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These notes are meant to be a complement to the material on recursion solving techniques
in the textbook Discrete Mathematics by Biggs. In particular, Biggs does not explicitly
mention the so called Master Theorem, which is much used in the analysis of algorithms. I
give some exercises at the end of these notes.

1 Linear homogeneous recursions with constant coefficients

A recursion for a sequence (an) of the form

an = ck−1an−1 + ck−2an−2 + . . . + c0an−k + f(n)

is called a linear recursion of order k with constant coefficients. If the term f(n) is zero, the
recursion is homogeneous.

Linear homogeneous recursions with constant coefficients have a simple explicit general
solution in terms of the roots of the characteristic equation:

xk − (ck−1x
k−1 + ck−2x

k−2 + . . . + c0) = 0.

Let P (x) be the polynomial in the lefthand part of the equation. Recall that a root r of a
polynomial P (x) has multiplicity m if the polynomial factors as P (x) = (x − r)mQ(x) for
some polynomial Q(x) and m is the largest such integer.

For example, the polynomial P (x) = x3 − x2 = (x − 1)x2 has two roots: r1 = 1 of
multiplicity 1, and r2 = 0 of multiplicity 2.

Theorem 1 Let r1, . . . , rj with multiplicities m1, . . . , mj be the roots of the characteristic
equation of a linear recursion of order k with constant coefficients. Then the general solution
to the recursion is

an = P1(n)rn
1 + P2(n)rn

2 + . . . + Pj(n)rn
j

where Pi is an arbitrary polynomial of degree mi − 1 for each i = 1, . . . , j.

1.1 Example

We shall solve the recursion

an = 4an−1 − 5an−2 + 2an−3, a0 = 0, a1 = 2, a2 = 3.

This is a linear homogeneous recursion of order 3 with constant coefficients. The characteristic
equation is

P (x) = x3 − 4x2 + 5x− 2 = 0.
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The polynomial P (x) factors as P (x) = (x−1)2(x−2), so we have roots r1 = 1 of multiplicity
m1 = 2 and r2 = 2 of multiplicity m2 = 1. An arbitrary polynomial of degree one (m1 − 1)
is An + B. An arbitrary polynomial of degree zero (m2 − 1) is C. Hence, the theorem gives
the general solution

an = (An + B)1n + C2n.

The conditions a0 = 0, a1 = 2 and a2 = 3 yield three equations for A,B, C:

0 = B + C; 2 = A + B + 2C; 3 = 2A + B + 4C.

This is a system of linear equations with the unique solution

A = 3, B = 1, C = −1.

Therefore the explicit solution to the recursion is

an = (3n + 1)− 2n.

2 Linear inhomogeneous recursions with constant coefficients

Now suppose that we have a linear inhomogeneous recursion with constant coefficients:

an = ck−1an−1 + ck−2an−2 + . . . + c0an−k + f(n),

where f(n) 6= 0. In order to solve such a recursion, we need only solve the corresponding
homogeneous recursion and then find one particular solution, say apart

n , to the inhomogeneous
recursion. Then any solution can be written as

an = ahom
n + apart

n ,

where ahom
n is a solution to the homogeneous recursion. This result follows easily from linear-

ity: If an and apart
n both satisfy the inhomogeneous recursion, then subtraction gives

an − apart
n = ck−1(an−1 − apart

n−1) + ck−2(an−2 − apart
n−2) + . . . + c0(an−k − apart

n−k).

Hence, ahom
n := an − apart

n satisfies the homogeneous recursion.
So, how does one find a particular solution to an inhomogeneous recursion? Loosely speak-

ing, one tries with some expression of the same form as f(n). However, if such expressions
are already solutions to the homogeneous recursion, one must multiply the expression by a
polynomial in n.

2.1 Example

We shall find the general solution to the recursion

an = 4an−1 − 5an−2 + 2an−3 + 3n.

This is a linear inhomogeneous recursion of order 3 with constant coefficients. The inhomo-
geneous term is f(n) = 3n, so we guess that a particular solution of the form apart

n = A · 3n

can be found. Plugging this into the recursion gives the equation

A · 3n = 4A · 3n−1 − 5A · 3n−2 + 2A · 3n−3 + 3n.
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We simplify by dividing by 3n−3:

27A = 36A− 15A + 2A + 27,

which has the solution A = 27
4 . Hence a particular solution is apart

n = 27
4 3n. The general

solution to the corresponding homogeneous recursion was found, in the previous example, to
be

ahom
n = An + B + C · 2n.

Hence, the general solution to the inhomogeneous recursion is

an = ahom
n + apart

n = An + B + C · 2n +
27
4

3n.

2.2 Example

We shall find the general solution to the recursion

an = 4an−1 − 5an−2 + 2an−3 + 6.

This is a linear inhomogeneous recursion of order 3 with constant coefficients. The inhomo-
geneous term is f(n) = 6, a constant, so we would guess that a constant particular solution
could be found. However, r1 = 1 is a root of the characteristic equation so a constant A is
already a solution of the homogeneous recursion. Since r1 = 1 has multiplicity 2, also An is
a solution of the homogeneous recursion. Hence, we guess a particular solution of the form
An2. Plugging this into the recursion gives the equation

An2 = 4A(n− 1)2 − 5A(n− 2)2 + 2A(n− 3)2 + 7.

This equation simplifies to
0 = 4A− 20A + 18A + 6,

which has the solution A = −3. Hence a particular solution is apart
n = −3n2, so the general

solution to the inhomogeneous recursion is

an = ahom
n + apart

n = An + B + C · 2n − 3n2.

3 The Master Theorem

We now come to a result used in algorithm analysis. When analyzing algorithms that use
decomposition, one usually gets recursions of the following form:

T (n) = aT (n/b) + F (n), T (1) = d.

The term aT (n/b) stands for the time of solving a subproblems of size n/b, to which we add
the time F (n) needed to construct the solution to the original problem from the solutions
to the subproblems. T (1) = d is the constant time needed to solve a problem of size 1. In
computer science, one is interested only in how fast the time T (n) grows and does not care
about the explicit expression for T (n). The desired result is called the Master Theorem:

Theorem 2 (Master Theorem) Suppose that T (n) is given by the recursion T (n) = aT (n/b)+
F (n) and T (1) = d.
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1. If F (n) grows slower than nlogb a then T (n) ∈ Θ(nlogb a).

2. If F (n) ∈ Θ(nlogb a) then T (n) ∈ Θ(nlogb a log n).

3. If F (n) grows faster than nlogb a, then T (n) ∈ Θ(F (n)).

3.1 Example

A version of the merge sort algorithm gives the following recursion:

T (2n) = 2T (n) + 2n− 1, T (2) = 1.

Here we must apply the Master Theorem with parameters a = 2, b = 2 and F (n) ∈ Θ(n).
We have log2 2 = 1, hence we are in case 2. This tells us that

T (n) ∈ Θ(n log n).

3.2 Sketch of proof

Assume that n = bk, so that k = logb n. The recursion in the Master Theorem then takes the
form

T (bk) = aT (bk−1) + F (bk).

Now make the substitutions tk = T (bk) and f(k) = F (bk). The recursion now takes the
familiar form

tk = atk−1 + f(k).

The solution to the corresponding homogeneous recursion, tk = atk−1, is thom
k = Aak, corre-

sponding to the homogeneous solution T hom(n) = Aalogb n = Anlogb a of the original recursion.
We now have three cases depending on how the inhomogeneous term F (n) relates to the ho-
mogeneous solution T hom(n) = Anlogb a.

1. If F (n) grows slower than nlogb a, then the latter term will dominate, so that T (n) grows
as nlogb a.

2. If F (n) grows equally fast as nlogb a, then we have asymptotically the situation

T (n) = aT (n/b) + Bnlogb a, T (1) = d,

which after substitution reads

tk = atk−1 + Bak.

This is the case where the homogeneous solution has the same form as the inhomo-
geneous term, so that the particular solution will be of the form Ckak. Substituting
backwards, this means C(log n)nlogb a.

3. If F (n) grows faster than nlogb a, then F (n) will dominate, so that T (n) will grow as
fast as F (n).
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4 Other recursions

For other recursions than linear recursions with constant coefficients, explicit solutions may
be hard to come by. The method of generating functions is always worth trying, though.
Briefly, this technique works as follows. Let

A(x) = a0 + a1x + a2x
2 + . . . =

∞∑

n=0

anxn

be the generating function of the sequence a0, a1, a2, . . . If the recursion can be transformed
into an equation for A(x), then we can find the sequence by solving the equation for A(x),
and then expanding A(x) into a power series.

4.1 Example

A simple example is the recursion an = an−1/n for n ≥ 1, and a0 = 2. Multiplying by xn and
summing over n gives

A(x) =
∞∑

n=0

anxn = a0 +
∞∑

n=1

an−1
xn

n
.

Taking the derivative on both sides yields

A′(x) =
∞∑

n=1

an−1x
n−1 =

∞∑

n=0

anxn = A(x).

Hence, we have obtained the first-order differential equation A′(x) = A(x) with the well-
known solution A(x) = Bex. Maclaurin expansion of ex gives

A(x) = B(1/0! + x/1! + x2/2 + x3/3! + . . .) =
∞∑

n=0

B
xn

n!
,

and the condition a0 = 2 determines the value of B to be 2. Consequently, we have the
solution an = 2/n!. Of course, this could also have been seen directly from the original
recursion.

5 Exercises

1. Show that if two sequences (an) and (a′n) satisfy the same linear recursion, then so does
(Aan + A′a′n) for arbitrary constants A and A′.

2. Show that if r is a root to the characteristic equation of a linear recursion with constant
coefficients, then the sequence an = rn, for n = 0, 1, 2, . . ., satisfies the recursion.

3. The same question for an = nirn if r has multiplicity m > i.

4. Solve the recursion an = 3an−1 − 2an−2, a0 = 0, a1 = 1.

5. Solve the recursion an = 3an−1 + 3n, a0 = 1.

6. Solve the recursion an = 2an−1 + 4an−2 − 8an−3 + 1, a0 = a1 = a2 = 0.
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7. Show that alogb n = nlogb a.

8. A decomposition algorithm for multiplying two integers gives a recursion

T (2n) = 3T (n) + 2cn

for the time T (n) of multiplying two n-digit integers. (Here c is some constant.) What
is the growth rate of T (n)?
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