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Abstract. We define a variable continuity correction and give an
asymptotic approximation for it. The approximation is an exten-
sion of the classical continuity correction of 1/2; it takes values in
the open unit interval (0,1). The result is based on an approx-
imation of a sum of normal densities that is claimed to provide
an asymptotic expansion, and on a modified expression for the
Maclaurin expansion of a composition of two functions, of which
one is the normal distribution function.

1. Introduction

Continuity correction is a method that reduces the errors that appear
when a discrete distribution is approximated by a continuous one. The
classical continuity correction of 1/2 is based on ad-hoc arguments. We
replace these arguments by a strict definition, and derive an asymptotic
approximation of the newly defined continuity correction.

We consider the situation when the distribution of a discrete ran-
dom variable X is approximated by the aid of a normal distribution
with mean µ and standard deviation σ. The corresponding continuous
random variable is denoted ξ. The density of the normal distribution
at n is then given by ϕ(y(n))/σ, where ϕ denotes the normal density
function ϕ(y) = exp(−y2/2)/

√
2π, and where we write

(1.1) y(n) =
n− µ

σ
.

The approximation process can be interpreted as consisting of two
separate stages. The first stage gives an approximation of the discrete
probability that X takes the value n, while the second one approximates
the distribution function FX(k) = P{X ≤ k} of X. If X takes integer
values, then the first stage of the approximation process leads to the
specific approximation

(1.2) P{X = n} ≈ α

σ
ϕ(y(n)),

where α is constant, on some set of n-values. In the second stage we
need an approximation of the normal density ϕ(y(n))/σ in terms of
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the normal distribution function Φ(y) =
∫ y

−∞ ϕ(x) dx. The classical
continuity correction of 1/2 is based on the approximation

(1.3)
1

σ
ϕ(y(n)) ≈ Φ(y(n + 1/2))− Φ(y(n− 1/2)),

see Maxwell (1982). It leads to the following approximation of the
distribution function for X:

(1.4) FX(k) ≈ αΦ(y(k + 1/2)),

We show below that the ad-hoc approximation in (1.3) is improved by
our approach.

We notice that the discreteness of the distribution is maintained in
the first stage of the approximation process, and that the transition
from discreteness to continuity takes place at the second stage.

The error introduced in the second stage of approximation can be
obliterated by defining a continuity correction C(k) that depends on
the argument k, instead of being constant as in the classical case. To
achieve this, we define the continuity correction C(k) to be the solution
of the following relation:

(1.5)
1

σ

k∑
n=−∞

ϕ(y(n)) = Φ(y(k + C(k)).

This definition of the continuity correction does not involve any ap-
proximation, contrary to the case with the classical continuity correc-
tion described above. However, approximations are needed to describe
the solution of (1.5). We derive an approximation of C(k), which is
asymptotic (except possibly in the extreme tails of the distribution of
ξ) as σ →∞. Our main result takes the form

(1.6) C(k) = G(z(k)) + O

(
1

σ2

)
, z(k) = O(1), σ →∞,

where the functions G and z are defined as follows:

(1.7) G(z) =





1

z
log

exp(z)− 1

z
, z 6= 0,

1

2
, z = 0,

and

(1.8) z(n) =
n− µ

σ2
=

y(n)

σ
.

The function G is defined and analytic for all real values of its ar-
gument. It is monotonically increasing, satisfies the relation G(z) +
G(−z) = 1, and takes values in the open unit interval (0, 1). Thus, the
approximation G(z(k)) of the new continuity correction takes values in
the same unit interval. A plot of the function G is given in Figure 1. It
follows from (1.7) and (1.8) that our approximation of C(k) coincides
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with the classical continuity correction for k = µ, since z(µ) = 0 and
G(0) = 1/2.

It is useful to note that the two quantities y(n) and z(n) take different
orders of magnitude in the body and the tails of the distribution of the
normal random variable ξ. We say that n is in the body of the distri-
bution of ξ if the distance between n and the mean µ is a finite number
of standard deviations σ. Translating this to asymptotic concepts, we
find that y(n) = O(1) as σ → ∞. Since z(n) = y(n)/σ, we conclude
that z(n) = o(1) in the body of the distribution of ξ when σ is large.
In the tails we find on the contrary that y(n) → ±∞ and that z(n)
is at least of the order of 1. The restriction in (1.6) that z(k) = O(1)
excludes only the extreme tails where z(k) is not bounded.

We note that G(z(k)) is close to the value 1/2 when z(k) is small, as
it is in the body of the distribution of ξ. Indeed, we derive the following
result:
(1.9)

C(k) =
1

2
+

1

24
z(k) + O((z(k))3) + O

(
1

σ2

)
, z(k) = o(1), σ →∞.

The approximation in (1.3) that leads to the classical continuity
correction can be shown to be an asymptotic approximation, as σ →∞,
in the body of the distribution of ξ, but not in its tails. In contrast we
can use our newly defined continuity correction to derive the following
approximation:

(1.10)
1

σ
ϕ(y(n)) ≈ Φ(y(n + G(z(n))))− Φ(y(n− 1 + G(z(n− 1)))).

This approximation is asymptotic for a larger range of n-values, namely
both in the body of the distribution of ξ, and in those parts of the tails
where z(k) = O(1).

The derivation of (1.6) is based on two results. The first one is an

asymptotic expansion of the sum
∑k

n=−∞ ϕ(y(n))/σ as σ →∞. It can
be expressed as follows:

(1.11)
1

σ

k∑
n=−∞

ϕ(y(n)) ∼ Φ(y(k))

+
1

σ
ϕ(y(k))

[
1−

∞∑
m=0

1

m!

(
− 1

2σ2

)m

G
(2m)
1 (z(k))

]
, σ →∞,

The second result is a modification of the Maclaurin series of Φ(y(k+
x)) in x. It takes the following form:
(1.12)

Φ(y(k +x)) = Φ(y(k))+
1

σ
ϕ(y(k))

∞∑
m=0

1

m!

(
− 1

2σ2

)m
∂2m

∂z2m
G2(x, z(k)).

Both of these results are believed to be new.
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We define the two functions G1 and G2 that appear here. G1 is
defined by

(1.13) G1(z) =





1

exp(z)− 1
− 1

z
+ 1, z 6= 0,

1

2
, z = 0.

This function is defined and analytic for all real values of its argument.
It is monotonically increasing, takes values in the open interval (0, 1),
and satisfies the relation G1(z) + G1(−z) = 1. A plot of G1 is given in
Figure 1.

Furthermore, the function G2 is given by

(1.14) G2(x, z) =





1− exp(−xz)

z
, z 6= 0,

x, z = 0.

The function G2 is defined and analytic for all real values of x and z.
Clearly, it is identically equal to 0 if x = 0. If x 6= 0 then the function
G2 has the same sign as x, and is a monotonically decreasing function
of z.

Note the similarities between the sums over m in the right-hand sides
of (1.11) and (1.12)!

We give a derivation of the Maclaurin expansion of (1.12) in Section
2. The claim that the right-hand side of (1.11) provides an asymptotic
expansion has not been established rigorously, and is therefore left as
an open problem. A formal, but nonrigorous, derivation is given in
Section 3. An early derivation of a related result of similar caliber has
been given by N̊asell (1996). The continuity correction result given
in (1.6) is derived in Section 4. Numerical support for the claim that
(1.11) gives an asymptotic expansion is given in Section 5.

2. Derivation of the modified Maclaurin expansion in
(1.12)

We turn now to a derivation of the expression in (1.12). Thus, we
wish to show that

(2.1) Φ(y(k + x)) = Φ(y(k)) +
1

σ
ϕ(y(k))g2(x, z(k), σ),

where

(2.2) g2(x, z, σ) =
∞∑

m=0

1

m!

(
− 1

2σ2

)m
∂2m

∂z2m
G2(x, z).
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Since the function Φ(y(k +x)) is analytic is analytic in x, we can write
its Maclaurin expaansion as

(2.3) Φ(y(k + x)) = Φ(y(k)) +
∞∑

n=1

xn

n!σn
ϕ(n−1)(y(k)).

Here we make use of the fact that the derivative of order n of the
normal density function ϕ(y) with respect to y is equal to the density
itself, multiplied by a polynomial of degree n. The polynomial that
appears here is known as a Hermite polynomial Hen(y) with weight
function exp(−y2/2). This polynomial should not be confused with the
polynomial Hn(y), which is defined with respect to the weight function
exp(−y2), and which also is referred to as a Hermite polynomial. The
derivatives of ϕ(y) can be expressed in terms of the Hermite polyno-
mials Hen(y) as follows:

(2.4) ϕ(n)(y) = (−1)nHen(y)ϕ(y).

The first few Hermite polynomials are He0(y) = 1, He1(y) = y,
He2(y) = y2 − 1, He3(y) = y3 − 3y. The general expression for the
Hermite polynomial of arbitrary order n can be written

(2.5) Hen(y) =

[n/2]∑
m=0

(−1)m

m!2m

n!

(n− 2m)!
yn−2m,

see e.g. Abramowitz and Stegun (1965).
By introducing the Hermite polynomials we can write

(2.6) Φ(y(k + x)) = Φ(y(k)) +
1

σ
g1(x, z(k), σ)ϕ(y(k)),

where

(2.7) g1(x, z, σ) = −σ

∞∑
n=1

1

n!

(
−x

σ

)n

Hen−1(σz).

It remains to show that g1(x, z, σ) = g2(x, z, σ). To do this, we express
both of these two functions as double sums. For the function g1 we
insert the explicit expression (2.5) for the Hermite polynomial Hen(y)
into the defining relation (2.7) to get

(2.8) g1(x, z, σ) = −
∞∑

n=1

1

n!
(−x)n

·
[(n−1)/2]∑

m=0

1

m!

(
− 1

2σ2

)m
(n− 1)!

(n− 1− 2m)!
zn−1−2m.
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To express g2 as a double sum we note first that the function G2 and
its partial derivatives with respect to z can be written as follows:

G2(x, z) = x

∞∑
n=1

(−xz)n−1

n!
,(2.9)

∂n

∂zn
G2(x, z) = (−1)nxn+1

∞∑

k=n+1

(k − 1)!

(k − n− 1)!

(−xz)k−n−1

k!
.(2.10)

Inserting this expression for the partial derivative of G2 with respect
to z into the defining relation (2.2) for g2 gives

(2.11) g2(x, z, σ) = −
∞∑

m=0

1

m!

(
− 1

2σ2

)m

∞∑
n=2m+1

(n− 1)!

(n− 1− 2m)!

(−x)n

n!
zn−2m−1.

It is straightforward to change the order of summation of either of
these expressions for g1 and g2 to show that they are equal. It remains
to justify this interchange of order of summation. This is allowed in
this case, since both of the double sums converge absolutely.

To show that the double sum appearing in the right-hand side of
(2.8) converges absolutely we define

ϕp(y) =
1

ϕ(y)
=
√

2π exp(y2/2),(2.12)

Φp(y) =

∫ y

0

ϕp(t) dt,(2.13)

Hepn(y) =

[n/2]∑
m=0

1

m!2m

n!

(n− 2m)!
yn−2m.(2.14)

It is then readily shown that

(2.15) ϕ(n)
p (y) = Hepn(y)ϕp(y).

Since Φ(y(·)) is analytic, we find that

(2.16) Φp(y(i + x)) = Φp(y(i)) +
∞∑

n=1

xn

n!σn
ϕ(n−1)

p (y(i))

= Φp(y(i)) +
1

σ
g3(x, z(i), σ)ϕp(y(i)),

where
(2.17)

g3(x, z, σ) =
∞∑

n=1

xn

n!

[(n−1)/n]∑
m=0

1

m!

(
1

2σ2

)m
(n− 1)!

(n− 1− 2m)!
zn−1−2m.
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We note now that g3(|x|, |z|, |σ|) equals the sum of the absolute val-
ues of the individual terms that make up g1. Since the former sum
converges, we conclude that the double sum in the right-hand side of
(2.8) converges absolutely.

3. Formal derivation of the asymptotic expansion in (1.11)

We claim that the approximation given in (1.11) is indeed an as-
ymptotic expansion. This claim has, however, not been established
rigorously. The proof of this claim is left as an open problem. Strong
numerical support for this claim is given below in Section 5. The
present section is used to indicate a formal derivation of the result in
(1.11). We emphasize that all steps in this derivation are not mathe-
matically justified.

We start out by quoting the Euler-Maclaurin formula, which can be
used to approximate a sum of functions. Following Olver (1974), it can
be written as follows
(3.1)

k∑
n=j

f(n) =

∫ k

j

f(x) dx +
1

2
[f(j) + f(k)] + Sf (k, M)− Sf (j,M) + RM ,

where

(3.2) Sf (i,M) =
M−1∑
j=1

B2j

(2j)!
f (2j−1)(i),

and the remainder term is given by

(3.3) RM =

∫ k

j

B2M −B2M(x− [x])

(2M)!
f (2M)(x) dx.

Here, Bm(x) are the Bernoulli polynomials. They are defined as the
coefficients of zm/m! in the series expansion of z exp(xz)/(exp(z)− 1).
Explicitly we have

(3.4)
z exp(xz)

exp(z)− 1
=

∞∑
m=0

Bm(x)
zm

m!
, |z| < 2π.

Furthermore, Bm = Bm(0) are the Bernoulli numbers. They are ac-
cordingly given as coefficients of zm/m! in the series expansion of
z/(exp(z)− 1). Thus,

(3.5)
z

exp(z)− 1
=

∞∑
m=0

Bm
zm

m!
, |z| < 2π.

The first few Bernoulli numbers are B0 = 1, B1 = −1/2, B2 = 1/6,
B3 = 0, and B4 = −1/30. All Bernoulli numbers of odd order exceeding
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1 are equal to zero. This fact can be used to rewrite (3.5) in the
following way:

(3.6)
z

exp(z)− 1
= 1− z

2
+

∞∑
m=1

B2m

(2m)!
z2m, |z| < 2π.

We note that the Euler-Maclaurin formula (3.1) expresses the sum∑k
n=j f(n) as the sum of 1) the integral

∫ k

j
f(x) dx, 2) the average of

the boundary values f(j) and f(k), 3) the difference of two finite sums
Sf (k, M) and Sf (j,M), whose terms contain the odd derivatives of the
function f , evaluated at the two boundary values k and j, and 4) the
remainder term RM .

We use the Euler-Maclaurin formula to derive the result in (1.11).
We start out with putting f(n) = ϕ(y(n))/σ, and j = −∞. The
integral in the Euler-Maclaurin formula is then equal to

(3.7)

∫ k

−∞
f(x) dx =

1

σ

∫ k

−∞
ϕ(y(x)) dx =

∫ k

−∞
ϕ(y) dy = Φ(y(k)),

while the average of the boundary values is

(3.8)
1

2
[f(−∞) + f(k)] =

1

2σ
ϕ(y(k)).

To evaluate the sums Sf (i,M) we need the odd derivatives of f(i)
with respect to i. Applying (2.4) we get

(3.9) f (n)(i) =
1

σn+1
ϕ(n)(y(i)) =

(−1)n

σn+1
Hen(y(i))ϕ(y(i)).

Hence we can write

(3.10) Sf (i,M) = −ϕ(y(i))F (z(i), σ,M),

where the function F is defined by

(3.11) F (z, σ,M) =
1

σ

M−1∑
j=1

B2j

(2j)!

1

σ2j−1
He2j−1(σz).

By using the explicit expression given in (2.5) for the Hermite polyno-
mial Hen(y) we get
(3.12)

F (z, σ,M) =
1

σ

M−1∑
j=1

B2j

(2j)!

j−1∑
m=0

1

m!

(
− 1

2σ2

)m
(2j − 1)!

(2j − 1− 2m)!
z2j−1−2m.

Changing the order of summation gives

(3.13) F (z, σ,M) =
1

σ

M−2∑
m=0

1

m!

(
− 1

2σ2

)m M−1∑
j=m+1

B2j

2j

z2j−1−2m

(2j − 1− 2m)!
.

The sum over j in this expression is related to the derivative of
the function G1 of order 2m. To show this, we give the power series



AN EXTENSION OF THE CLASSICAL CONTINUITY CORRECTION 9

expansions of the function G1 and of its even order derivatives. It
follows from the definition of the function G1 in (1.13) and from the
power series expansion of the function z/(exp(z)− 1) in (3.6) that

(3.14) G1(z) =
1

2
+

∞∑
j=1

B2j

(2j)!
z2j−1 =

1

2
+

∞∑
j=1

B2j

2j

z2j−1

(2j − 1)!
, |z| < 2π.

The derivatives of the function G1 at zero are determined by the
Bernoulli numbers as follows:

(3.15) G
(n)
1 (0) =

Bn+1

n + 1
, n = 1, 2, 3, . . . .

These derivative values are equal to zero if n is even. Furthermore, the
derivative of G1 of order 2m is equal to

(3.16) G
(2m)
1 (z) =

∞∑
j=1

B2j+2m

2j + 2m

z2j−1

(2j − 1)!
=

∞∑
j=m+1

B2j

2j

z2j−1−2m

(2j − 1− 2m)!
,

m = 1, 2, 3, . . . , |z| < 2π.

Thus, the sum over j in (3.13) is equal to the derivative of G1(z) of
order 2m if m ≥ 1 and we put M = ∞, and require |z| < 2π, while
it equals G1(z) − 1/2 if m = 0. It follows that F can be expressed in
terms of G1 and its even derivatives as follows:
(3.17)

F (z, σ,∞) =
1

σ

[ ∞∑
m=0

1

m!

(
− 1

2σ2

)m

G
(2m)
1 (z)− 1

2

]
, |z| < 2π.

We consider now the approximation for the sum
∑k

n=−∞ ϕ(y(n))/σ
that is given by the Euler-Maclaurin formula with the remainder term
RM ignored and with M = ∞, and without the restriction that |z(k)| <
2π. We note that Sf (−∞,M) = 0. By collecting terms we are led to
the approximation given by the right-hand side of (1.11). The claim
that this provides an asymptotic expansion has not been proved. Nu-
merical support for this claim is given in Section 5.

4. Derivation of the continuity correction approximation

To derive the approximation of the continuity correction in (1.6) we
apply the asymptotic expansion in (1.11) on the left-hand side of (1.5)
and the modified Maclaurin series in (1.12) on the right-hand side. It
follows that the continuity correction C(k) satisfies the relation

(4.1)
∞∑

m=0

1

m!

(
− 1

2σ2

)m
∂2m

∂z2m
G2(C(k), z(k))

∼ 1−
∞∑

m=0

1

m!

(
− 1

2σ2

)m

G
(2m)
1 (z(k)), σ →∞.
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By including only the terms corresponding to m = 0 from each of
the sums over m we get

(4.2) G2(C(k), z(k)) = 1−G1(z(k)) + O

(
1

σ2

)
, σ →∞.

We solve this equation for C(k), using the definitions of the functions
G1 and G2 in (1.13) and (1.14). If z(k) = 0, then we get

(4.3) C(k) =
1

2
+ O

(
1

σ2

)
, z(k) = 0.

Hence (1.6) holds for z(k) = 0. If on the other hand z(k) 6= 0, then

(4.4) exp(−C(k)z(k)) =
z(k)

exp(z(k))− 1
− z(k) O

(
1

σ2

)
,

z(k) 6= 0, σ →∞.

From this relation we conclude that

(4.5) C(k) = − 1

z(k)
log

z(k)

exp(z(k))− 1
+

exp(z(k))− 1

z(k)
O

(
1

σ2

)
,

z(k) 6= 0, σ →∞.

The result in (1.6) for z(k) 6= 0 follows from this, since the first term on
the right-hand side is equal to G(z(k)), and the second term is O(1/σ2)
if z(k) = O(1).

The derivation of (1.9) makes use of the first three terms in the series
expansion of G(z) about z = 0. It is straightforward to show that

(4.6) G(z) ∼ 1

2
+

1

24
z − 1

2880
z3, z → 0.

Applying this to (1.6) establishes (1.9).

5. Numerical investigation of the approximation (1.11)

We report here the results of a numerical investigation that has been
undertaken to support the claim that the right-hand side of (1.11)
actually provides an asymptotic expansion of the left-hand side. We
recall that the sum for which an approximation appears in (1.11) is a
sum over n-values from −∞ to some finite value k. However, in the
numerical study we work with finite sums. For definiteness we choose
to work with sums over the n-values from 1 to N , say. We introduce
N1 to denote the corresponding finite sum:

(5.1) N1 =
1

σ

N∑
n=1

ϕ(y(n)).

Furthermore, the approximation of the right-hand side of (1.11) that
results by replacing the sum over m by the first m0 terms is denoted
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µ σ m0 E1(m0)
40 10 1 2.2 · 10−10

40 10 4 9.8 · 10−19

0 10 1 3.0 · 10−28

0 10 4 9.4 · 10−37

-40 10 1 −2.2 · 10−10

-40 10 4 −9.8 · 10−19

Table 1. The absolute error E1(m0) committed in ap-
proximating the finite sum N1 is shown for a few values
of µ, σ, and m0 with N = 100.

A1(k, m0). It is defined as follows:
(5.2)

A1(k, m0) = Φ(y(k)) +
1

σ
ϕ(y(k))

[
1−G1(z(k))−

m0−1∑
m=1

e1(k, m)

]
,

where

(5.3) e1(k, m) =
1

σ
ϕ(y(k))

1

m!

(
− 1

2σ2

)m

G
(2m)
1 (z(k)), m ≥ 1.

The sum N1 is approximated by A1(N,m0) − A1(0,m0), where m0

is an arbitrary positive integer. The error committed in using this
approximation is E1(m0) = A1(N,m0)− A1(0,m0)− N1.

Table 1 summarizes results of numerical evaluations of the error
E1(m0) in the estimate of the finite sum N1. In all cases we have
N = 100, and the standard deviation σ of the normally distributed
random variable ξ equal to 10. The first two rows of the table deal
with the case when the random variable ξ has its mean µ equal to 40.
The finite sums over n from 1 to N = 100 then start in the left tail and
end in the right tail of ξ. The next two rows in the table have µ = 0.
Here, the finite sums start in the body and end in the right tail of the
random variable ξ. The last two rows in the table have µ = −40. Here,
the finite sums are all confined to the right tail of the random variable
ξ.

The table shows that the error E1(m0) is small. The high precision
achieved by our approximations is exemplified by the values of E1(m0)
in case µ = 40. In this case the numerical value of N1 is approximately
equal to 0.99996 11913 97707 09000, with 20 decimals. The approxi-
mation achieved by taking m0 = 1 estimates this sum with 9 correct
digits, while m0 = 4 improves this to 18 digits!

An even higher precision is observed for the case when µ = 0. In
that case we have y(0) = z(0) = 0, and it follows that A1(0,m0) =
Φ(0) + ϕ(0)/(2σ) is independent of m0. Thus, errors that vary with
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m0 occur only in A1(N,m0). These errors are small, since they are
proportional to ϕ(y(N))/σ, which is small.

The error estimates −e1(1,m0) agree with high precision with the
numerically determined errors in all cases treated in the table. The
high precision in the estimates requires a numerical procedure with
corresponding high precision. We have used Maple, where numerical
computations with arbitrary precision are possible. The Maple pro-
cedures and commands used to compute the results in Table 1 are
contained in the Maple worksheet appended to this report.

The results in Table 1 give strong support to our claim that the
right-hand side of (1.11) gives an asymptotic expansion of the sum in
the left-hand side.
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Figure 1. The two functions G and G1 are plotted as
functions of z over the interval from -20 to 20. Both
of them can be interpreted as distributions of random
variables that possess no moments.
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Appendix A. The Maple worksheet for Table 1

This Maple worksheet contains the procedures and commands
used to produce the numerical results in Table 1.

> restart;

Define the normal density and the normal distribution function:

> phi:=y->exp(-y^2/2)/sqrt(2*Pi):
s2:=sqrt(2):
Phi:=y->(1+erf(y/s2))/2:

Define the function G1:

> G1:=z->1/(exp(z)-1)-1/z+1:

Evaluate the sum from 1 to N numerically:

> thesum:=proc(mu,sigma,N)
local y;
y:=n->(n-mu)/sigma;
evalf(add(phi(y(n))/sigma,n=1..N));

end proc:

Determine the approximation A1 of the sum from -infinity to k,
including m0 terms of the sum over m. This will be used in the
procedure A1error below with the k-values 0 and N.

> A1:=proc(mu,sigma,k,m0)
local yk,zk,a1,a2,a3;
yk:=(k-mu)/sigma;
zk:=yk/sigma;
a1:=evalf(Phi(yk));
a2:=evalf(phi(yk)/sigma);
if zk=0 then

a3:=0.5;
else

a3:=1-add((D@@(2*m))(G1)(zk)/m!/(-2*sigma^2)^m,
m=0..m0-1);

fi;
evalf(a1+a2*a3);

end proc:

Determine the error committed in using the approximation A1!



AN EXTENSION OF THE CLASSICAL CONTINUITY CORRECTION 15

> A1error:=proc(mu,sigma,N,m0)
A1(mu,sigma,N,m0)-A1(mu,sigma,0,m0)

-thesum(mu,sigma,N);
end proc:

Take the first numerical example. I compute the errors for the
m0-values 1,2,3,4.

> N:=100: mu:=40.: sigma:=10.: Digits:=25:
printf("The sum from 1 to N is %22.20f \n",

thesum(mu,sigma,N));
printf("Err1 = %0.2E, Err2 = %0.2E, Err3 = %0.2E,

Err4 = %0.2E \n",seq(A1error(mu,sigma,N,m0),
m0=1..4));

The sum from 1 to N is 0.99996119139770709000
Err1 = 2.21E-10, Err2 = 2.59E-13, Err3 = 4.44E-16,
Err4 = 9.83E-19

Now take mu=0!

> N:=100: mu:=0: sigma:=10.: Digits:=40:
printf("The sum from 1 to N is %22.20f \n",

thesum(mu,sigma,N));
printf("Err1 = %0.2E, Err2 = %0.2E, Err3 = %0.2E,

Err4 = %0.2E \n",seq(A1error(mu,sigma,N,m0),
m0=1..4));

The sum from 1 to N is 0.48005288597992836610
Err1 = 2.97E-28, Err2 = 3.21E-31, Err3 = 4.92E-34,
Err4 = 9.39E-37

The third example:

> N:=100: mu:=-40: sigma:=10.: Digits:=25:
printf("The sum from 1 to N is %0.20E \n",

thesum(mu,sigma,N));
printf("Err1 = %0.2E, Err2 = %0.2E, Err3 = %0.2E,

Err4 = %0.2E \n",seq(A1error(mu,sigma,N,m0),
m0=1..4));

The sum from 1 to N is 2.54248667094519169354E-05
Err1 = -2.20E-10, Err2 = -2.59E-13, Err3 = -4.44E-16,
Err4 = -9.83E-19
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