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Abstract

It is proved that there are infinitely many commuting conservation
laws In, n = 0, 1, .... for the Euclidean non-linear Schrödinger equation,
and that the KdV equation is contained in this hierarchy. Adding an extra
conservation law one obtains an annihilation operator. The (stationary)
passage from In to In+1 is the creation operator. These two operators
yield a quantised harmonic oscillator with ground state I0.

1. Introduction, the free case. This article has developed from
work on the symmetries and conserved quantities for certain diffu-
sion processes appearing in ‘Euclidean Quantum Mechanics’. In a
sense, the essential (from Schrödinger) idea is to consider two heat
equations (with linear interaction), for backward and forward mo-
tion. We refer to [2], [3], [5], [11], [12], [13], [17], [18], and further
references therein, and start with a simpler, linear, model case, be-
fore considering the nonlinear ENLS equation in the next section.

(1.1) The backward and forward free heat equations (in 1 + 1 di-
mensions) can be obtained from the Lagrangian ([2], [10])

L = 1
2
(uv̇ − u̇v) + 1

2
u′v′.
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The vanishing of both variational derivatives of the Lagrangian, i.e.
δL
δv

= δL
δu

= 0 yields the Euler-Lagrange equations. In this case,

δL

δv
:=

∂L

∂v
− d

dt

∂L

∂v̇
− d

dq

∂I

∂v′
,

with a similar expression for for δL/δu. The equations become

u̇+ 1
2
u′′ = 0, −v̇ + 1

2
v′′ = 0.

(1.2) The symmetry Lie algebra for the free heat system contains
the vector fields (see [9] and [10])

v
∂

∂v
− u

∂

∂u
,

∂

∂q
,

∂

∂t

corresponding to the conserved quantities (e.g. by Noether’s the-
orem, [8], [9], [16])

I0 = uv, I1 = 1
2
(u′v − uv′), I2 = 1

2
(u′′v + uv′′).

They belong to an infinite sequence of conserved quantities

In := 1
2
(u(n)v + (−1)nv(n)), n = 0, 1, 2, ....

which, again by Noether’s theorem, can be obtained from the gen-
eralised (evolutionary) vector fields ([8], [9], [16])

(−1)nv(n) ∂

∂v
− u(n) ∂

∂u
, n = 0, 1, 2, ....

(1.3) Introduce the bracket (the integral means that calculations
are made modulo total space derivatives) from [6]:

{F,G} :=

∫ (
δF

δu

δG

δv
− δF

δv

δG

δu

)
dq.

Here F and G are functionals ([4], [6], [16]) or differential functions
([8], [9]), i.e. smooth functions of u, v and their space derivatives
up to an arbitrary but finite order.

We refer to Dickey [4], Ch. 1.2, in which the algebraic construc-
tion behind the integral is treated in more detail.
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(1.4) It is easily checked—just partially integrate—that all the In
are in involution, i.e.

{In, Im} = 0 for all n, m.

For any functional F , {F, Im} is the derivative of F with respect
to the ‘time’ tm given by the hamiltonian Im: dF/dtm = {F, Im}.
Thus involutivity means that all In are conserved quantities w.r.t.
d/dtm for all m:

dIn
dtm

= 0 for all n, m.

(1.5) The variational gradient of a functional F is the vector δF
with components δF/δu and δF/δv. It is convenient to represent it
(as in [6]) as the 2× 2-matrix

δF :=

(
0 δF/δu

δF/δv 0

)
.

(1.6) We see that

δIn+1 = CδIn, C :=

(
−D 0
0 D

)
,

with D = d/dq. We shall also write this as In+1 = CIn. The
transition in the sequence (In) is stationary in the sense that

In = CnI0, n = 0, 1, 2, ....

(1.7) Consider the functional

I := −qI0 = −quv.

It is proved in the next section that

{I, In} = nIn−1, n = 0, 1, 2, ....

(1.8) Write
A := AdI = {I, ·}
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and
H := 1

2
[A,C]+ = 1

2
(AC + CA).

A is the annihilation and C the creation operator. We have

HIn = (n+ 1
2
)In.

This is a representation of the one-dimensional quantised harmonic
oscillator with hamiltonian H = N+ 1

2
, where N denotes the number

operator. It follows that

[A,C]In = In, i.e. [A,C] = 1,

the identity.
Preliminary observations indicate that it is natural to look upon

the In as unscaled Hermite polynomials (orthogonal w.r.t. a Gaus-

sian probability measure, and) with norm
√
n!. With this conven-

tion, the number operator N is defined for all F =
∑∞

0 cnIn with∑∞
0 n2|cn|2/n! finite.

(1.9) In general, if AIn = λnIn−1, and CIn = In+1, we get (AC +
CA)In = (λn+1 + λn)In, and (AC − CA)In = (λn+1 − λn)In. The
latter is the identity operator (acting on In) if and only if (except
for a trivial additive constant which we choose to be zero) λn = n.
Then (AC + CA)In = (2n+ 1)In, as above.

(1.10) I is not a conserved quantity, but is easily adjusted to become
one. Fix Ik as our hamiltonian. Replacing I by

I∗k := −(ktkIk−1 + qI0), k = 1, 2, ...,

we have dI∗k/dtk = 0 and, since tk is a parameter, the relation
{I, In} = nIn−1 is carried over to I∗k :

{I∗k , In} = −ktk{Ik−1, In} − {qI0, In} = −{qI0, In} = {I, In}.

(1.11) For the heat system, I∗ := tI1 − qI0 is a conserved quantity
obtained from the vector field Λ∗ := t ∂

∂q
− q(v ∂

∂v
− u ∂

∂u
). I0, I1, I

∗

form a Heisenberg algebra w.r.t. the bracket, as do the correspond-
ing ordinary vector fields w.r.t the ordinary bracket. This vector
field is often used as recursion operator to obtain an infinite num-
ber of conserved quantities for the heat equation. See Ibragimov
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[8, 9] or Olver [16]. Λ∗ plays a different role in our approach, and
in a sense ∂/∂q is the recursion operator. This is expressed in the
formula for C above. There is another way to represent it: with
Hirota’s bilinear derivative,

D(u · v) :=
d

dε
(u(·+ ε)v(· − ε))

∣∣
ε=0

= u′v − uv′,

we find
In = (1

2
D)n(u · v), n = 0, 1, ....

2. Euclidean NLS Equation.

(2.1) The euclidean non-linear Schrödinger equation is the following
system of non-linear heat equations:

u̇+ 1
2
u′′ − u2v = 0, −v̇ + 1

2
v′′ − uv2 = 0.

It can be found in the list of completely integrable time-symmetric
heat equations in [14]. We may look upon these equations as a
system

u̇+ 1
2
u′′ − V u = 0, −v̇ + 1

2
v′′ − V v = 0

with the ‘non-linear potential’ V = uv.

(2.2) The equations of motion result from calculus of variations
with the Lagrangian

L = 1
2
(uv̇ − u̇v) + 1

2
(u′v′ + u2v2).

Then δL/δv = −u̇− 1
2
u+ u2v and δL/δu = v̇ − 1

2
u+ uv2.

(2.3) The ‘usual’ non-linear Schrödinger equation, say

iψ̇ = −1
2
ψ′′ + |ψ|2ψ,

results from the Lagrangian

L =
i

2
(ψψ̇ − ψ̇ψ) +

1

2
(ψψ′ + ψ2ψ

2
).

It is extensively treated in Faddeev and Takhtajan [6]. Our key
operator C below is a slight adaption of one of their many ways to
approach this equation. See [6], Ch. III.5 and V.4.
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(2.4) For the ENLS equations, the infinitesimal symmetries

v
∂

∂v
− u

∂

∂u
,

∂

∂q
,

∂

∂t

yield the conserved quantities

I0 = uv, I1 = 1
2
(u′v − uv′), I2 = 1

2
(u′′v + uv′′ − 2u2v2).

The first one is a basic density, the vacuum vector or ground state
for the oscillator to be constructed below. The second one is the
momentum density and the third is the energy density. The densities
are calculated in the state (u, v).

(2.5) We will need the explicit form δI0 =

(
0 v
u 0

)
.

Write σ3 =

(
1 0
0 −1

)
and let F be a functional. We find

[δI0, δF ] =

(
v
δF

δv
− u

δF

δu

)
σ3.

Hence

{I0, F} =
1

2

∫
tr

(
σ3[δI0, δF ]

)
dq,

so that {I0, F} = 0 if and only if there is a functional aF such that

v
δF

δv
− u

δF

δu
= DaF .

(2.6) For such an F we may form

U0δF := [δI0, D
−1[δI0, δF ]] = −2aF

(
0 v
−u 0

)
,

and

CδF := −σ3(D − U0)δF =

(
0 −

(
D δF

δu
+ 2aFv

)
D δF

δv
− 2aFu 0

)
.

Starting from I0, one finds CδI0 = I1, CδI1 = I2 and
CδI2 = I3 := 1

2
(u′′′v − uv′′′)− 3

2
uv(u′v − uv′).
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(2.7) Definition. We define In by

δIn := CnδI0.

The next few In are

I4 = 1
2
(u(4)v + uv(4))− uv(u′′v + uv′′) + 4uu′vv′ + 2u3v3,

I5 = 1
2
(u(5)v − uv(5)) + 5uv(u′′v′ − u′v′′) + 5u2v2(u′v − uv′),

I6 = 1
2
(u(6)v + uv(6))− 3(uu′′v′2 + u′2vv′′)− 12uu′′vv′′ + 5u′2v′2

−(u′′2v2 + u2v′′2)− 50u2u′v2v′ − 10uv((u′2v2 + u2v′2)− 5u4v4.

We can now prove

(2.8) Theorem. All In are in involution:

{In, Im} = 0 for n, m = 0, 1, . . . .

Proof. Suppose I0, ..., In all Poisson commute, and form In+1. Then

{In+1, I0} = {CIn, I0} = {In, CI0} = {In, I1} = 0,

as one easily sees that C is symmetric w.r.t. the bracket. Repeating
this argument one finds {In+1, Ij} = 0 for j < n. In general, using
that DaF = v δF

δv
− u δF

δu
, we get

−{CF, F}

=

∫ ((
D
δF

δu
+ 2aFv

)δF
δv

+
(
D
δF

δv
− 2aFu

)δF
δu

)
dq

=

∫
D

(
δF

δu

δF

δv
+ 2a2

F

)
dq = 0.

The claim follows upon letting F = In.

(2.9) Corollary. For any n, m = 0, 1, . . .

dIn
dtm

= 0.

In particular, each In is a conservation law for the euclidean non-
linear Schrödinger equations

u̇+ 1
2
u′′ − u2v = 0, −v̇ + 1

2
v′′ − uv2 = 0.
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(2.10) Remark on KdV. The Lagrangian using I3 as Hamiltonian,
i.e.

L3 = 1
2
(uv̇ − u̇v) + 1

2
(u′′′v − uv′′′)− 3

2
uv(u′v − uv′)

produces the (Euler-Lagrange) equations of motion

u̇ = u′′′ − 6uu′v, v̇ = v′′′ − 6uvv′.

Of course, any In is a conservation law for these equations too. Upon
choosing v ≡ 1 we obtain the Koorteweg-deVries equation for u:

u̇ = u′′′ − 6uu′.

In this sense, the ENLS hierarchy contains KdV.

As in §1, we introduce

I := −qI0 = −quv.

Our next result is

(2.11) Theorem. For all n ≥ 0,

{I, In} = nIn−1.

Proof: Write an := aIn . In general,

{I, In} =

∫
−q

(
v
δIn
δv

− u
δIn
δu

)
dq =

∫
−qa′n dq =

∫
an dq.

Hence, we want to prove that

an = nIn−1.

Use of the (creation) operator C and partial integration, leads to
the relation

a′n+1 =u(n+1)v + (−1)nuv(n+1)

−2

(
(a1u)

(n−1)v + (−1)nu(a1v)
(n−1) + . . .

+ (an−2u)
′′v − u(an−2v)

′′ + (an−1u)
′v + u(an−1v)

′
)
.
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Assuming ak = kIk−1 for all k ≤ n, we may write

a′n+1 = An+1 + An−1 + .....,

where the index on the right refers to the total number of derivatives.
The terms of lowest order will come from

−2
(
an−1u)

′v + u(an−1v)
′)

if n is even, and from

−2
(
(an−2u)

′′v − u(an−2v)
′′ + (an−1u)

′v + u(an−1v)
′)

if n is odd.
In the former case, the hypothesis yields

a′n+1 = −2(n− 1)((In−2uv)
′ + I ′n−2uv) + h. o. t.

In general,
I2m = c2m(uv)m+1 + h. o. t.

where the coefficient is (if (−1)!! = 1)

c2m = (−2)m (2m− 1)!!

(m+ 1)!
, m = 0, 1, 2, . . .

This expression can be found by repeated use of the following for-
mulae for C2:

δIk+2

δu
= D2 δIk

δu
+ 2(akv)

′ − 2ak+1v,

δIk+2

δv
= D2 δIk

δv
− 2(aku)

′ − 2ak+1u.

With n = 2m, and writing s := uv, the terms of lowest order are

− 2(2m− 1)c2(m−1)

(
(sm+1)′ + (sm)′s

)
=− 2(2m− 1)c2(m−1)(2m+ 1)sms′

=(2m+ 1)(−2)m (2m− 1)!!

m!

(sm+1)′

m+ 1
= (2m+ 1)(c2ms

m+1)′,

which proves the assertion in this case.
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In the case when n is odd, n = 2m+1, the lowest order terms for
a′2m+2 are obtained from

−2
(
2m(I2m−1s)

′

+2mI ′2m−1s+ (2m− 1)I2m−2a

+(2m− 1)(I2m−2a)
′),

where, in addition to s = uv, we have written a := u′v − uv′. In
general,

I2m+1 = c2m+1s
ma+ h. o. t.

for some constant c2m+1. Hence the middle terms above are

2mc2m−1(s
m−1a)′s+ (2m− 1)c2m−2(s

m)′a

= (2mc2m−1(m− 1) + (2m− 1)mc2m−2)s
m−1s′a+ 2mc2m−1s

ma′

= (2(m− 1)c2m−1 + (2m− 1)c2m−2)(s
m)′a+ 2mc2m−1s

ma′

= 2mc2m−1(s
ma)′,

provided 2(m− 1)c2m−1 + (2m− 1)c2m−2 = 2mc2m−1, i.e.

c2m−1 =
2m− 1

2
c2(m−1).

One may deduce this formula from the formula for c2m together with
the formulae for C2 displayed above.

The lowest order terms become

−2(2 · 2mc2m−1 + (2m− 1)c2m−2)(s
ma)′.

The coefficient can be written

−2(2m− 1)(2m+ 1)c2m−2

= 2(m+ 1) · 2m+ 1

2
(−2)m (2m− 1)!!

(m+ 1)!
= 2(m+ 1)c2m+1,

which proves our claim

a′2(m+1) = 2(m+ 1)c2m+1(s
ma)′ + h. o. t.

By induction, we may assume that all terms of order strictly less
than the highest order, viz. n+1, satisfy the corresponding identity.
It remains to prove that the Jn := 1

2
(u(n)v + (−1)nuv(n)) fulfil

{I, Jn} = nJn−1 for all n.

10



This is the relation {I, In} = nIn−1 in the free case, referred to in
§1. We must show that −q(u(n)v − (−1)nuv(n)) ' nJn−1, where
‘'’ signifies equivalence modulo total (space) derivatives. The left
hand-side is equivalent to

u(n−1)v + (−1)n−1uv(n−1) + q(u(n)v′ − (−1)nu′v(n))

= 2Jn−1 + q(u(n)v′ − (−1)nu′v(n)).

If n = 2m+ 1, repetition of this leads to

' 2mJ2m − (−1)mq(u(m+1)v(m) + u(m)v(m+1))

' 2mJ2m + (−1)mu(m)v(m) ' (2m+ 1)J2m.

A similar, slightly longer, calculation yields the result for even n.
The theorem follows.

We have the following version of Newton’s free equations:

(2.12) Corollary. Write q :=
∫
q uv dq for the expectation value

of the position. Then

d2q

dt2n
= 0, n = 0, 1, 2, .....

Proof: The left hand-side is −{{I, In}, In} = −n{In−1, In} = 0.

(2.13) Remarks: (i) As in the introduction, we may now use A
and C to get an oscillator with Hamiltonian 1

2
(AC + CA).

(ii) For the ENLS equation I∗ = tI1 − qI0 is a conservation law,
just as in the free case. Also, we may, for any k > 0, replace I
by I∗k , which is a conservation law using Ik as Hamiltonian in the
Lagrangian L = Lk := 1

2
(uv̇ − u̇v)− Ik.

(iii) The Lagrangian integrals used here are in a sense general-
isations to infinite dimension of the Hilbert integral and Poincaré-
Cartan invariant

∫
p dq −H(t, q, p) dt from classical mechanics, see

e.g., Arnold [1]. The first fundamental form pdq may be replaced
by 1

2
(pdq − qdp) = 1

2
(pq̇ − qṗ) dt along solutions.

The ‘extra variable trick’, adding v to u, in classical mechanics
can be found in the book of Morse and Feshbach, [15]. It is men-
tioned in passing in Goldstein [7], that it yields the Schrödinger
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equations from a variational principle. See also Brandão and Kols-
rud [3] and Ibragimov and Kolsrud [10], where it is used to obtain
conservation laws via Noether’s theorem for several known evolution
equations.
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