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1. Introduction
This paper is an informal account of a talk presented by one of the au-

thors (H.S.S.) at the NATO sponsored conference “Computational non-
commutative algebra and applications” held in Tuscany, Italy in July
2003. It is the authors’ intention to publish elsewhere a more complete
account with detailed proofs.

A complementary pair (CP) of polynomials in one or more variables
is a pair f , g of polynomials such that |f |2 + |g|2 is constant when all
the variables are restricted to lie on the unit circle of the complex plane.
Usually, CP are sought subject to restrictions on the coefficients of the
polynomials. Of greatest interest so far have been CP of univariate poly-
nomials with coefficients from {−1, 1}, a notion originating in work of
Golay [3], and motivated by applications to spectrometry. Shortly af-
terwards, and independently, an important class of CP was rediscovered
by one of the present authors [5]. So far as we know, CP of multilin-
ear polynomials (i.e., multivariate polynomials which are of degree 1 in
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each variable) are considered here for the first time. We were first led to
consider them as a tool for studying CP of univariate polynomials, but
they turn out to have interesting and unexpected properties, and seem
worthy of study in their own right.

Much of the (by now, very considerable) extant literature dealing with
CP is concerned with applications. The present paper shall, however, not
deal with these, but with purely mathematical aspects. Also, to keep
the presentation focused, we shall study almost exclusively CP where
the coefficients are from {−1, 1}. Some of the results could, however, be
generalized to allow coefficients from other sets, such as Γ (the unit circle
of the complex plane), the set of fourth roots of unity, etc. Also, most of
our multilinear results could be generalized to the class of polynomials
in (z1, . . . , zn) of degree dj with respect to the variable zj , provided each
of the numbers dj + 1 is a power of 2. We leave such generalizations for
future work, however.

2. Notations and definitions, and overview of
main results

We employ the following notations:

C the field of complex numbers

R the field of real numbers

Z the set of integers

N the set {0, 1, 2, . . .}

E[z1, z2, . . . , zn] the set of polynomials in n indeterminates with coeffi-
cients from a given set E

Γ the set of complex numbers of modulus 1

Γk (for k = 2, 3, . . .) the multiplicative group of k-th roots of unity

T the quotient group R/Z (also sometimes identified with Γ, but it
proves useful to keep the alternate T notation in the context of
harmonic analysis

Pm the subset of C[z] having degree at most m

Mn the subset of C[z1, z2, . . . , zn] having degree at most 1 with re-
spect to each variable. We also call Mn the set of n-linear poly-
nomials. We often abbreviate “multilinear” by ML
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Pm : E, Mn : E denote the subsets of Pm (respectively, Mn) consisting
of elements whose coefficients lie in a prescribed set E of complex
numbers

P ′
m, M′

n the corresponding sets, in the case E = Γ2.

Definition 1.1. Elements f , g of C[z1, z2, . . . , zn] form a complemen-
tary pair (CP) if |f |2 + |g|2 is constant when all variables zj are re-
stricted to lie in Γ (or, in vector notation, when z is in Γn, where
z = (z1, z2, . . . , zn).)

This general notion of CP is not very useful; usually one is interested
in CP when the coefficients are subjected to some restrictions. Of es-
pecial interest are CP from P ′

m, i.e., CP of univariate polynomials with
coefficients from Γ2 = {−1, 1} (also known as Golay pairs) and of CP
from M′

n, i.e., CP of n-linear polynomials with coefficients from Γ2,
which will be at the center of our work. If f ,g are a CP from one of the
above classes, we speak of g as a complementary mate (or Golay mate) of
f , and vice versa. If f possesses such a mate, we say f is complementable
or complemented.

Observe that Mn is a vector space over C of dimension 2n. A basis
for this vector space is the set of monomials

{zp1
1 zp2

2 . . . zpn
n ,where each pj is 0 or 1} .

It is important for our purposes to order these monomials, which we
do according to increasing magnitude of the integers p1+2p2+4p3+. . .+
2n−1pn, i.e., the integers associated to the monomials by considering the
pi (in reversed order) as digits of a binary number. For example, with
n = 3:

p1 p2 p3 p1 + 2p2 + 4p3

0 0 0 0

1 0 0 1

0 1 0 2

1 1 0 3

0 0 1 4

1 0 1 5

0 1 1 6

1 1 1 7

The corresponding ordered monomial basis is then

1, z1, z2, z1z2, z3, z1z3, z2z3, z1z2z3 .

Observe that M′
n consists of precisely 22n

elements.
Suppose that, for some n, f and g are a CP from Pn. Writing f(z) =

a0+a1z+. . .+anzn and g(z) = b0+b1z+. . .+bnzn, the complementarity
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relation: |f(z)|2 + |g(z)|2 = constant, for z in Γ, can be expressed, by
expanding |f |2 and |g|2, in the equivalent form of n coefficient identities:

a0ā1 + a1ā2 + . . . an−1ān + b0b̄1 + b1b̄2 + . . . bn−1b̄n = 0
...

a0ān + b0b̄n = 0

(Moreover, the “constant” in the definition of the complementarity rela-
tion is seen to be |a0|2+. . .+|an|2+|b0|2+. . .+|bn|2 .) The sums appearing
in the left-hand members of the above equations are called “aperiodic
out-of-phase autocorrelations” of the {aj} and {bj} sequences, and the
circumstance that they exactly cancel one another pairwise in the case
of CP is the main reason why these are of interest in applications.

The earliest known examples of CP from P ′
n are those discovered by

Golay, and independently by the second author. Following our presen-
tation in [5], we define recursively two sequences of polynomials {Pn},
{Qn} by

P0 = Q0 = 1

and, for n ≥ 0,

Pn+1(z) = Pn(z) + z2n
Qn(z)

Qn+1(z) = Pn(z)− z2n
Qn(z) .

Thus, P1 = 1+ z, Q1 = 1− z, P2 = 1+ z + z2− z3, Q2 = 1+ z− z2 + z3,
etc. It is easy to check that for every n ≥ 0, Pn and Qn have degree
2n− 1 and all coefficients from {−1, 1}. Moreover, for |z| = 1 we deduce
easily

|Pn+1(z)|2 + |Qn+1(z)|2 = 2
(
|Pn(z)|2 + |Qn(z)|2

)
and so, inductively,

|Pn(z)|2 + |Qn(z)|2 = 2n+1 for all n,

i.e., Pn and Qn form a CP.
Many authors have observed that the recursive definition of Pn, Qn

can be modified in various ways so as to obtain other CP. Let us here
only describe a procedure due to Budisin [2]. However, our presentation
will not be that of Budisin, but rather based on the notion of CP of
multilinear polynomials, via a mapping from Mn into P2m−1 which we
call lexicographic unfolding (LU).

First, let us prove
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Theorem 1.1. For every n in N there exists a CP from M′
n.

Proof. We define two sequences fn, gn by the recursive scheme

f0 = g0 = 1
fn+1 = fn + zn+1gn , gn+1 = fn − zn+1gn for n ≥ 0.

Thus,

f1 = 1 + z1 , g1 = 1− z1

f2 = 1 + z1 + z2 − z1z2 , g2 = 1 + z1 − z2 + z1z2

etc.
It is easy to verify by induction that

a) fn,gn are in M′
n for n = 0, 1, 2, . . .

b) |fn|2 + |gn|2 = 2n+1 when all variables have modulus 1.

We shall henceforth call fn, gn the standard complementary pair from
M′

n.
If we compare the construction of fn, gn with that of the earlier pair

Pn, Qn it is evident that Pn arises from fn by the substitution z1 → z,
z2 → z2, z3 → z4, . . . , zn → z2n−1

. Likewise, Qn arises from gn by this
same substitution. This motivates the

Definition 1.2. The LU-transform of an n-variable polynomial f(z1, z2, . . . zn)
to a one-variable polynomial p(z) is the result of substituting.

z1 → z, z2 → z2, z3 → z4, . . . , zn → z2n−1
.

We shall denote it by bn (or simply by b, if there is no danger of confu-
sion.)

As thus defined, b is too general to have many nice properties. How-
ever, interesting things appear when we restrict its domain. Thus, it is
easy to verify the following

Proposition 1.1. The LU-transform maps Mn linearly and bijectively
onto the vector space P2n−1 of (univariate) polynomials of degree at most
2n− 1. Moreover, for f ∈Mn, every coefficient of bf appears as a coef-
ficient of f , and vice versa. (So, in particular, if f has all its coefficients
in some set, the same is true of bf .)

It is also easy to see that the norm in L2(T) (w.r.t normalized Haar
measure on the unit circle T) of bf equals that of f in L2(Tn) (w.r.t.
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normalized Haar measure on the n-torus Tn.) For this to hold, it is
essential that f be restricted to be multilinear; for merely polynomial
f this is not the case, indeed b is not even a bounded operator on the
sphere of all multivariate polynomials when L2 norms are employed. On
the other hand, for any polynomial f in n variables, the range of bf(z)
for z in T is a subset of the range of f(z1, z2, . . . zn) for (z1, . . . zn) in
Tn, so bf is always contractive from L∞(Tn) to L∞(T). Many intrigu-
ing questions (mostly not answered, nor perhaps even studied hitherto)
arise considering the behavior of LU-transforms relative to various Lp

norms, acting in Mn, M′
n or subsets thereof. However, those matters

are beyond the scope of the present paper.
Now, it is an immediate consequence of the above definitions that

Proposition 1.2. The LU-transform carries each CP f ,g from M′
n

to a CP of univariate polynomials, of length 2n, with coefficients from
{−1, 1}. (The length of a polynomial in P ′

m is defined to be m + 1.)

It is also clear that

Proposition 1.3. The LU-transform carries the standard ML comple-
mentary pair fn, gn onto the pair Pn, Qn.

It is now easy to present (in our context and terminology) Budisin’s
construction:

First of all, we have the “standard” CP fn, gn from M′
n. Applying

b to this pair gives us Pn, Qn. But we can, before applying b, modify
fn and gn and generate many other CP from M′

n. Although these new
pairs (f, g) will be (in a sense) “trivial” modifications of the pair (fn, gn),
the pairs (bf, bg) of univariate polynomials will by no means be trivial
modifications of (Pn, Qn)! Indeed (and this is a new and quite deep
result) all univariate CP with coefficients from {−1, 1} and lengths 2n

are generated by this procedure.
So, let us now examine these “trivial” operations which transform a

CP from M′
n to another one.

Consider first the vector space Mn. We define two groups of linear
operators on Mn:

a) For each permutation π of the index set {1, 2, . . . n} we define by
Tπ the map of Mn on itself which performs the corresponding
permutation of the variables {z1, z2, . . . zn}.
Clearly Tπ is a bijection ofMn on itself. Moreover, since permuting
the variables induces a measure-preserving map of the torus Tn on
itself, Tπ is isometric w.r.t. the Lp(Tn) norm for every value of
p. It also maps M′

n bijectively on itself, and each CP to another
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CP. The set of all Tπ is a group isomorphic to Sn, the symmetric
group on n letters. It has cardinality n! and is non-commutative
for n > 2.

b) For each subset E of {1, 2, . . . , n}, we define SE as the map of Mn

on itself induced by substituting zj → −zj for each j in E. Each
such substitution is a measure-preserving map of Tn on itself, and
induces a linear bijection of Mn, and carries M′

n onto M′
n.

It is isometric w.r.t. the Lp(Tn) norm, for every p, and carries CP
to CP. The totality of these operators SE is a commutative group
with 2n elements.

Now, it is easy to check that all products TπSE where π ranges over
all permutations of {1, 2, . . . , n} and E over all subsets of {1, 2, . . . , n}
are distinct. In general, Tπ and SE do not commute. However, the
totality of all the n!2n products TπSE is identical with the totality of
all products SETπ. Thus, the sets {Tπ} and {SE} of operators generate
a (non-commutative) group which we denote by Bn, and call the basic
group of order n.

In terms of matrices, i.e., linear transformations performed on (z1, z2, . . . , zn),
the Tπ correspond to n × n permutation matrices, whereas the SE cor-
respond to n × n diagonal matrices with entries from {−1, 1} on the
diagonal.

Summarizing the above discussion: the basic group Bn consists of
2n · n! linear mappings of Mn onto itself. Each of these is isometric
w.r.t. all Lp(Tn) norms, and carries M′

n onto itself. It also carries every
CP to another CP.

Finally, then, here is our recipe for constructing CP from P ′
2n−1:

a) Start from the standard CP fn, gn from M′
n.

b) Now generate new CP from M′
n by applying to fn, gn in turn each

transformation from the basic group Bn.

c) To each of the CP obtained in step b), apply the LU-transform to
obtain a CP of univariate polynomials of lengths 2n.

There are some subtle points concealed within these formal procedures:

(i) In step a) we operate on the pair (fn, gn) by each of the 2n ·n! op-
erations of the basic group. But, does this procedure yield 2n · n!
distinct CP? The answer is “No”. For, it turns out that the poly-
nomials fn admit an unexpected symmetry. The exact description
of this symmetry and its consequences for the enumeration of CP
in M′

n and P ′
2n−1 will be given in Section 3.
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There are now two further questions which pose themselves:

(ii) Does the orbit of fn under the action of the basic group comprise
all complementable elements of M′

n (or, more precisely, all those
with constant term +1, since fn has this normalization, which is
preserved by all operations in Bn)?

(iii) Is the LU-map from complementable elements of M′
n to comple-

mentable elements of P ′
2n−1 surjective?

We shall see (and these are our main results) that both questions (ii)
and (iii) are answered in the affirmative. We thus obtain a simple and
explicit algorithm for describing all univariate CP with coefficients from
{−1, 1} whose lengths are a power of 2. Further details are in Section 3

In the concluding Section 4 we demonstrate a surprising connection
between CP from M′

n and the well-studied notion of bent Boolean func-
tions. We also indicate (what is, however, not new in principle) a link
between polynomials in M′

n and Hadamard matrices.

3. Complementary pairs in M′
n

We begin with some preliminary results. In this section, if we speak
of CP or complementable polynomials, we always tacitly assume all co-
efficients are from Γ2.

For any f in C[z1, . . . , zn], f \ denotes the polynomial obtained from f
upon replacing each coefficient of f by its complex conjugate. Suppose
now f is in Mn. Then, for z1, z2, . . ., zn in Γ (or, vectorially: z in Γn,
for z = (z1, z2, . . . zn)):

f(z) = f \(1/z1, 1/z2, . . . 1/zn) .

Hence, for z in Γn, we have

z1z2 . . . znf(z) = z1z2 . . . znf \(1/z1, . . . 1/zn) =: f#(z1, . . . , zn)

where f# is in Mn. Thus, to each f in Mn we have associated in f# in
Mn which has the same modulus as f at all points of Γn. Moreover, if
f is in M′

n so is f#. it is easy to check that the map f → f# from Mn

on itself is skew-linear (that is, real-linear and satisfies (af)# = āf# for
complex scalars a) and involutive, i.e., (f#)# = f .

The converse is not true without further hypotheses.

Proposition 1.4. If f and g are in Mn and have equal modulus at
all points of Γn, and moreover f is irreducible (i.e., has no nontrivial
factorization in C[z1, z2, . . . , zn]) then g must be of the form λf or λf#

where λ is a complex number of modulus 1.
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Sketch of proof. In light of the preceding discussion, we have for
z ∈ Γn

|f(z)|2 = f(z)f(z) = f(z)f#(z)/ (z1z2 . . . zn)

and a similar formula for |g(z)|2. Hence, the hypotheses imply ff# =
gg#. Since f is irreducible, it divides g or g#, and this readily yields
the desired conclusion. Observe that if f , g are in M′

n, λ must be 1 or
−1. Basic for all that follows is

Theorem 1.2. Every complementable element of M′
n is irreducible.

Remark. This theorem holds also in the wider class of n-linear com-
plementable polynomials with complex coefficients of modulus 1.

Corollary 1.1. The standard complementable elements fn, gn of M′
n

are irreducible.

Corollary 1.2. If f is complementable in M′
n it has at most four Golay

mates (and only two if we impose the normalization that only polynomi-
als with constant term +1 are considered.)

Proof. If g, h are Golay mates of f their moduli are equal at all points of
Γn. Moreover, they are irreducible, by Theorem 1.2, hence h is identical
with one of the following: g, −g, g#, −g#.

We defer until the end of this Section the proof of Theorem 1.2. Corol-
lary 1.1, which is much easier, was discovered and proved earlier by
W. Moran.

Symmetry properties of fn. We state without proof:

Theorem 1.3. fn is a fixed point of the operator Tρ where ρ is the
permutation of {1, 2, . . . , n} defined by:

ρ(j) = n + 1− j (j = 1, 2, . . . , n) .

Moreover, no other permutation σ (excluding the identity) has the prop-
erty that Tσfn = fn.

It is convenient for the sequel to define the following subclasses of
M′

n:

Definition 1.3. An element of M′
n is normalized if its constant term

equals 1. The set of normalized elements is denoted by M′′
n.

Definition 1.4. An element of M′′
n is strongly normalized if moreover

the coefficients of z1, z2, . . ., zn in it are all +1.
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Observe that fn is strongly normalized, and the same is true for each
element of its orbit under group of operators {Tπ} where π runs over all
permutations of {1, 2, . . . , n}.

Corollary 1.3. For n ≥ 2, the orbit of fn under the basic group consists
of precisely 2n−1n! elements.

Indeed, it follows from Theorem 1.3 that its orbit under the subgroup
consisting of all the Tπ, π in Sn comprises n!/2 elements (each occurring
twice.) Now, suppose two elements of the basic group, say SETπ and
SF Tσ satisfy

SETπfn = SF Tσfn (1)

where E, F are subsets of {1, 2, . . . , n} and π, σ are in Sn (notations as
in Section 2.) Then

SF SETπfn = Tσfn .

The right-hand member is strongly normalized. The left-hand member
is not, unless SF SE is the identity, i.e., E = F . So, (1) implies Tπfn =
Tσfn which, in view of Theorem 1.3, implies σ−1π = ρ. Thus, the only
way two operators in the basic group can have the same action on fn is
if they are of the form SETσ and SETρσ, where E is an arbitrary subset
of {1, 2, . . . n}, σ is some element of Sn, and ρ is the permutation defined
in Theorem 1.3. Hence:

Proposition 1.5. For n ≥ 2, the orbit of fn under the basic group
consists of precisely 2n−1n! elements. All of these are complementable.

We can now state a main result.

Theorem 1.4. every normalized, complementable element of M′
n is in

the orbit of fn under the action of the basic group.

Corollary 1.4. For n ≥ 2, there are precisely 2n−1n! normalized, com-
plementable elements in M′

n.

Under the action of the LU-transform, these give rise to 2n−1n! dis-
tinct complementable univariate polynomials which are normalized (i.e.,
have constant term 1). Now comes another of our main results: this map
yields all of them! More precisely:

Theorem 1.5. The normalized complementable univariate polynomials
of length 2n are precisely those which arise as images, under the LU-
transform, of normalized complementable elements of M′

n. For n ≥ 2,
their number is precisely 2n−1n!.

Remark. An equivalent statement is: the LF (or lexicographic fold-
ing) operator (i.e., the inverse to the LU-transform) carries each CP
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of univariate polynomials of length 2n with coefficients from Γ2 to a
CP from M′

n. It is not known whether the corresponding assertion for
polynomials with coefficients in Γ is true.

The proofs of Theorems 1.4 and 1.5 shall be presented elsewhere. In
the remainder of this section, we shall, however, show the flavor of the
development by presenting some of the key ideas on which the proof
of Theorem 1.4 is based, namely, remarkable structural properties (or,
functional equations) satisfied by fn and gn. We begin with some ele-
mentary observations. It is convenient to introduce some more notation:

Definition 1.5. For 1 ≤ j ≤ n, S′
j denotes the operator SE where E is

the singleton {j}.

It is easy to verify the identity

S′
jTρ = TρS

′
n−j+1 (j = 1, 2, . . . n) . (2)

Observe also that, immediately from the definitions

gn = S′
nfn . (3)

Proposition 1.6. fn has precisely two normalized Golay mates, namely
gn and (−1)ng#

n.

Proof. In view of the preceding, we have only to verify that (−1)ng#
n

is normalized, i.e., that the coefficient of z1z2 . . . zn in gn is (−1)n or,
in view of (3), that the coefficient of z1z2 . . . zn in fn is (−1)n+1. Now,
the coefficient sequence of fn (w.r.t. the order we have introduced)
is precisely the so-called “Rudin-Shapiro sequence”, and (denoting this
sequence by (a0, a1, a2, . . .)) what we have to verify is a2n−1 = (−1)n+1.
But (see Brillhart and Carlitz [1]) am is 1 or −1 according as the number
of occurrences of a pair of consecutive ones in the binary representation
of m is even or odd. For m = 2n − 1, the binary expansion consists of n
consecutive ones, so a2n−1 = (−1)n−1, which establishes the Proposition.

Now, the Proposition implies that the Golay mates of Tρfn are Tρgn

and (−1)nTρg
#

n. Since Tρfn = fn, we must have (−1)ng#
n = Tρgn.

Hence:
g#

n = (−1)nTρgn . (4)

After this compendium of trivial identities, we are now ready to state
something more interesting. Observe that for every f in Mn and every
j, 1 ≤ j ≤ n there is a “canonical splitting” of f as

f = A + zjB
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where A and B are (n − 1)-linear functions of those n − 1 variables
which have index distinct from j. These properties uniquely determine
A and B. For f = fn it turns out that the “A” and “B” are explicitly
representable in terms of the fi and gi with i < n. This is the key to
the proofs of several of our main theorems, and we just state the result
(whose proof, once the formula has been discovered, is by a not-too-
difficult induction:

Theorem 1.6. For 1 ≤ j ≤ n we have

fn = fj−1(z1, z2, . . . zj−1)fn−j(zj+1, zj+2, . . . zn)+

(−1)n−jgj−1(z1, z2, . . . zj−1)g#
n−j(zj+1, . . . , zn) · zj . (5)

Remark. A similar identity holds, with gn in the left-hand member,
which we omit (it is derivable from the above by applying S′

n to both
sides and simplifying, using identities established earlier.)

Observe that for j = n, (5) reduces to the recursion relation defining
fn.

Theorem 1.7. If f is a complementable element of M′
n, then max |f(z)|

over z in Γn equals 2(n+1)/2.

Proof. Let g be a Golay mate of f . From the complementarity it follows
at once that the maximum of |f(z)| on Γn cannot exceed 2(n+1)/2. To
complete the proof, we need only show g vanishes at some point of Γn.
This follows from the following, more general

Theorem 1.8. If h in Mn, for some n ≥ 1, has all its coefficients of
modulus 1, then it vanishes at some point of Γn.

Proof. We may write h = A+znB where A, B are (n−1)-linear functions
of z1, z2, . . ., zn−1 with all coefficients of modulus 1. Hence |A|2 − |B|2
has mean value 0 over Γn−1, and therefore vanishes at some point ω =
(ω1, ω2, . . . , ωn−1) of Γn−1, hence |A(ω)| = |B(ω)| =: c ≥ 0. If c = 0,
then h(ω; zn) vanishes for any choice of zn in Γ. If c > 0, then h(ω; zn)
vanishes for zn = −A(ω)

B(ω) , which lies on Γ. The proof is concluded.

This also completes the proof of Theorem 1.7.

Remark. For univariate complementable polynomials of length 2n, the
maximum modulus on Γ cannot exceed 2(n+1)/2. But it may be strictly
less than this bound, in other words, its Golay mate may have no zeros
on Γ.
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Theorem 1.8 is also a key element in the proof of Theorem 1.2 whose
proof we now sketch. Thus, we are given a CP f , g fromMn. We assume
f , g have all coefficients in Γ, and shall deduce that f is irreducible. The
proof is by contradiction. We have

|f |2 + |g|2 = 2n+1 on Γn . (6)

Suppose f has a nontrivial factorization f = GH. It is easy to check
that for some r, 1 ≤ r < n, G is r-linear and H is (n − r)-linear, the
variables in G and H being mutually disjoint. Moreover, G and H have
all coefficients in Γ. We may assume without loss of generality that G is
a function of z1, . . . , zr and H a function of (zr+1, . . . zn). We may also
assume r ≤ n/2 (otherwise reverse the roles of G and H.) By Theorem
1.8 there is a point ω in Γr where G vanishes. Hence from (6)

|g(ω1, . . . , ωr, zr+1, . . . , zn)|2 = 2n+1 (7)

for all (zr+1, . . . , zn) in Γn−r. Now, it is an easily proved elementary fact
that a polynomial in any number m of variables which has constant mod-
ulus on Γm must be a monomial. Hence, from (7), g(ω1, . . . ωr, zr+1, . . . zn)
is a monomial in the variables zr+1, . . . , zn times a constant c. This con-
stant is easily seen to be some r-linear polynomial with unimodular
coefficients, evaluated at (ω1, . . . , ωr) and hence |c| ≤ 2r. Hence from
(7)

2n+1 ≤ (2r)2

which is a contradiction, since r ≤ n/2, QED.

4. Relation of CP to “bent functions”,
biunimodular sequences, Hadamard matrices

A Boolean function of order n is a map from {0, 1}n to {0, 1}. There
are 22n

distinct Boolean functions of order n. An important subclass of
these is the so-called bent functions which occur in various connections
in coding theory. A good reference is [4]. There is an obvious corre-
spondence between Boolean functions and functions from {−1, 1}n to
{−1, 1} and for our purposes here it is more convenient to work with
the latter class of functions. considering {−1, 1} as a group G2 w.r.t.
multiplication, {−1, 1}n = Gn

2 is an Abelian group whose elements are
ordered n-tuples from {−1, 1} with coordinatewise multiplication as the
group operation.

Concretely, let us establish a correspondence between n-tuples (a1, a2, . . . an)
from {−1, 1}n and (b1, b2, . . . bn) from {0, 1}n by ak = (−1)bk , k =
1, 2, . . . , n. We shall consider the elements of {−1, 1}n ordered in ac-
cord with their corresponding elements from {0, 1}n, the order in the
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latter set (which may be identified via binary representations with the
integers {0, 1, 2, . . . 2n − 1}) taken as the natural one on N, just as we
ordered the monomials in Section 2.

In this context, an element of {−1, 1}n is defined to be bent if (and only
if) its Fourier transform w.r.t. the group Gn

2 (which is a vector having 2n

components) has all its components of equal magnitude. It is convenient
for our purposes to normalize Haar measures so that each element of the
dual (character) group of Gn

2 has measure 1. Then, the Fourier transform
of a vector turns out to be the same thing as applying to it the standard
“Sylvester-Hadamard matrix” (also called “Walsh-Hadamard matrix”)
of size 2n× 2n. (For all this terminology, and background, see [4], where
the Fourier transform (in the context of the group Gn

2 is also called
the Hadamard transform. Explicitly, it maps a vector ω of 2n complex
numbers

ω := {ω(0), ω(1), . . . , ω(2n − 1)}
to another such vector

ω̂ := {ω̂(0), ω̂(1), . . . , ω̂(2n − 1)}

by the formula

ω̂(k) =
2n−1∑
j=0

(−1)j·kω(j) , k = 0, 1, . . . 2n − 1 . (8)

Here j · k denotes the sum
∑n−1

m=0 βm(j)βm(k) where β0(·), . . . , βn−1(·)
denote the binary digits of an integer in the range [0, 2n − 1].

For example, in case n = 2 the matrix
[
(−1)j·k] appearing in (8) is

computed as follows: First, compute the 4 × 4 matrix [j · k] as j, k run
through the values 0 ≈ 00, 1 ≈ 01, 2 ≈ 10, 3 ≈ 11:

· 00 01 10 11

00 0 0 0 0

01 0 1 0 1

10 0 0 1 1

11 0 1 1 2

Thus,
[
(−1)j·k] is the matrix

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

which is the 4 × 4 Sylvester-Hadamard matrix. That this matrix cor-
responds exactly to the Fourier transform relative to the group Gn

2 is a
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consequence of the way we have ordered the elements of the group (and
likewise, of its character group which is isomorphic to Gn

2 . For more
particulars see [4]. We shall henceforth use the terminology Hadamard
transform for (8).

So, to summarize: A Boolean function of order n,

b = (b0, b1, . . . , b2n−1) , bj ∈ {0, 1}

is bent if and only if the Hadamard transform ω̂ of ω, where ω(k) :=
(−1)bk (k = 0, 1, . . . , 2n − 1) satisfies the condition |ω̂(j)| = c, j =
0, 1, . . . , 2n − 1, where c is independent of j.

Because the matrix in (8) is, after multiplication by the scalar factor
2−(n/2), unitary one sees easily that c = 2n/2. Thus, b is bent if and only
if the Hadamard transform of the vector

(
(−1)b0 , (1)b1 , . . . , (−1)b2n−1

)
is

a vector each of whose components equals 2n/2 or 2−n/2.
For our purposes, this can serve as the definition of “bent”. Observe

that (since the Hadamard transform of a vector with integer components
has integer components) bent Boolean functions of order n cannot exist
for odd n. It is well known that they exist for even n, and are very
abundant for large even n. Their tie-in with the present paper is via

Theorem 1.9. Let n be even, f a complementable element of M′
n, and

(ω(0), ω(1), . . . , ω(2n − 1)) its coefficient sequence (in accord with the
ordering of the monomials introduced in Section 2). Then, the Hadamard
transform ω̂ of the vector ω satisfies

ω̂(j) = ±2n/2 , j = 0, 1, . . . , 2n − 1 .

Corollary 1.5. ω(k) = (−1)bk where (b0, b1, . . . , b2n−1) is a bent Boolean
function.

Corollary 1.6. There exist at least n!/2 bent Boolean functions of order
n satisfying the strong normalization b0 = b1 = b2 = . . . = bn = 0.

Remark. For n larger than 2 and even, there are bent functions not
derivable from complementable elements of M′

n in the above way. For
example, there are 12 strongly normalized complementable elements of
M′

4, but 28 strongly normalized bent Boolean functions.
Theorem 1.9 is equivalent to

Theorem 1.10. Let n be even, and f a complementable element of M′
n.

Then |f(z)| = 2n/2 at all points z in {−1, 1}n ⊂ Γn.

Definition 1.6. The subset {−1, 1}n of Γn will be called the discrete
torus (in Cn.) Thus, we can state the conclusion of Theorem 1.1 as “f
has constant modulus on the discrete torus.”
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The equivalence of Theorems 1.9 and 1.10 lies in verifying that, im-
posing the “canonical” order on the 2n points of the discrete torus, the
sequence of values taken on it by any element of Mn coincides with the
Hadamard transform of its coefficient sequence. This is a “remarkable
coincidence”!

Proof of Theorem 1.10. Let g be a Golay mate of f from M′
n. Then

|f(z)|2 + |g(z)|2 = 2n+1 , z in Γn. (9)

For z in the discrete torus, f(z) and g(z) are integers. Now, it is
elementary to show that for n even, the only way to partition 2n+1 as
a sum of two non-negative squares is 2n + 2n. Hence, f(z) = ±2n/2 at
each point of the discrete torus.

Remark. There is a general problem in harmonic analysis, of great
depth and importance: to find all complex-valued functions on a given
(say, for simplicity) discrete Abelian group which has constant modulus,
and whose Fourier transform has constant modulus on the dual group.
For the special group Gn

2 this is equivalent to the problem of bent func-
tions, and is closely related with other combinatorial notions such as
“Hadamard difference sets.”

ML functions and Hadamard matrices. The following is well
known, at least as “folklore” but worth recording.

Theorem 1.11. Let f be any element of M′
n and write, as consecutive

rows of a 2n× 2n matrix, the coefficient sequences of SEf where E runs
through all subsets of {1, 2, . . . , n} (including the empty one.) The matrix
so obtained is Hadamard.

Proof. Clearly all entries of the matrix are from {−1, 1}, so we have only
to check mutual orthogonality of all the rows. In view of the Parseval
theorem, this is equivalent to the assertion: SEf is orthogonal to SE′f
in L2(Tn) if E, E′ are distinct subsets of {1, 2, . . . n}. This verification
is straightforward, and left to the reader.

Remark. For the choice f = (1 + z1)(1 + z2) . . . (1 + zn) the ma-
trix obtained in this way (assuming the subsets of {1, 2, . . . , n} are ap-
propriately ordered, i.e., again in our canonical way) is the Sylvester-
Hadamard matrix. For f = fn one obtains a so-called PONS matrix.
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