Interplay between systems and linear functions

13 September, 2005

Recall that given a linear function $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the range, of A is defined as:
$R(A)=\left\{\vec{b} \in \mathbb{R}^{m}\right.$ such that there is $\vec{x} \in \mathbb{R}^{n}$ with $\left.A(\vec{x})=\vec{b}\right\}$.
Then using the system notation it is:
$\mathbf{R}(\mathbf{A})=\left\{\vec{b} \in \mathbb{R}^{m}\right.$ such that there is $\vec{x} \in \mathbb{R}^{n}$ with $\left.A(\vec{x})=\vec{b}\right\} \subseteq \mathbb{R}^{m}$.
From what we have seen last time it follows that:

$$
\mathbf{R}(\mathbf{A})=\operatorname{Col}(\mathbf{A})
$$

Let $\operatorname{Sol}_{\mathbf{b}}(\mathbf{A})=\{\vec{v}$, solution for $A \vec{v}=\vec{b}\}$.
Then there is the following correspondence:

- $N(A)=\operatorname{Sol}_{0}(F)$
- $\vec{b} \in R(A) \Leftrightarrow \operatorname{Sol}_{b}(A) \neq \emptyset$

Using this terminology we drow the following conclusions:

$$
\begin{gathered}
N(A)=\operatorname{Sol}_{0}(F)=\{\overrightarrow{0}\} \Leftrightarrow \begin{array}{c}
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
\text { is one-to-one }
\end{array} \\
\begin{array}{c}
\operatorname{Sol}_{b}(A) \neq \emptyset \Leftrightarrow R(A)=\mathbb{R}^{m} \\
\text { for all } \vec{b} \in \mathbb{R}^{m}
\end{array} \\
n=\operatorname{rk}(A)+\operatorname{nullity}(A) \Leftrightarrow n=\operatorname{dim}(R(A))+\operatorname{dim}(N(A))
\end{gathered}
$$

