:=\sum_{n}\left(v_{n} \frac{\partial F}{\partial v_{n}}-u_{n} \frac{\partial F}{\partial u_{n}}\right)=\sum\left(t_{n}-s_{n}\right) F=0 .
$$

Remark: All elements in the NLS hierarchy are balanced monomials.

3 Theorem 1.

3.1 Proof of Theorem 1.

We start with the case $\lambda=0$, and consider a bit more generally, a sequence of functionals

$$
T_{n}=\sum_{k=0}^{n}\binom{n}{k} \alpha_{k} \hat{I}_{n-k}(0), \quad n=0,1,2, \ldots
$$

where $\alpha_{0} \equiv 1, \alpha_{1}, \alpha_{2}, \ldots$ are given, smooth, functions, and, as above, $\hat{I}_{s}(0)=$ $\frac{1}{2}\left(u_{s} v+(-1)^{s} u v_{s}\right), s=0,1,2,3, \ldots$.

We get

$$
\frac{\delta T_{n}}{\delta v}=u_{n}+\frac{1}{2} \sum_{k=1}^{n}\binom{n}{k}\left(\alpha_{k} u_{n-k}+D^{n-k}\left(\alpha_{k} u\right)\right)
$$

which, upon resumming, becomes

$$
\begin{aligned}
& =u_{n}+n \alpha_{1} u_{n-1}+\frac{1}{2} \sum_{k=2}^{n}\left(2\binom{n}{k} \alpha_{k}+\sum_{j=1}^{k-1}\binom{n}{k-j}\binom{n-k+j}{j} D^{j} \alpha_{k-j}\right) \\
& =u_{n}+n \alpha_{1} u_{n-1}+\frac{1}{2} \sum_{k=2}^{n}\binom{n}{k}\left(2 \alpha_{k}+\sum_{j=1}^{k-1}\binom{k}{j} D^{j} \alpha_{k-j}\right) u_{n-k} \\
& =u_{n}+n \alpha_{1} u_{n-1}+\sum_{k=2}^{n}\binom{n}{k} A_{k} u_{n-k} .
\end{aligned}
$$

Choosing

$$
\alpha_{k}=: \phi^{k}:=\phi^{k}-\psi_{k},
$$

T_{n} becomes $I_{n}(0)$. Assume that $\psi_{3}, \ldots, \psi_{n-1}$ have been chosen so that

$$
\frac{\delta I_{n}(0)}{\delta v}=u_{n}+\sum_{k=1}^{n-1} \Lambda^{k-1} \phi \cdot u_{n-k}+A_{n} u
$$

where

$$
A_{n}=\phi^{n}-\psi_{n}+\frac{1}{2} \sum_{j=1}^{n-1}\binom{n}{j} D^{j}\left(\phi^{n-j}-\psi_{n-j}\right)=A_{n}^{0}-\psi_{n}
$$

Our task is to choose ψ_{n}, satisfying the criteria in Theorem 1, such that $\phi^{n}-\psi_{n}=\Lambda^{n-1} \phi$. Before doing this, we remark that the coefficient

$$
\frac{1}{2}\binom{n}{k}\left(2 \alpha_{k}+\sum_{j=1}^{k-1}\binom{k}{j} D^{j} \alpha_{k-j}\right)
$$

of u_{n-k} in the formula above only depends on n through the binomial coefficient $\binom{n}{k}$. It shows that : ϕ^{k} :, the renormalisation of the $k^{\text {th }}$ power of ϕ, is independent of n.

We note that both A_{n}^{0} and $B_{n} \equiv \Lambda^{n-1} \phi$ are polynomials satisfying the criteria in Theorem 1. The choice $\psi_{n}=A_{n}^{0}-B_{n}$ determines ψ_{n} uniquely.

In the general case, $I_{n}=\hat{I}_{n}(0)+J_{n-2}$, where J_{n-2} only depends on $u_{j}, v_{j},: \phi^{j}:$ for $j \leq n-2$. The renormalisation term : $\phi^{n}:$ only occurs in the first term $\hat{I}_{n}(0)$, which we have already discussed. A similar argument works for $\delta I_{n} / \delta u$. Theorem 1 follows.

3.2 Comments on renormalisation.

We consider the linear case $\lambda=0$. Variation of the space-time action $\iint L d t d q$, with (space-time) Lagrangian density

$$
\begin{equation*}
L=\frac{1}{2}(u \dot{v}-\dot{u} v)+\frac{1}{2} I_{2}, \tag{41}
\end{equation*}
$$

leads to the Euler-Lagrange equations $\dot{u}=-\frac{1}{2} \frac{\delta I_{2}}{\delta v}, \quad \dot{v}=\frac{1}{2} \frac{\delta I_{2}}{\delta u}$. (See Ibragimov and Kolsrud [13].) In more detail:

$$
\begin{align*}
\dot{u}+\frac{1}{2} u_{2}+\phi u_{1}+\frac{1}{2}\left(\phi^{2}+\phi^{\prime}\right) u & =\dot{u}-H u=0 \tag{42}\\
-\dot{v}+\frac{1}{2} v_{2}-\phi v_{1}+\frac{1}{2}\left(\phi^{2}-\phi^{\prime}\right) v & =-\dot{v}-H^{\dagger} v=0 \tag{43}
\end{align*}
$$

Remark: The variational principle appears for the Schrödinger equation in Goldstein [8], and the same trick is used in classical mechanics in Morse and Feshbach [25]. It is related to the Hilbert integral, in, e.g. [1].

The Hamiltonian H is evidently unsymmetric, and $H \rightarrow H^{\dagger}$ precisely when $\phi \rightarrow-\phi$. In the non-linear case $\lambda \neq 0$ the equations become

$$
\begin{equation*}
\dot{u}-H u=\lambda u^{2} v ; \quad-\dot{v}-H^{\dagger} v=\lambda u v^{2} . \tag{44}
\end{equation*}
$$

Writing : $\phi^{n}: \equiv \phi^{n}-\psi_{n}$, as above, one finds

$$
\begin{align*}
& : \phi^{3}:=\phi^{3}-\frac{1}{2} \phi^{\prime \prime}, \quad: \phi^{4}:=\phi^{4}-2 \phi \phi^{\prime \prime}-3 \phi^{\prime 2} \tag{45}\\
& : \phi^{5}:=\phi^{5}-5 \phi^{2} \phi^{\prime \prime}-15 \phi \phi^{2} \tag{46}\\
& : \phi^{6}:=\phi^{6}-40 \phi^{3} \phi^{\prime \prime}-45 \phi^{2} \phi^{\prime 2}+6 \phi \phi^{\mathrm{iv}}+30 \phi^{\prime} \phi^{\prime \prime \prime}+10 \phi^{\prime \prime 2}, \ldots \tag{47}
\end{align*}
$$

Examples: It is known that the Lie algebra is maximal when the potential is quadratic in q. Then the Lie algebra contains an $s l_{2}$, in addition to the Heisenberg algebra. The latter occurs only in this case, and the case of inverse square potential, $V=c / q^{2}$.
(i) In the case $\phi=c q$ no renormalisation occurs for $n=3$. For $c=1$ we get

$$
\begin{equation*}
: q^{n}:=q^{n}-3\binom{n}{4} q^{n-4}, \quad n \geq 4 \tag{48}
\end{equation*}
$$

This is related to the harmonic oscillator and the $: q^{n}:$ share some properties with Hermite polynomials, notably $D: q^{n}:=n: q^{n-1}:$. However, to
get a potential with correct sign we must take c imaginary. (For Gaussian renormalisation, see Simon [29].)
(ii) The choice $\phi=c / q$ is related to the inverse square potential. For $c=1$ we have

$$
\begin{equation*}
: q^{-n}:=\lambda_{n} q^{-n}, \quad n \geq 0 \tag{49}
\end{equation*}
$$

The first few odd-indexed : q^{-n} : vanish. In particular, $: q^{-3}:=0$. This happens only in this case. Here, one can keep c real and get correct sign for one, but not both, of the potentials, $\frac{1}{2}\left(\phi^{2} \pm \phi^{\prime}\right)$. Many formulae become particularly simple in this case, because $\Lambda(1 / q)=0$.
Remark: Incidentally, $u=c_{1} / q, v=c_{2} / q$ solves the stationary NLS equation $u^{\prime \prime}-2 u^{2} v=0, v^{\prime \prime}-2 u v^{2}=0$, provided $c_{1} c_{2}=1$. The same holds for the stationary KdV system obtained from \hat{I}_{3}, viz. $u^{\prime \prime \prime}-6 u u^{\prime} v=0, v^{\prime \prime \prime}-6 u v v^{\prime}=0$, and possibly for corresponding higher order equations. Cf. Treves [32].

4 Proof of Theorem 2.

4.1 Involutivity.

We first show that C is symmetric w.r.t. the bracket.
Lemma 2 Assume two functionals F and G commute with I_{0}. Then

$$
\begin{equation*}
\{C F, G\}=-\{C G, F\}=\{F, C G\} \tag{50}
\end{equation*}
$$

Proof. The second identity is a consequence of the bracket being antisymmetric. To prove the first identity, we write $\{C F, G\}=$

$$
\begin{aligned}
& \int\left(\left(\Lambda^{\dagger} \frac{\delta F}{\delta u}-2 \lambda v \mathrm{D} F\right) \frac{\delta G}{\delta v}-\left(\Lambda \frac{\delta F}{\delta v}-2 \lambda u \mathrm{D} F\right) \frac{\delta G}{\delta u}\right) d q \\
= & \int\left(\left(\frac{\delta F}{\delta u} \Lambda \frac{\delta G}{\delta v}-\frac{\delta F}{\delta v} \Lambda^{\dagger} \frac{\delta G}{\delta u}\right)-2 \lambda \mathrm{D} F\left(v \frac{\delta G}{\delta v}-u \frac{\delta G}{\delta u}\right)\right) d q \\
= & \int\left(\frac{\delta F}{\delta u} \Lambda \frac{\delta G}{\delta v}-\frac{\delta F}{\delta v} \Lambda^{\dagger} \frac{\delta G}{\delta u}-2 \lambda \mathrm{D} F D \mathrm{D} G\right) d q,
\end{aligned}
$$

where we have used the definition $\mathrm{D}=D^{-1}(v \delta / \delta v-u \delta / \delta u)$. Performing a partial integration in the last term, we clearly get $-\{C G, F\}$. This proves our claim.

To prove that all I_{n} commute, we assume that

$$
\begin{equation*}
\left\{I_{j}, I_{k}\right\}=0, \quad 0 \leq j, k \leq n, \tag{51}
\end{equation*}
$$

and prove that it can be extended to the first $n+1$ conservation laws. If $j<n$, the above observation shows

$$
\left\{I_{n+1}, I_{j}\right\}=\left\{C I_{n}, I_{j}\right\}=\left\{I_{n}, I_{j+1}\right\}
$$

which vanishes by hypothesis. The identity also shows that $\left\{I_{n+1}, I_{n}\right\}=$ $\left\{I_{n}, I_{n+1}\right\}$, which since the bracket is anti-symmetric allows us to conclude that, indeed also $\left\{I_{n+1}, I_{n}\right\}=0$.

4.2 Proof of $\mathrm{D} I_{n}=n I_{n-1}$.

It is clear from the results in $\S 2.2$ that for any balanced I we have $\mathrm{D}(f(q) I)=$ $f(q) \mathrm{D} I$. Hence the formula in Theorem 1 leads to

$$
\mathrm{D} I_{n}=\sum_{k=0}^{n}\binom{n}{k}: \phi^{k}: \mathrm{D} \widehat{I}_{n-k}=\sum_{k=0}^{n}\binom{n}{k}: \phi^{k}:(n-k) \widehat{I}_{n-k-1}=n I_{n-1}
$$

provided the \widehat{I}_{n} from the NLS-hierarchy fulfill (ii). This is what we shall prove. We drop the hats from now on, and assume that $\lambda=1$.

Write $a_{n}:=\mathrm{D} I_{n}$. In general,

$$
a_{n}=D^{-1}\left(v \frac{\delta I_{n}}{\delta v}-u \frac{\delta I_{n}}{\delta u}\right)=\int-q\left(v \frac{\delta I_{n}}{\delta v}-u \frac{\delta I_{n}}{\delta u}\right) d q=\int-q a_{n}^{\prime} d q
$$

Use of the creation operator C and partial integration leads to the relation

$$
\begin{aligned}
a_{n+1}^{\prime}= & u^{(n+1)} v+(-1)^{n} u v^{(n+1)} \\
- & 2\left(\left(a_{1} u\right)^{(n-1)} v+(-1)^{n} u\left(a_{1} v\right)^{(n-1)}+\ldots\right. \\
& \left.+\left(a_{n-2} u\right)^{\prime \prime} v-u\left(a_{n-2} v\right)^{\prime \prime}+\left(a_{n-1} u\right)^{\prime} v+u\left(a_{n-1} v\right)^{\prime}\right) \\
& =A_{n+1}+A_{n-1}+\ldots \ldots
\end{aligned}
$$

where the index on the right refers to the total number of derivatives.

Assume now that $a_{k}=k I_{k-1}$ for all $k \leq n$. The terms of lowest order will come from

$$
\left.-2\left(a_{n-1} u\right)^{\prime} v+u\left(a_{n-1} v\right)^{\prime}\right)
$$

if n is even, and from

$$
-2\left(\left(a_{n-2} u\right)^{\prime \prime} v-u\left(a_{n-2} v\right)^{\prime \prime}+\left(a_{n-1} u\right)^{\prime} v+u\left(a_{n-1} v\right)^{\prime}\right)
$$

if n is odd.
In the former case, the hypothesis yields

$$
a_{n+1}^{\prime}=-2(n-1)\left(\left(I_{n-2} u v\right)^{\prime}+I_{n-2}^{\prime} u v\right)+\text { higher order terms. }
$$

In general,

$$
I_{2 m}=c_{2 m}(u v)^{m+1}+\text { higher order terms },
$$

where the coefficient is (if $(-1)!!=1)$

$$
c_{2 m}=(-2)^{m} \frac{(2 m-1)!!}{(m+1)!}, \quad m=0,1,2, \ldots
$$

This expression can be found using the following formulae for C^{2} :

$$
\begin{aligned}
& \frac{\delta I_{k+2}}{\delta u}=D^{2} \frac{\delta I_{k}}{\delta u}+2\left(a_{k} v\right)^{\prime}-2 a_{k+1} v, \\
& \frac{\delta I_{k+2}}{\delta v}=D^{2} \frac{\delta I_{k}}{\delta v}-2\left(a_{k} u\right)^{\prime}-2 a_{k+1} u .
\end{aligned}
$$

With $n=2 m$, and writing $s:=u v$, the terms of lowest order are

$$
\begin{aligned}
& -2(2 m-1) c_{2(m-1)}\left(\left(s^{m+1}\right)^{\prime}+\left(s^{m}\right)^{\prime} s\right) \\
= & -2(2 m-1) c_{2(m-1)}(2 m+1) s^{m} s^{\prime} \\
= & (2 m+1)(-2)^{m} \frac{(2 m-1)!!}{m!} \frac{\left(s^{m+1}\right)^{\prime}}{m+1}=(2 m+1)\left(c_{2 m} s^{m+1}\right)^{\prime},
\end{aligned}
$$

which proves the assertion in this case.
In the case when n is odd, $n=2 m+1$, the lowest order terms for $a_{2 m+2}^{\prime}$ are obtained from

$$
\begin{aligned}
- & 2\left(2 m\left(I_{2 m-1} s\right)^{\prime}\right. \\
& +2 m I_{2 m-1}^{\prime} s+(2 m-1) I_{2 m-2} a \\
& \left.+(2 m-1)\left(I_{2 m-2} a\right)^{\prime}\right),
\end{aligned}
$$

where, in addition to $s=u v$, we have written $a:=u^{\prime} v-u v^{\prime}$. In general,

$$
I_{2 m+1}=c_{2 m+1} s^{m} a+\text { h. o. t. }
$$

for some constant $c_{2 m+1}$. Hence the middle terms above are

$$
\begin{aligned}
& 2 m c_{2 m-1}\left(s^{m-1} a\right)^{\prime} s+(2 m-1) c_{2 m-2}\left(s^{m}\right)^{\prime} a \\
= & \left(2 m c_{2 m-1}(m-1)+(2 m-1) m c_{2 m-2}\right) s^{m-1} s^{\prime} a+2 m c_{2 m-1} s^{m} a^{\prime} \\
= & \left(2(m-1) c_{2 m-1}+(2 m-1) c_{2 m-2}\right)\left(s^{m}\right)^{\prime} a+2 m c_{2 m-1} s^{m} a^{\prime} \\
= & 2 m c_{2 m-1}\left(s^{m} a\right)^{\prime},
\end{aligned}
$$

provided $2(m-1) c_{2 m-1}+(2 m-1) c_{2 m-2}=2 m c_{2 m-1}$, i.e.

$$
c_{2 m-1}=\frac{2 m-1}{2} c_{2(m-1)} .
$$

One may deduce this formula from the formula for $c_{2 m}$ together with the formulae for C^{2} displayed above.

The lowest order terms become

$$
-2\left(2 \cdot 2 m c_{2 m-1}+(2 m-1) c_{2 m-2}\right)\left(s^{m} a\right)^{\prime}
$$

The coefficient can be written

$$
\begin{aligned}
& -2(2 m-1)(2 m+1) c_{2 m-2} \\
= & 2(m+1) \cdot \frac{2 m+1}{2}(-2)^{m} \frac{(2 m-1)!!}{(m+1)!}=2(m+1) c_{2 m+1}
\end{aligned}
$$

which proves our claim

$$
a_{2(m+1)}^{\prime}=2(m+1) c_{2 m+1}\left(s^{m} a\right)^{\prime}+\text { h. o. } \mathrm{t} .
$$

By induction, we may assume that all terms of order strictly less than the highest order, viz. $n+1$, satisfy the corresponding identity. It remains to prove that $J_{n}:=\frac{1}{2}\left(u^{(n)} v+(-1)^{n} u v^{(n)}\right)$ fulfil

$$
\mathrm{D} J_{n}=n J_{n-1} \quad \text { for all } n .
$$

This is the relation $\mathrm{D} I_{n}=n I_{n-1}$ in the free case. It follows immediately from noting that

$$
u^{(n)} v-(-1)^{n} u v^{(n)}=D\left(u^{(n-1)} v-u^{(n-2)} v^{\prime}+\ldots . .+(-1)^{n-1} u v^{(n-1)}\right)
$$

with each term within the parentheses being equivalent to I_{n-1}.

$5 \mathbb{C}\left[I_{0}, I_{1}, \ldots\right]$ and D-invariant polynomials.

5.1 General setting.

Suppose we are given

$$
\begin{equation*}
I_{0}, I_{1}, I_{2}, \ldots . \tag{52}
\end{equation*}
$$

and a derivation D for which

$$
\begin{equation*}
\mathrm{D} I_{n}=n I_{n-1}, \quad n \geq 0 \tag{53}
\end{equation*}
$$

Replacing I_{n} by $\bar{I}_{n}:=I_{n} / I_{0}$, one finds that once again, $\mathrm{D} \bar{I}_{n}=n \bar{I}_{n-1}$, and $\bar{I}_{0}=1$. We may therefore assume $I_{0} \equiv 1$.

Each I_{n} is assigned the degree n. We may then define the degree of a monomial

$$
\begin{equation*}
M_{\alpha}=I_{1}^{\alpha_{1}} I_{2}^{\alpha_{2}} \cdots I_{s}^{\alpha_{s}}, \quad \alpha_{i} \in \mathbb{N}, \tag{54}
\end{equation*}
$$

as

$$
\begin{equation*}
\operatorname{deg} M_{\alpha}:=\sum_{j=1}^{s} j \alpha_{j}=\|\alpha\| . \tag{55}
\end{equation*}
$$

A linear combination of monomials of the same degree,

$$
\begin{equation*}
P=\sum_{\|\alpha\|=N} c_{\alpha} M_{\alpha} \tag{56}
\end{equation*}
$$

is a homogeneous polynomial of degree N. General polynomials in I_{1}, I_{2}, \ldots. are linear combinations of homogeneous polynomials. This way, the ring of polynomials $\mathrm{P}:=\mathbb{C}\left[I_{1}, I_{2}, \ldots.\right]$ (the field of scalars does not seem so important) gets a natural grading by the degree:

$$
\begin{equation*}
\mathrm{P}=\bigoplus_{N=0}^{\infty} \mathrm{P}_{N}, \tag{57}
\end{equation*}
$$

where P_{N} denotes all homogeneous polynomials of degree N.
D being a derivation,, we have

$$
\begin{equation*}
\mathrm{D}\left\{f\left(I_{1}, I_{2}, \ldots, I_{n}\right)\right\}=\sum_{j=1}^{n} \frac{\partial f}{\partial I_{j}}\left(I_{1}, I_{2}, \ldots, I_{n}\right) \mathrm{D} I_{j} \tag{58}
\end{equation*}
$$

for every polynomial f.

Define polynomials $K_{N}, N \geq 2$, by the formula

$$
\begin{equation*}
K_{N}=\sum_{\nu=0}^{N-2}(-1)^{\nu}\binom{N}{\nu} I_{1}^{\nu} I_{N-\nu}+(-1)^{N-1}(N-1) I_{1}^{N} \tag{59}
\end{equation*}
$$

Then D annihilates all K_{N} :

$$
\begin{equation*}
\mathrm{D} K_{N}=0, \quad N \geq 2 \tag{60}
\end{equation*}
$$

as one easily checks. Together, all the K_{N} form an algebra of invariant polynomials. (Since D is a derivation, it annihilates the whole algebra, according to the Leibniz rule.)

Theorem $5 \mathrm{P}_{N}$ has the decomposition

$$
\begin{equation*}
\mathrm{P}_{N}=\mathrm{H}_{N} \oplus \mathrm{~V}_{N} \tag{61}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{H}_{N}:=I_{1} \mathrm{P}_{N-1} \quad \text { and } \quad \mathrm{V}_{N}=\mathbb{C}\left[K_{2}, K_{3}, \ldots, K_{N}\right] \cap \mathrm{P}_{N} \tag{62}
\end{equation*}
$$

Proof: The monomials in P_{N} are divided into two classes according to whether the monomial contains a factor I_{1} or not. Clearly, the first case corresponds to the space H_{N}, as defined above.

The remaining monomials can be identified with those partitions of N, for which all summands fulfil $2 \leq \lambda_{i} \leq N$. The trivial partition, i.e. N itself, is identified with K_{N}. The other partitions satisfy $2 \leq \lambda_{i} \leq N-2$, and can be identified with $K_{\lambda_{1}} K_{\lambda_{2}} \cdots K_{\lambda_{s}}$. (Typically there are repetitions of the K_{j}.) This proves the theorem.

The theorem leads to

$$
\begin{equation*}
\mathrm{P}_{N} / \mathrm{V}_{N} \simeq \mathrm{H}_{N} . \tag{63}
\end{equation*}
$$

From $K_{2}=0$ follows $I_{2}=I_{1}^{2}$ and $K_{3}=0$ leads to $I_{3}=3 I_{1} I_{2}-2 I_{1}^{3}=I_{1}^{3}$ etc. We get $I_{n}=I_{1}^{n}$ for $0 \leq n \leq N$. In particular, H_{N} can be identified with the one-dimensional space that I_{1}^{N} generates.

The result as $N \rightarrow \infty$ may be written
Corollary $3 \mathbb{C}\left[I_{1}, I_{2}, \ldots ..\right] / \mathbb{C}\left[K_{2}, K_{3}, \ldots.\right]=\mathbb{C}\left[I_{1}\right]$.
The invariant polynomials have integer coefficients and it holds that $\mathbb{Z}\left[I_{1}, I_{2}, \ldots ..\right] / \mathbb{Z}\left[K_{2}, K_{3}, \ldots.\right]=\mathbb{Z}\left[I_{1}\right]$.

5.2 Invariants and semi-invariants.

To see how the K_{N} arise, we start from the quotient I_{2} / I_{1}^{2}, homogeneous of degree zero. Acting on it by the vector field $I_{1} \mathrm{D}$ we get a new function with the same homogeneity. The obtained relation may be written as

$$
\begin{equation*}
-I_{1} \mathrm{D}\left(I_{2} / I_{1}^{2}\right)=2 K_{2} / I_{1}^{2} \tag{64}
\end{equation*}
$$

More generally, one finds

$$
\begin{equation*}
-I_{1} \mathrm{D}\left(\frac{I_{n+1}}{I_{1}^{n+1}}\right)=(n+1) \sum_{j=0}^{n-1}\binom{n}{j} \frac{K_{n+1-j}}{I_{1}^{n+1-j}} . \tag{65}
\end{equation*}
$$

This can be used to obtain a kind of generating function relation between the I_{n} and the K_{N}.

If we bring back I_{0}, the first few K_{N} are

$$
\begin{align*}
& K_{2}=I_{0} I_{2}-I_{1}^{2}, \quad K_{3}=I_{0}^{2} I_{3}-3 I_{0} I_{1} I_{2}+2 I_{1}^{3}, \tag{66}\\
& K_{4}=I_{0}^{3} I_{4}-4 I_{0}^{2} I_{1} I_{3}+6 I_{0} I_{1}^{2} I_{2}-3 I_{1}^{4} \tag{67}
\end{align*}
$$

These expressions are semi-invariants, or relative invariants, related to forms, i.e. homogeneous polynomials in two variables, and projective representations of $G L(2, \mathbb{R})$ or $S L(2, \mathbb{R})$. We refer to Gurevich [9] , Ibragimov [10], and Olver [27, 28] for more about this classical, fascinating subject.
K_{2}, the discriminant, is a true invariant. It can be written $\left|\begin{array}{cc}I_{0} & I_{1} \\ I_{1} & I_{2}\end{array}\right|$.
Instead of K_{4} we could have chosen the well-known invariant (for quartic polynomials) $\widehat{K}_{4}:=I_{0} I_{4}-4 I_{1} I_{3}+3 I_{2}^{2}$. Except for the (irrelevant) factor I_{0}^{2}, K_{4} and \widehat{K}_{4} differ by a multiple of K_{2}^{2}.

The 3×3 determinant with rows, from the top, $\left(I_{0} I_{1} I_{2}\right)$, $\left(I_{1} I_{2} I_{3}\right)$, $\left(I_{2} I_{3} I_{4}\right)$, is another well-known invariant related to quartic polynomials (Olver, [27], p. 97). It is a linear combination of K_{2}^{3}, K_{3}^{2} and $K_{2} K_{4}$.

For N even, there is an alternative choice of K_{N}, , with \widehat{K}_{4} as a special case, namely

$$
\widehat{K}_{2 n}:=\sum_{k=0}^{n-1}(-1)^{k}\binom{2 n}{k} I_{k} I_{2 n-k}+\frac{(-1)^{n}}{2}\binom{2 n}{n} I_{n}^{2} .
$$

5.3 Proof of Theorem 3.

Every I_{n} is a balanced polynomial with q-dependent coefficients. Hence the formula in Corollary 2 applies. It shows that D is a derivation on functionals of the form $f\left(I_{0}, \ldots, I_{n}\right)$. Thus

$$
\mathrm{D}\left\{f\left(I_{0}, \ldots, I_{n}\right)\right\}=\sum_{\nu=0}^{n} \partial_{\nu} f\left(I_{0}, . ., I_{n}\right) \mathrm{D} I_{\nu}
$$

which according to Theorem 2 yields the desired result.
Corollary 4 Let $\left(I_{n}\right)_{0}^{\infty}$ be given by Theorem 1. Then

$$
\mathbb{C}\left[I_{0}, I_{1}, I_{2}, \ldots . .\right] / \mathbb{C}\left[K_{2}, K_{3}, \ldots .\right]=\mathbb{C}\left[I_{0}, I_{1}, \ldots . .\right] / \operatorname{ker} \mathbf{D}=\mathbb{C}\left[I_{1} / I_{0}\right] \simeq \mathbb{C}[p]
$$

5.4 A final remark.

One may ask what happens if we switch between I_{1} and $I_{1}^{*}:=-q I_{0}$. The sequence $I_{n}^{*}:=-q^{n} I_{0}$ forms, of course, an abelian algebra. Using $\mathrm{D}^{*}:=a d_{I_{1}}$, we get the same derivation property as above. In this case, however, the recursion operator $I_{n}^{*} \rightarrow I_{n+1}^{*}$ is trivial.

Acknowledgements: This article was written in memory of my friend Augusto Brandão Correia, 1961-2004, co-author of several papers, and discussion partner for many years.

References

[1] Arnold, V.I., Mathematical methods in classical mechanics, Springer, Berlin, 1978.
[2] Brandão, A., Symplectic structure for Gaussian diffusions. J. Math. Phys. 39 (1998), no. 9, 4257-4283.
[3] Brandão, A. and Kolsrud T., Phase space transformations of Gaussian diffusions. Potential Anal. 10 (1999), no. 2, 119-32.
[4] Brandão, A. and Kolsrud T., Time-dependent conservation laws and symmetries for classical mechanics and heat equations. In: Harmonic
morphisms, harmonic maps, and related topics (Brest, 1997), 113-125, Chapman \& Hall/CRC Res. Notes Math., 413, Chapman \& Hall/CRC, Boca Raton, FL, 2000.
[5] Dickey, L., Soliton equations and Hamiltonian systems, World Scientific, Singapore, 1991.
[6] Djehiche, B. and Kolsrud T., Canonical transformations for diffusions. C. R. Acad. Sci. Paris 321, I (1995), 339-44.
[7] Faddeev, L.D. and Takhtajan, L.A., Hamiltonian Methods in the Theory of Solitons, Nauka, Moscow, 1986 (English translation by SpringerVerlag, Berlin Heidelberg, 1987).
[8] Goldstein, H., Classical mechanics, 2nd ed, Addison-Wesley, New York, 1980.
[9] Gurevich, G.B., Foundations of the theory of algebraic invariants, Noordhoff, Groningen, 1964 (English translation from the Russian).
[10] Ibragimov, N.H., Elementary Lie group analysis and ordinary differential equations, Wiley, Cichester, 1999.
[11] Ibragimov, N.H., Transformation Groups Applied to Mathematical Physics, Nauka, Moscow, 1983 (English translation by D. Reidel, Dordrecht, 1985).
[12] Ibragimov, N.H., editor, CRC handbook of Lie group analysis of differential equations, volume 1, Symmetries, exact solutions and conservation laws, CRC Press, Boca Raton, 1993.
[13] Ibragimov, N.H. and Kolsrud T., Lagrangian approach to evolution equations: symmetries and conservation laws. Nonlinear Dynam. 36, 2004, no 1, 29-40.
[14] Kolsrud, T., Quantum constants of motion and the heat Lie algebra in a Riemannian manifold. Preprint TRITA-MAT 1996 (Stockholm)
[15] Kolsrud, T., Symmetries for the Euclidean Non-Linear Schrödinger Equation and Related Free Equations. To appear in proc. of MOGRAN X, Cyprus 2004. Preprint TRITA-MAT 2005 (Stockholm)
[16] Kolsrud, T., and Lobeau, E., Foliated manifolds and conformal heat morphisms. Ann. Global Anal. Geom. 21, 241-67, 2002.
[17] Kolsrud, T. and Zambrini, J. C., 'The general mathematical framework of Euclidean quantum mechanics'. Stochastic analysis and applications (Lisbon 1989), 123-43, Birkhäuser 1991.
[18] Kolsrud, T. and Zambrini, J. C., An introduction to the semiclassical limit of Euclidean quantum mechanics. J. Math. Phys. 33 (1992), no. 4, 1301-1334.
[19] Landau, L.D. and Lifshitz, E. M., Course of Theoretical Physics, vol. 1, Mechanics, 3rd ed., Pergamon Press, Oxford, 1977.
[20] Landau, L.D. and Lifshitz, E. M., Course of Theoretical Physics, vol. 3, Quantum mechanics, 3rd ed., Pergamon Press, Oxford, 1977.
[21] Lie, S. Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichungen, Arch. Math. 6 (1881), 328-68.
[22] Loubeau, E. Morphisms of the heat equation. Ann. Global Anal. Geom. 15 (1997), no. 6, 487-496.
[23] McKean, H. P.; Vaninsky, K. L. Action-angle variables for the cubic Schrödinger equation. Comm. Pure Appl. Math. 50, no. 6, 489-562, 1997.
[24] McKean, H. P.; Vaninsky, K. L. Cubic Schrödinger: the petit canonical ensemble in action-angle variables. Comm. Pure Appl. Math. 50, no. 7, 593-622, 1997.
[25] Morse, P. M. and Feshbach, H., Methods of theoretical physics, vol I-II McGraw-Hill New York 1953.
[26] Olver, P. J., Applications of Lie groups to differential equations, Second edition, Springer, Berlin, Heidelberg, New York 1993.
[27] Olver, P. J., Equivalence, invariants and symmetry, Cambridge Univ. Press 1995.
[28] Olver, P. J., Classical invariant theory, London Math. Soc., Cambridge Univ. Press 1999.
[29] Simon, B., The $P(\phi)_{2}$ Euclidean (Quantum) Field Theory, Princeton Univ. Press 1974.
[30] Thieullen, M. and Zambrini, J.C., 'Probability and quantum symmetries I. The theorem of Noether in Schrödinger's euclidean quantum mechanics.' Ann. Inst. Henri Poincaré, Phys. Théorique 67:3 (1997), 297-338.
[31] Thieullen, M. and Zambrini, J.C., 'Symmetries in the stochastic calculus of variations.' Probab. Theory Relat. Fields 107 (1997), 401-427.
[32] Treves, F., 'On the characterisation of the nonlinear Schrödinger hierarchy' Sel. math., New ser. 9 (2003), 601-56.

