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• First index key terms on each page
Robots crawl the web — software does indexing

• File structure: Terms −→ Pages (similar to book index)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ↪→ ri

— ri based on link structure (i.e., query independent)

— ri computed prior to any query

Direct Query Matching
• Query = (Term1, T erm2) −→ (Pi, ri), (Pj, rj), (Pk, rk), . . .

Return Pi, Pj, Pk, . . . in order of ranks ri, rj, rk, . . .
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PageRank r(P ) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P ) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

PageRank Shares The Vote

• Yahoo! casts many “votes” =⇒ value of vote from Y is diluted

— If Yahoo! “votes” for n pages

— then P receives only r(Y )/n credit from Y
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The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |

r2(Pi) =
∑

P∈BPi

r1(P )
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P )
|P |
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After Step j

πT
j =

[
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]
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(provided limit exists)

Maybe It’s A Markov Chain?

If P =
[
pij

]
is a stochastic matrix ( pij≥0 and

∑
j
pij=1 )

Each πT
j is a probability vector ( πi≥0 and

∑
i
πi=1 )

πT
j+1 = πT

j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = steady-state probability distribution
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Another Problem
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Yet More Problems

Could get trapped into a cycle (Pi → Pj → Pi)

πT
j+1 = πT

j P won’t convergence

Convergence Requirement

Markov chain must be irreducible and aperiodic

• This means P must be a primitive matrix

No eigenvalues other than λ = 1 on unit circle

Pk > 0 for some k

The Google Fixes

• P = αS + (1 − α)eeT/n α ≈ .85

• P = αS + (1 − α)evT vT = positive probability vector

• P = αH + (αa + (1 − α)e) vT







Back To Tiny Web

The Google Matrix

P = αH + (αa + (1 − α)e) vT (with α = .9 and v = e)

=

⎡
⎢⎢⎢⎢⎢⎣

1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60

⎤
⎥⎥⎥⎥⎥⎦

The PageRank Vector πT
j+1 = πT

j P → πT

πT =
( 1 2 3 4 5 6

.03721 .05396 .04151 .3751 .206 .2862
)
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Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Prior results don’t help to restart
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Search Is Opening New Areas Ripe For Innovative Ideas

Exciting Work That Is Changing The World

Thanks For Your Attention




