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3D image deconvolution in light microscopy: theory and 
practice.

by Johan Philip and Kjell Carlsson
Royal Institute of Technology, 10044 Stockholm, Sweden.

Abstract: The objective of this study is to investigate the use of deconvolution 
for improving the three-dimensional resolution in both confocal and wide-field 
light microscopy. We start by assessing the theoretical limits of the deconvolution 
by defining and calculating a characteristic function which describes the imag-
ing-deconvolution process. We continue by suggesting a variant of inverse fil-
tering for deconvolving real noisy data and describe the application of the 
method to a confocal recording of a biological preparation. The result is com-
parable with that obtainable by Wiener filtering but we can avoid the problem 
of finding a best value of the parameter. We also describe a way of determining 
the optical transfer function of the microscope. 
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1. Introduction

Three-dimensional microscopy is by now an established technique for extracting information 

from a biological preparation. Both confocal and wide-field microscope systems for three-dimen-

sional (3D) imaging are available commercially. The recording results in a data file holding the 

intensities of the voxels in a 3D grid. These data are usually presented as a sequence of ordinary 

images or as a stereo pair. Our objective is deconvolution of such data and reduction of noise.

The resolution obtainable by deconvolution is not better than the voxel size used in the recording. 

This means that deconvolution is motivated only if the voxel side is smaller than the resolution 

of the microscope. Interesting voxel sides are of the order of 100 nm, which is approximately 

one fifth of the light wavelength.

We shall introduce and calculate the characteristic function of the imaging-deconvolution proc-

ess. This function, which can be defined for any linear process, describes the theoretical limits 

of deconvolution and will be used to visualize these limits. The deconvolution technique that we 

are going to describe is based on inverse filtering and resembles Wiener filtering. The novelty 

of our method consists of taking advantage of the fact that the Fourier transform of the 3D point 

spread function has a support occupying only a small fraction of the whole 3D array. Using this, 

we can combine suppression of noise in the data with only a minor loss of information about 

the object. In two-dimensional microscopy there is no such small support and our method is not 

appropriate in 2D because the noise will ruin the deconvolution. A further advantage with our 

method is that one doesn’t have to choose any parameters or test several values of a parameter 
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as is the case with regularization methods like Wiener filtering. We use one parameter which is 

calculated from a measurement of the point spread function of the microscope. Our method 

doesn’t require any assumptions about probability distributions for the object and noise.

We demonstrate the performance of the method by applying the characteristic function to two 

artificial objects with and without noise. We suggest a method for exploiting the fact that the 

intensity of the object is nonnegative and apply it to an artificial object and continue by presenting 

a simple way of determining the optical transfer function of the microscope. In the last section, 

we describe the result of applying our method to a confocal recording of a biological specimen 

and compare the result with that obtained by Wiener filtering. The results turn out to be similar 

provided the Wiener filtering is performed with the “right” value of the signal-to-noise ratio. 

Finding this right value may require time consuming tests with several values.

Before the advent of the computer, neutron scattering data were deconvolved by paper, pencil, 

and scissors. Computerized deconvolution of power spectra in one dimension has with growing 

power of the computer been generalized to two and three dimensions. Erhardt et. al. (1985) [4] 

describe a deconvolution method for 3D microscopy which is similar to ours in using inverse 

filtering. Other early methods are given by Garza et. al. (1987) [5], Agard et. al. (1989) [1], and 

Shaw and Rawlins (1991) [10]. A recent comparison of various methods is presented by Verveer 

et. al. (1998) [13]. A good account of the mathematical-statistical background for handling meas-

urements of weak intensities is given by Vardi et. al. (1985) [12]. They consider positron emission 

tomography but the theory is applicable to 3D microscopy. 

2. The mathematical model and method.

We assume that the microscope is a linear instrument, meaning that it can be characterized by a 

point-spread-function (psf) which is the same for all points of the object. As the name indicates 

this function gives the pattern recorded when the object is a radiating point. Linearity is at hand 

when (i) the recording of a point source is proportional to its intensity and (ii) the recording from 

several points is the sum of the individual recordings. Mathematically, this implies that the micro-

scopic recording can be described by the following equation

 , (2.1)

where  is the point spread function,  is the intensity distribution radiated from the studied 

object and  is the recorded data. The combination of  and  in (2.1) is called convolution and 

is denoted by a  , so that (2.1) can be abbreviated  .

We are fully aware that this model is only an approximately correct description of the recording 

process, but it is good enough for giving interesting results.
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In the calculations, , , and  are not functions of the continuous variables  ranging 

from  to  but are discretizations of these functions over a finite three-dimensional grid. 

We let  and  denote the number of meshes in the transversal x- and y-directions and let  

denote the number in the axial z-direction. The actual form of (2.1) is 

, (2.2)

where , , and  . Since negative arguments occur in  

in (2.2), the domain of definition must be extended cyclically in all three directions

. (2.3)

The same cyclic extension of the domain shall be applied to  and . 

The discrete Fourier transform (DFT) is defined for cyclically defined functions and has the form

 . (2.4)

When  is the point-spread-function of a microscope its DFT  is called the optical transfer 

function (OTF) of the microscope. We shall use the symbol  for the DFT operation writing 

 . The linear transformation  has a linear inverse  being so similar to  that the 

same computer code can be used for calculating both  and .

The DFT is of interest here because it transforms cyclic convolution to multiplication

 . (2.5)

Explicitely, (2.2) is transformed to 

 . (2.6)

This equation can easily be solved for the DFT of the unknown object  

 . (2.7)

Applying the inverse DFT  will produce the unknown  . This calculation is called 

inverse filtering. The simplicity of this formalism makes it very attractive and this is amplified 

by the fact that there exists a fast Fourier transform (FFT) algorithm for doing the calculations. 

Trying to use (2.7) in practice reveals several problems due to noisy data, that  has 

zeroes, and that the convolution performed by the microscope is not cyclic.

As we shall demonstrate, these problems can at least partly be mastered when  is the OTF of 
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a confocal microscope.

3. Example and figure standards.

All numerical examples with artificial data are carried out on a grid with  voxels. 

The grid size is chosen to give a suitable fine structure of the figures. The mesh, that is the length 

of the voxel side, is . The mesh size has been chosen equal to the mesh size of the real 

data studied in section 9. The figures are calculated for a microscope having an oil immersion 

objective with a magnification of 100 and a numerical aperture 1.3, ( ). The micro-

scope is assumed to be ideal but for the detector aperture which isn’t a point but has a diameter 

of 25 . 

For any function  (which can be a psf, OTF, etc.) , the figures show the two-dimensional section 

 for the functions and  for the DFT:s. All plotted functions are normalized 

to have the maximal value one. For functions taking negative values the plots are for values in 

the range .

4. The optical transfer function.

Let  denote the wide-field psf and define the ‘disk function’

, (4.1)

where  is the back projected radius of the detector aperture. The confocal 

psf is  . In the sequel, we will let  stand for either of these two psfs. A radius  

of the size used here has only a minor influnce on , Kimura and Munakata (1990) [6] and Wil-

son (1995) [14].

 Since diffraction essentially performs a Fourier transformation, the wide-field OTF can be found 

directly from the geometry of the microscope, Sheppard et. al (1994) [11], and Philip (1999) [8]. 

These papers show that the support of the OTF, i.e. the set of points where it is different from 

zero, is a well defined set occupying only a small fraction of the whole discrete DFT array. This 

fact is crucial for the successful deconvolution of noisy data.

Assuming that the psf is rotationally symmetric around the optical axis ( ), we also have 

an OTF that is rotationally symmetric

 . (4.2)

We show in Figure 1 the wide-field and the confocal psf and OTF. 
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As is seen in Figure 1, the confocal OTF support extends in the lateral direction beyond the 

Nyquist frequency, which is at the boundary of the diagram. This means that in theory, under per-

fect conditions, the mesh size .1  is too coarse for the used numerical aperture and detector 

aperture. 

5. The characteristic function.

The object of this section is showing that the whole recording and deconvolution process can be 

described by a single function, which we shall call a characteristic function. This function 

describes the possibilities and limitations of the whole imaging process.

Let us denote the imaging process of the microscope ( ) followed by the deconvolution process 

( )  by  ,  writing  . Ideally, we would like   to be the identity operator 

so that applying it to the object  would make  a true image of  . Since we are assuming 

that the microscope recording is a linear process and the following deconvolution is a linear proc-

ess, it follows that  is a linear operator.

Let  be a point object having unit intensity and sitting at the origin of an object coordinate sys-

tem. Define the characteristic function  by   . We shall determine  and show that 

it can be used for computing  for any object  .

The three-dimensional image of  equals  i. e. the psf sitting at the origin of the 

image space. Having  and using (2.7), the DFT of the deconvolution becomes 

 . Wherever , this ratio is one. Where , the ratio is unknown 

and there is no reason to give it any other value than zero. We define 

 (5.1)

and put  for the point object. Completing the deconvolution process by taking the 

inverse Fourier transform of  we obtain  . 

Having a rotationally symmetric  , we get rotationally symmetric  and  . We display 

 for a wide-field and a confocal microscope in Figure 2. The figures show that the point 

object results in an image that is extended, in particular in the axial direction implying that not 

even in theory is it possible to obtain a true image of an object. The central peak of the charac-

teristic function  is narrower than the psf but much wider than the one-point function  as is 
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seen in the sections of Figure 2. The oscillations of  result in degradations of the deconvolution 

that are hard to describe. The imperfection of the imaging-deconvolution process stems from the 

limited support of the OTF. 

Considering an arbitrary object  , we have the data  with the DFT  imply-

ing that  in all points having  . According to (2.7), we get the DFT of the decon-

volution  wherever  . In other points, we put  

implying that  . We get 

 . (5.2)

The formula  implies that  completely describes the  process.

6. Computer experiments with artificial objects and with noise.

Even if the characteristic function describes the imaging-deconvolution process completely it is 

clarifying to study more complicated objects than a point. The figures displayed in this section 

show the theoretical results obtainable under the best conditions. Here, the convolution and 

deconvolution kernels are identical and both are cyclical. 

Judging the quality of a deconvolution is to a great extent subjective and is depending on the 

studied object and on the purpose of the process.

We have chosen to report the results for two artificial objects. The first consists of four cubes, 

three having the constant intensity = 1 and one having the intensity .25. The cube sides are 1 

 and the distance between them is  . We have chosen this object with sharp corners 

and avoided a round object to be able to study the degradation of the resolution. The second object 

consists of two parallel square slabs with side 2 , distance 1 , and thickness .2 . With 

our objects, we can study the possibility of separating objects having equal or different intensity 

and having different extension in radial and axial direction. The objects and their DFTs are shown 

in the top Figures 3 and 4.

The result of applying first the  (convolution with the psf) and then the  (deconvolution) oper-

ator to the objects are given in the bottom of Figures 3 and 4.

For the object in Figure 3, the wide-field deconvolution is almost as good as the confocal one 

because the cubes have the same extent in the radial and axial directions. For the wider and thin-

ner slabs in Figure 4, there is a great difference in depth discrimination between the two micro-

scopes.

We continue the described experiments by assuming that the data, i.e. the convolution values, are 

obtained from a photon counting detector. First, the data is normalized so that its maximal inten-
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sity becomes 1000 photons/pixel in the wide-field case and 100 photons/pixel in the confocal 

case. These numbers shall reflect that the wide-field image is brighter and we have chosen it to 

be ten times brighter than the confocal image. Then, for every pixel, the function value, say , 

is replaced by a variate drawn from a poisson distribution with parameter  . 

For short, we shall call the so obtained data noisy. The noisy data are shown in the top of Figures 

5 and 6, where one can see that the confocal data are noisier than the wide-field data. 

Deconvolution of noisy data is always a compromise between getting a good resolution and sup-

pressing noise. Here, it means that we cannot use (2.7) in the whole support of  since that would 

mean dividing the DFT of the noise with very small values of  near the boundary of the support 

and so amplifying the noise very much. A common way of handling this problem is using Wiener 

filtering. Here, we shall use a method with cut levels and shall compare it with Wiener filtering 

in section 10. The cut level method is implemented by dividing by  only when its modulus 

exceeds the cut level and put the remaining  . With artificial data and well controlled 

noise, one can experiment with the cutlevel. In the deconvolutions displayed in Figures 5 and 6, 

we have used a cut level of .03 in the wide-field and .1 in the confocal case. For real data, we 

shall suggest a way of determining the cut level.

The relatively small influence of the noise is due to the ‘low-pass filtering’ of the data taking 

place when the DFT of the deconvolution is zeroed outside the used part of the support of . 

While most of the information of the object sits inside the used support, the noise, being white, 

has its spectrum evenly distributed over the whole DFT cube. The noise supression is better in 

the wide-field case, because the -support is smaller than in the confocal case. We define the 

error amplification of the deconvolution process as

 . (6.1)

Figure7 shows how the error amplification varies with the cut level. This level is the only param-

eter we are using and we call it . 

The abrupt decrease of  at the boundary of the support tends to introduce oscillations in 

the deconvolution. The remedy is smoothing of . When working with real data, we imple-

ment the smoothing by putting 
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 , (6.2)

where  denotes the complex conjugate of  and  is some second cut level. This means 

that we smooth by stopping the decrease of the denominator  when it reaches  . 

Since both  and  decrease when we depart from the used support,  will rapidly 

decrease towards zero. With real data, we put . In our examples,  is sym-

metric implying  . 

In the confocal case, the support of  has a great extension in the lateral direction allowing much 

noise to influence the deconvolution. In order to reduce the noise, one can put  for 

large lateral frequencies. This ‘lateral low pass filtering’ will reduce the lateral resolution but, 

because the noise is reduced, it may increase the possibility of discerning changes of intensity 

in the axial direction. 

7. Exploiting positivity.

Several attempts have been made to use the information that the radiation from the object is non-

negative. The described methods involve lenghty iterative procedures which don’t converge but 

are interrupted when somebody thinks the result looks good, see e.g. [1] and [9]. 

We shall describe a convergent iterative method. It is seldom worth while running it more than 

five iterations. For the artificial objects, it produces a slight improvement of the deconvolution. 

For real images obtained from biological specimens, the method is hardly worth using because 

any improvement is hard to assess. 

The principle of our method is that the calculated estimate of  inside the used support of  is 

the best one we can get. Outside the support, we have no information about  and have put it 

equal to zero but are free to give it any other values if that can make  nonnegative.

Our method starts with the obtained deconvolution  and goes as follows.

1. Extract the negative part  of  .

2. Calculate its DFT  .

3. Add  to the values of  outside the used support of , where  is an overrelaxation 
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factor. (The values of  inside the used support of  are not changed.)

4. Apply inverse DFT to  .

5. Return to 1. or stop.

Let  be the operator taking the negative part of a function so that  and let  stand 

for the projection on the used support of . Denoting the  iterate by , we can write the 

iterative step as 

. (7.1)

Here,  is a linear operator having  one.  is nonlinear and we have 

 implying  . If (7.1) had been a linear process, the theory 

of overrelaxation would have required  for convergence, see e.g. [3]. Since we have no 

theory for our nonlinear method, we have tested the convergence for various  and found that 

 gives good results. 

The convergence can be checked by following the most negative value of  . In the first confocal 

example above, the input to the iteration has  . After five iterations, 

 and after another five iterations,  . Also the norm of the differ-

ence between successive iterates is decreasing.

8. Experimental determination of the OTF.

For determining the psf or the OTF one would like to have a one voxel object with high intensity. 

Realizing that such an object is hard to construct, we have instead used many (about 20) small 

fluorescent beads with diameter = .3 , dispersed in a transparent gel. Our interest is focused 

on the support of the OTF. We shall describe two methods for obtaining the OTF or at least its 

support. 

The first method, included for comparison, is to select a subvolume of the data containing the 

image of one bead and take the DFT. This can be repeated for several beads for obtaining several 

estimates to average over. In practice, only few beads come out well separated and strong enough 

for this process. The result, which is the DFT of the convolution of the psf by a bead, is shown 

at the top of Figure 8. 

The second method, which we advocate because it is so simple, is to take the DFT of the whole 

volume. The idea is that the image is the sum of say  equal images of the same bead  placed 

in the positions , . Here,  is a three-dimensional vector and the image is
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  , (8.1)

where  is a factor describing the intensity of bead . The DFT is 

 . (8.2)

For , the modulus of the sum in (8.2) is a random variable generated from the random posi-

tions . For  reasonably large the modulus of this random variable is fairly stable. For , 

the sum equals  , which is much bigger than the sum of the random variables. The value 

at the origin is put to zero in the DFT:s shown in the middle of Figure 8. In both methods, we 

are assuming that the psf has circular symmetry around the microscope axis and this transfers to 

the DFT, so we have formed averages over circles around the -axis. The results obtained by 

our second method (middle) are very similar to those obtained by the cumbersome first method 

(top). The DFT of a bead of the used size is non-zero in the studied area.

The measured DFT:s should be compared with the theoretically computed DFT of the convolu-

tion of a bead with radius .3  and the psf, being displayed in the bottom of Figure 8. The 

difference between theory and practice indicates that the real microscope isn’t as good as the the-

ory predicts.

9. Deconvolution of real data.

We shall describe the deconvolution of a  voxel biological specimen of lung tis-

sue recorded by a confocal microscope. The voxel side = .

When doing deconvolution by Fourier methods, one must remember that the DFT corresponds 

to cyclic convolution. This means that the volume under consideration is assumed to be repeated 

indefinitely in the x-, y-, and z-directions. The opposite boundary sides must be considered as 

adjacent. This will be visible in the deconvolution in particular making the structure in the top 

of the volume appear in the bottom of the deconvolution and vice versa. Constructing artificial 

objects we avoided any abrupt change of intensity between the top and bottom layers but for real 

data such changes are present causing oscillations in the deconvolution. Such oscillations, which 

go through the whole volume, can be reduced by smoothing the data across the boundary between 

the top and bottom layer. In the test described below, we have smoothed the data over five layers 

at the top and the bottom of the volume. The same smoothing is undertaken in the -, and - 
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directions.

A key problem is whether to use the theoretical or the measured OTF in the deconvolution. In 

Figure 8, the two OTF:s have the same shape but the theoretical one seems to have been computed 

for too big a mesh size. First, we tried deconvolving the real data using the measured OTF. 

Encountering various artifacts in the result we started studying the DFT of the deconvolution by 

plotting a section of it as in Figure 9. In this figure, we have plotted the modulus of the DFTs 

of the input data and the deconvolution as functions of  for  . The values for  

and  are omitted in the figure. For the data, the moduli have the typical decreasing trend 

of an image without special patterns. For the deconvolution, the moduli increase before they drop 

to zero outside the used support at . Obviously, the convolution frequencies close to the 

boundary of the used support have been amplified too much. 

Our practical deconvolution is based on the following two principles:

1. Determine the support of the measured OTF using the second method of section 8.

2. Use the theoretical OTF, inside the measured support. 

We will use the theoretical rather than the measured OTF for the deconvolution because we dont’t 

know the origin of their difference. It may be aberrations, mis-alignment of lenses, aperture, or 

light source. The psf is probably different in different parts of the object. We treat all these errors 

as random errors and will not try to compensate for them.

Instead, we use the conservative approach of compensating only for the well specified action of 

the theoretical psf. As noted above, over-compensation is detrimental to the result.

We shall use, however, the knowledge that the spectrum outside the measured support of the OTF 

does not hold any information about the object but only noise.

Practically, this is implemented by determining the  so that the used support of the the-

oretical OTF approximates the support of the measured OTF. This  exists because the 

theoretical support is bigger than the measured one. 

In the presented example, the calculated value of  turned out to be .3. (The OTF is nor-

malized to one at the origin.) This value and  was used in (6.2). 

Experimenting with other values of  in the range .2 - .4 resulted in small changes of 

the result. The value of  isn’t very critical because  can be expected to drop faster than 

 so that there will be a very small jump at . We always check that the chosen cuts are 

big enough for preventing  from increasing like in Figure 9. 

The supports defined by  and  constitute respectively the fractions 

.0384 and .1145 of the whole DFT volume. This means that 11.45 % of the noise is amplified 

and 88.55 % (outside  ) is extinguished. This combines to an error amplification of .76, thus 
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in fact an attenuation. 

Figure 10 presents a yz-section of a subset of the data containing values above the background. 

We show also the ‘filtered’ data resulting from the removal all frequencies outside the used sup-

port of . The improved resolution of the deconvolution is best seen in comparison with the fil-

tered data. The structures have become thinner particularly in the axial (= vertical) direction. 

Because only a small fraction of the deconvolution becomes negative, the five iterations with the 

positivity algorithm have little effect.

The effect of performing cyclic deconvolution of the noncyclically recorded data is seen in the 

bottom of the deconvolution around 12 on the scale. It is the intensity at the top of the data that 

has wrapped around. By the smoothing of the data across five layers in top and bottom, the results 

in these layers are anyhow not reliable.

To illustrate the importance of the smoothing of  with , we show in the top left cor-

ner of Figure 11 the deconvolution without smoothing. The oscillations in the axial direction are 

clearly visible. 

The FFT of  data takes 5 minutes on our SUN4u sparc SUNW, Ultra-Enterprise, 

so a whole deconvolution takes a little more than 10 minutes. Any further iteration with the pos-

itivity algorithm takes another 10 minutes.

10. Comparison with Wiener filtering

Using the Fourier Wiener filter implies replacing (2.7) by 

(10.1)

where  and  and  are respectively the power spectra of the noise and the object, 

see [2]. All the quantities in (10.1) vary with the not displayed index set . Generally,  

and  are not known in detail and one puts  , where  is the signal-to-noise 

ratio. Notice that  where  in (10.1) so that the obtained values are similar 

to those obtained by (6.2). We have compared the results from using (6.2) and (10.1) on the arti-

ficial objects. The reasons for preferring the cut level method to Wiener filtering are 

1) To limit the noise in Wiener filtering one should not use (10.1) as it stands but use a cut level 

like  and put  when  .

2) For our artificial data with noise, we had . Using Wiener filtering with  

resulted in three times more noise in the deconvolution than with the cut level method. Increasing 

H

Fdeconv cut2

512 512 128××

Fdeconv
DH

H 2 α+
--------------------=

α Pn Pf⁄= Pn Pf

I J K, ,( ) Pn

Pf α SNR( ) 2–= SNR

Fdeconv 0= H 0=

cut2 Fdeconv 0= H cut2<

SNR 7,7= α 7,7 2–=
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 to , which is the value used by the cut level method, resulted in about the same noise as 

in that method. Generally, the  is not known. We prefer using the cut level method with 

 determined from the measured OTF to experimenting with several values of  . For 

real data, there is no good criteria for selecting the best  . The result of Wiener filtering with 

three different values of  is shown in Figure 11. The input data is the same as in Figure 10. 

The sensitivity to the value of  is clearly visible and it is hard to determine which convolution 

to choose as the most reliable.

11. Discussion.

We have deduced the characteristic function for the recording process of a microscope followed 

by a deconvolution process for improving the resolution. The characteristic function describes 

the theoretical limits for what can be achieved by deconvolution. The application of a wide-field 

and a confocal characteristic function to two artificial objects is demonstrated both with and with-

out noise. 

Continuing with real data, we start by suggesting a simple method for determining the OTF of 

the microscope. In the latter part of the paper, we describe how the theories can be used for 

improving the resolution of a biological specimen. The success of the method relies heavily on 

the fact that the 3D OTF has such a small support so that most of the noise can be removed. By 

actively preventing the method from producing oscillations, very few deconvolved values will 

violate the positivity condition. As a consequence, the iterative positivity algorithm suggested 

produces very little improvement. Roughly speaking, the deconvolution process boils down to 

limiting noise and amplifying some frequencies, though using some ingenuity.

Statistical inference is about estimating a few parameters from many data. Here, we have as many 

parameters as we have data so it doesn’t matter if we assume gaussian noise or poisson data, use 

maximum likelihood, maximal entropy, least squares, or a baysian approach. As long as there is 

only one observation per variable, the observation is the best estimate we have. There is no 

ground for assuming any particular prior probability distribution of the object or any correlation 

between the noise contributions to different voxels.

Attempting to determine more parameters than there are data, as in blind deconvolution, is no 

good statistical practice. The supplementing of some inequalities is inadequate for determining 

many more paramaters than there are data. Even if the number of sought parameters is reduced, 

Markham and Conchello (1996) [7], an optimization algorithm will produce a solution on the 

boundary, which by convexity theory is known to consist of extreme points manifesting them-

selves as bright spots in the image. Trying to remove such spots by smoothing, regularization, 

or generalized Wiener filtering is equivalent to partly undoing the deconvolution. Regularized 

α 0,32

SNR

cutlevel α

α

α

α
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solutions, like Wiener filtered solutions, are known to be very sensitive to the choice of the reg-

ularization parameter.

The reason why blind deconvolution produces something like a solution is that it doesn’t matter 

so much what kernel is deconvolved as long as it isn’t too wide and that the iteration is started 

with the data and is interrupted before it starts oscillating.
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Figures

Figure 1. Wide-field and confocal psf and OTF. Psf axis scale is in . Mesh size = .1 . 

. Numerical aperture = 1.3. Detector pinhole diameter = 25 . Objective magni-

fication = 100.

µm µm

αsin 0,8= µm
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Figure 2. Characteristic function in wide-field and confocal case. Scale in . Mesh size = .1 

. . Numerical aperture = 1.3. Detector pinhole diameter 25 . Objective mag-

nification = 100.

The sections show the characteristic function (narrower oscillating curve) and the psf (wider 

curve).

µm

µm αsin 0,8= µm
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Figure 3. Top: Object and DFT of object. The object consists of four cubes, three with intensity 

= 1 and one with intensity = .25, cube side = 1 , separation = .4 . Below: Convolution 

and deconvolution of object in wide-field and confocal case.

µm µm
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Figure 4. Top: Object and DFT of object. The object consists of two square slabs with intensity 

= 1, side = 2 , separation = 1 , thickness = .2 . Below: Convolution and deconvo-

lution of object in wide-field and confocal case.

µm µm µm
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Figure 5. Noisy convolution and deconvolution of four cubes. The maximal intensity of the con-

volution corresponds to 1000 photons/voxel in the wide-field and to 100 photons/voxel in the 

confocal case. Wide-field cutlevel = .03. Confocal cutlevel = .1. These cutlevels result in the error 

amplifications 2.7 and 1.8, respectively.
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Figure 6. Noisy convolution and deconvolution of two slabs. The maximal intensity of the con-

volution corresponds to 1000 photons/voxel in the wide-field and to 100 photons/voxel in the 

confocal case. Wide-field cutlevel = .03. Confocal cutlevel = .1. These cutlevels result in the error 

amplifications 2.7 and 1.8, respectively
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Figure 7.  Error amplification of deconvolution process as function of  for 

 in the wide-field and confocal case. The error amplification is essentially 

independent of the number of voxels in the data cube, the noise level, and the shape of the object. 

It is roughly proportional to the .
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Figure 8. Estimates of DFT of bead*psf. Top row: averages of subvolumes each containing one 

bead. Middle: DFT of the whole volume. Bottom: Theoretically expected result obtained as DFT 

of (bead with radius = .3  convolved with psf).

There is a clear difference between theory (bottom) and practice (top and middle). The measured 

OTF is narrower, meaning that the psf is wider than the theory predicts.
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Figure 9. Moduli of DFT of data and of deconvolution as functions of  for  .
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Figure 10. yz-sections of real data, filtered data, deconvolution with cut levels = .3 and .1, and 

after 5 iterations with the positivity algorithm. One gets the filtered data by Fourier-transforming 

the data, restricting it to the “used support”, and then inverse transform. Usually, the filtered data 

is not computed, but one goes directly from the data to the deconvolution. Scale in . Mesh 

size = .1 . Vertical axis = z-axis = axial direction. Horisontal axis = y-axis = radial direction.
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Figure 11. Deconvolution of the same data as in Figure 10 but with other parameters and by 

Wiener filtering. In the upper left corner, with cut level method using cutlevel = cut2 = .3 so 

that there is no smoothing at the boundary of the used support. The axial oscillations are clearly 

visible. The other three deconvolutions are by Wiener filtering using three different values of the 

Noise-to-Signal Ratio (NSR). Notice how sensitive the deconvolution is to the NSR.


