ALGORITHMS FOR SOLVING THE FOUR POINT
MOTION PROBLEM IN COMPUTER VISION.

JOHAN PHILIP

ABSTRACT. We present two algorithms for solving the motion
problem for four coplanar points using a calibrated camera. The
accuracy of the algorithm for noisy data is compared with the ac-
curacy of algorithms for more points.

1. INTRODUCTION

The motion problem in computer vision consists in determining the
motion of a rigid object. Two perspective images are taken of the
object, one before and one after the motion. The input data are a
number of corresponding points on the object that have been recognized
in the two images.

By a solution we mean the successful calculation of all motions that
comply with the perspective coordinates. If there is more than one
solution, we must use ’other information’ for selecting the calculated
motion corresponding to the true motion.

Our main topic is the case that four points have been recognized and
that they are known to be coplanar on the object. This information is
sufficient for solving the motion problem and there are in general two
motions that comply with the data.

Our equations are deduced from the fact that the distance between
two points of the object is the same before and after the motion.

The accuracy of the solution when the data are noisy is important.
We report results from Monte Carlo tests for comparing the accuracy
obtainable with four points on the object with that obtainable with
more points.

The motion problem has a long history in photogrammetry, where it
is called the relative orientation problem. Our attack on the four point
problem resembles that of Hofmann-Wellenhof [4]. See also Wunder-
lich [16] and Triggs [13]. The problem is also studied in Faugeras [1],
Hartley [3], Longuet-Higgins [5], Maybank [6], and Negahdaripour [7].

In the accuracy comparison, we use algorithms for five and more
points. These algorithms don’t require coplanarity of the points. The
five-point problem has up to ten solutions. More than six solutions
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is extremely rare '. Using this algorithm, one has to resort to some
method of choosing the ’correct’ solution. Algorithms for the five-
point problem are presented in Philip [10], Nistér [8], and Triggs [14].
For six or more points, the solution is unique. Algorithms for the
six-point problem are in Hofmann-Wellenhof [4] and Philip [10]. The
seven-point algorithm is in Philip [11]. The eight-point algorithm which
handles eight or more points is given by Stefanovic [12]. The numerical
treatment of this algorithm was improved by Tsai and Huang [15]. The
eight-point algorithm has over the years been the topic of numerous
papers.

2. NOTATION AND FORMULATION.

We consider a pinhole camera and denote the 3D coordinates of the
points before and after the motion by U* and V?, (1 < i < 4), respec-
tively. These coordinates are not observed but only their perspective
coordinates

o (U/U (VY
uZ — UZQ/UZ3 .VZ — VZQ/VZ3
1 1

Any rigid motion can be described by a rotation matrix R and a trans-
lation vector t
Vi=RU' +1t.

Our present problem is to determine R and t given that the four
points U? are known to be sitting in a plane. Since the motion is rigid,
also the four V* are coplanar. Since we only know the perspective
coordinates, neither the size of the object nor the length of t can be
recovered.

3. DEDUCTION OF EQUATIONS.

Start by determining the barycentric coordinates a; and (; so that

4 4
(1) Zaiui =0 Zﬁivi =0.
i=1 i=1

If o;; = 0, for one index, say k, the u’ corresponding to the other indices
are collinear, and the problem cannot be solved. If this happens, also

Br = 0.
Since the third component of u’* and v are one, we have also

4 4
=1 i=1

'David Nister, <dnister@sarnoff.com>, has provided me with the only example
I have seen of a five-point problem with ten solutions.
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These two relations are of no importance. We could alternatively
have normalized the u’ and v* to have euclidean length one, in which
case these relations would not be true.

Having homogeneous equations, we need a normalization of the so-
lutions. We achieve this by putting ay = 84 = —1 so the calculations
amount to solving two linear 3 x 3 systems. If these systems turn out
to be singular, we have the situation that the problem is insolvable
because oy = B4 = 0.

The subsequent calculations aim at determining the true positions of
the points in 3D, that is to determine the Us* and V' (up to a common
scale factor).

We will use the notations \; = Us® and Wi = V3¢ so that the 3D
points are \;u’ and p;v’. These points are assumed to be in front of
the camera so that \; > 0 and p; > 0.

Equation (1) leads to

4 4

(2) D (/M)A =0 (Bi/p)pv' = 0.

The «;/)\; and the f;/u; are the barycentric coordinates for points
known to sit in a plane, so we have

Moreover, these two sets are the barycentric coordinates of the same
point configuration so there is a nonzero proportionally constant £ such
that

Introducing the notation x; = f3;/c;, we can write (4) in the form

The distance between point 7 and point 7 on the object is the same
before and after the motion so we have

; 12 ; in2
(6) [A® = A7 = [l v — v

Inserting the p; of (5) in (6) and expanding the norms as scalar prod-
ucts gives

(7) M[luf|” — k22|
—220[(0', w) — KPRk (v, V)]
+ M[[||” = k26,27 = 0.
Introduce the following linear functions of k2

(8) Cij = (ui, uj) — k2/~tmj(vi, Vj).
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Notice that the ; have been calculated and that the inner products
can be calculated from the input data.

Writing up equations (7) for 1 < ¢ < j < 3 with these notations, we
get

(9) 011)\12 — 2612/\1)\2 + 022/\22 =0
(10) 011)\12 - 2613)\1/\3 + 633)\32 =0
(11) 022)\22 — 2023)\2)\3 + 033)\32 =0.

The subsequent calculations will be based on these three equations.
Since the four points are linearly dependent, we get no further linearly
independent equation by using point four in (7).

4. FIRST METHOD OF SOLUTION.

Use the ¢;; for 1 <7,j < 3 to form the symmetric matrix C'. Notice
that the off-diagonal elements of C' have opposite signs to the corre-
sponding terms in (9) - (11). We show in the appendix that the system
(9) - (11) has a solution with nonzero A; only if

(12) det C = 0.

Since each entry of the determinant is a linear function of k2, (12) is
a cubic equation in k2, which must hold if there shall exist a solution
with nonzero );. Step one of the solution process is to solve this cubic.
In the course of describing our second method, we will show that the
solution has three positive real roots and that it is the middle one that
corresponds to the solution of our geometric problem. Inserting this
middle k% in the ¢;; of equations (9) and (10), we get two quadratic
equations for Ao/A; and A3/, respectively. The solutions are normal-
ized by putting A\; = 1. Of the four solution pairs (Aa, A3) only two can
satisfy the second order equation (11). These two pairs will produce
two tentative solutions to our motion problem. Knowing \; - A3, we
can use (3) to calculate A4. If all four \; are positive, we have a solution
in front of the camera.

5. SECOND METHOD OF SOLUTION.

Form a 3 x 3 - matrix U with columns u’, 1 < ¢ < 3. Form V in
the same way with x;v’. Since the the u’ are assumed to be linearly
independent and the same holds for the v’, these matrices are non-
singular. With these notations, C = UTU — k?2VTV. The equation
detC = det(UTU — k*VTV) = 0 in (12) is the equation for finding
the generalized eigenvalues (= k?) of UTU with respect to VIV, see
Golub and van Loan, [2], chap. 8.6. Here, the matrices UTU and VIV
are symmetric positive definite and this reference gives an explicite
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method for handling this case. Theorem 8.6.4 asserts the existence of
an invertible matrix X such that

(13) XT'0X = X"UTUX - ¥*X"V'VX = Dy — k*Dy,

whereDy; and Dy are diagonal. Since UTU and VTV are positve defi-
nite, the diagonal elements are positive. The construction goes as fol-
lows: form a 6 x 3 - matrix by stacking U on top of V' and calculate the
@ R-decomposition of this matrix with ) having orthonormal columns.
Let ()11 be the top 3 x 3 - submatrix of () . Calculate the SVD of
Q11 = GSH? for obtaining the singular values s; > s, > s3 > 0. The
six diagonal elements are (Dy); = s> > 0and (Dy); =1—52>0.

The three generalized eigenvalues, which also are the solutions of
(12) are

We shall show that it is the middle eigenvalue k* = s52/(1 — s5?)
that solves our problem because the others lead to complex valued A;.
Define AT = (A1, A2, \3) and consider the quadratic form ¢(\) =
M'C). Equations (9) - (11) are special instances of the equation ¢ =
0. E.g. (9) has the form ¢(A;, —)X2,0) = 0. Using the coordinate
transformation A\ = X7 and inserting k? = s52/(1 — s5%), we can write

(15) ¢ = ATCA = n"XTCXn = n"Dyn — k" Dyy =
(312 - k2(1 - 512))7712 + (832 - k2(1 - 332))7732-

Since the s; are decreasing, the coefficient for 7;? in (15) is positive
and that for n3% is negative. We get ¢ = 0 in (15) for some 7, and

2 812 - k2(1 - 312) . 812 - 822
(773/771) N 832 - k2(1 - 832) N 822 - 832
values for n3/n;.

Before calculating A, we note that inserting the first eigenvalue for
k% in (15) and requiring ¢ = 0 would give (73/12)? < 0 and a complex
n3/m2. The same would occur with the third eigenvalue.

To get a solution of e.g. (9), we equate the obtained ratio 73 /n; with
that obtained from A\ = X7 using A3 = 0. More precisely, theorem
8.6.4 gives the explicite expression X = (H'R)™!, son = H" R\. Since
A3 = 0, we get 7, and 73 as linear functions of A; and Ay. Forming the
ratio 3 /m and equating it with the same ratio obtained above, we get
an expression for \;/\;. Switching the roles of Ay and A3, we obtain
a ratio \;/)\3 satisfying (10). We normalize the solution by putting
A1 =1 and calculate A4 from (3).

Notice that the (A1, A2, A3) solving (9) - (11) is not an eigenvector
corresponding to the chosen eigenvalue k2.

Notice also that for instance equation (9) has the form and meaning

d(M, =)o, 0) = U = U?|> = V! = V2| = 0.

> (), which gives two real
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6. ACCURACY COMPARISON.

We have run Monte Carlo test in order to assess the accuracy achiev-
able from four coplanar points. For comparison, these tests have been
repeated for objects with more points. All objects and motions have
been generated by random numbers as follows:

The focal point of the camera is in the origin of a coordinate system.
The camera plane is parallell to the xy-plane and the z-axis points
towards the object.

For objects having more than five points, the points are evenly spread
in a cube with side = 2 having its center in a cube with side = .5 and
centered in x = y = 0, and z = 4. In the four point case, the points
are first generated as above and then moved along the projection rays
to a plane. The normal direction of this plane is chosen in a cone
which is rotation symmetric around the z-axis and has a solid angle
of m. The density of normals is greater in the middle of the cone and
decreases towards its boundary. We think that the limitation of the
plane normals to this cone describes a more realistic situation than
having normals spread over all directions. The distance to the plane is
evenly distributed in (3,5).

The motion parameters are generated as follows:

The rotation angle 6 is evenly spread over 0 < 6 < 30 degrees.

The rotation axis n of the motion is evenly spread over all directions.
The translation t is evenly spread over all directions with z > 0. This
condition is imposed to avoid having to reject too many examples be-
cause the moved object is behind the camera. The length of t is evenly
spread in (0,3).

Gaussian errors with mean zero and standard deviation o are added
to the projective coordinates. We present results from tests with o =
.0001. The average size of the projective coordinates is about .2 so the
relative noise is about .5 %.

The errors of the computed motion parameters are measured in de-
grees. They are:

(i) The error of the rotation angle Af

(ii) The angle between the true and calculated rotation axis An

(iii) The angle between the true and calculated translation direction

At.

The results are presented in Figure 1. We have chosen to present
medians of errors instead of averages. The reason is the better stability
of the medians. The averages are strongly affected by a few very large
errors which always occur in these tests.

Since the four-point problem generally has 2 solutions and the five-
point problem has up to six solutions, the ’correct’ solution must be
chosen in some way. This causes no problem in the Monte Carlo tests,
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4 6 8 10 12 14 16 18 20
# points

FIGURE 1. Medians of errors in degrees of (i) rotation
angle 6, (ii) rotation axis n, (iii) translation direction
t. The added gaussian noise has 0 = .0001. The aver-
age size of the projective coordinates is about .2 so the
relative noise is about .5%.

where we know the true motion. See e.g. Nister [9] about how this can
be done in practice.

The most striking result is that the five-point algorithm is so resilient
to noise. The seven-point algorithm is better than the eight-point al-
gorithm.

The obtainable accuracy is depending on the size of the solid angle
subtended by the convex hull of the object. With our method of gener-
ating the objects in a cube of fixed size, the size of the objects increases
with the number of points. In order to get a more fair comparison of
the methods, we have also used varying size of the cube so that all
objects, in the average, subtend the same solid angle. The results pre-
sented in Figure 2 are for objects having an average solid angle equal
to.1.

7. DISCUSSION

In the Monte Carlo tests with four coplanar points, we have tried
the two algorithms of this paper and the one given by Triggs [13].
Without added noise, they all give the 'true’ solution and sometimes
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4 6 8 10 12 14 16 18 20
# points

FIGURE 2. Medians of errors in degrees of (i) rotation
angle 6, (ii) rotation axis n, (iii) translation direction
t. The added gaussian noise has ¢ = .0001. For each
#points, the average size of the objects is adjusted so
that the solid angle of its convex hull equals .1. The
average size of the projective coordinates is about .2 so
the relative noise is about .5%.

another. Triggs method always gives a second solution, which some-
times is behind the camera. The noise amplification is about the same
for all three methods. We show the relative computation times for the
various methods in Table 1

The methods for six and more points produce besides the solution
one or more test variables, which indicate the accuracy of the solution,
see e.g. [11]. In the four point algorithms, the values of the ¢; and 3;
give some indication about how far the problem is from being critical.
If some of the computed «; or ; is very small or all o; and f; are
very large, three of the points are almost collinear. We tested skipping
generated test problems having some «; or 5; < .1 or > 10. This
reduced both the average and median errors by about one half. About
one third of the tests were skipped. We also tried skipping problems for
which the convex hull of the test object had an area in the projective
plane less than .03. This is essentially the same as solid angle less than
.03. This reduced the average errors because a few tests with really big
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| #points | Algorithm | time |

4 algorithm I | 8

4 algorithm IT | 10
4 Triggs [13] | 11
5 145
6 47
7 25
8 24
10 28
12 29
20 46

TABLE 1. Relative computation time

errors were eliminated. We suggest that both these conditions on the
object are used in practice.

In setting up equations (9) - (11), three of the four points are used.
Here, one could think of selecting those three of the four points that
give the most stable calculations. We have tried this and found that
that nothing was gained by selecting points. The reason is that the
numerical accuracy is much greater than the accuracy of the noisy
input data.

Our method of generating the plane that the four points sit in favours
planes up front. We tried also plane normals evenly spread over all
directions. This decreased the average errors of the computed param-
eters. This means that more tilted planes give better estimates.

8. APPENDIX

Suppose there exists A\;,\g, and A3, all different from zero satisfying
(9) - (11). We shall show that this implies det(C') = 0. The following
calculations can be carried out if the \; # 0.

Form the difference between (9) and (10) to eliminate their first
terms:

(16) 2X1(C13h3 — C1a)a) = €3303% — Caa o’

Form the difference c33A3” (9)—c22X2%(10) to eliminate their last terms:

(17) )\12011(033)\32 - 022)\22) = 2)\1)\2)\3(012033)\3 - 013022)\2)-
Solve both (16) and (17) for A;

(18) AL = 033)\32 - 022)\22 _ 2/\2)\3(012033/\3 - 013022)\2)
2(c13A3 — c12A2) c11(es3As3® — caa)a?)
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Multiply crosswise by the denominators:

(19) 0110222/\24 - 4012013022)\23)\3+

2 2 2\ 2
+ (4e1a”ca3 + 4e13 con — 2¢11Co0C33) A" A3 —

3 24 4
— 4ciac13C33A2A3° + 1633 A" = 0.

Subtract c;; times the square of (11) from (19) to get rid of the Ay
and \3? terms :

(20) (—4cipers + 4611023)022)\23/\3-1-

2 2 2, 2y 2
+ (4e1a”cs3 + 4eiz”con — 4Aericancsy — 4ericas’) A" A"+

+ (—4eppci3 + 4011023)0:’,3/\2/\33 =0.

Divide out 4\sA3 from (20) and subtract it by (—ciaci3 + c11¢23) times
(11) :

2 2 2
(c12°C33 + C13°Con — C11Co2C33 — C11Co3° + 2Co3(—C12C13 + C11C23)) A2 A3 = 0.

This turns out to equal minus the determinant of ¢ times Ay A3. Since
Ao and A3 are assumed to be nonzero, the determinant must be zero.
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