KTH Matematik

Exam 1, solutions

5B1309 Algebra g.k.

1 Februari, 2006
(1) (2 pts) Consider the following permutation $\sigma \in \mathbb{S}_{8}$:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 5 & 8 & 1 & 6 & 4 & 7
\end{array}\right)
$$

Is σ even or odd? (motivate your answer!)

$$
\sigma=(1235)(487)=(15)(13)(12)(47)(48), \text { then it is }
$$ odd.

(2) (4 pts) (motivate your answer!)
(a) Are \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ isomorphic as sets? Both sets have cardinality 4 , therefore they are isomorphic.
(b) Consider the sets above with the addition:

- if $[i],[j] \in \mathbb{Z}_{4}$ the addition is defined modulo 4: $[i]+[j]=[i+j]$;
- if $([i],[j]),([k],[l]) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ then

$$
([i],[j])+([k],[l])=([i+k],[j+l]) .
$$

Are $\left(\mathbb{Z}_{4},+\right)$ and $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$ isomorphic as groups? No. $\left(\mathbb{Z}_{4},+\right)=\{(0,0),(0,1),(1,0),(1,1)\}$. If it were isomorphic to \mathbb{Z}_{4}, then it would contain an element of order 4 and therefore it would be cyclic. But there is no element of order 4 , since: $\operatorname{ord}(0,0)=$ $1, \operatorname{ord}(0,1)=\operatorname{ord}(1,0)=\operatorname{ord}(1,1)=2$.
(3) (3 pts) (motivate your answer!) List all the subgroups of \mathbb{Z}_{12} and illustrate the list with a diagram. Recall that \mathbb{Z}_{12} is a cyclic group generated by elemnts which are coprime with 12 . So:
$\mathbb{Z}_{12}=<1>=<5>=<7>=<11>$.
The proper subgroups must be cyclic.

We have that:

$$
\begin{aligned}
& <2>=\{0,2,4,6,8,10\}=<10> \\
& <3>=\{0,3,6,9\}=<3> \\
& <4>=\{0,4,8\}=<8> \\
& <6>=\{0,6\}
\end{aligned}
$$

