KTH Matematik

Exam 1, solutions 5B1309 Algebra g.k. 1 Februari, 2006

(1) (2 pts) Consider the following permutation $\sigma \in \mathbb{S}_8$:

$\sigma =$	(1)	2	3	4	5	6	7	8	
	2	3	5	8	1	6	4	7	$\Big)$

Is σ even or odd? (motivate your answer!) $\sigma = (1235)(487) = (15)(13)(12)(47)(48)$, then it is odd.

- (2) (4 pts) (motivate your answer!)
 - (a) Are \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ isomorphic as sets? Both sets have cardinality 4, therefore they are isomorphic.
 - (b) Consider the sets above with the addition:
 - if $[i], [j] \in \mathbb{Z}_4$ the addition is defined modulo 4: [i] + [j] = [i + j];
 - if $([i], [j]), ([k], [l]) \in \mathbb{Z}_2 \times \mathbb{Z}_2$ then ([i], [j]) + ([k], [l]) = ([i+k], [j+l]).

Are $(\mathbb{Z}_4, +)$ and $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$ isomorphic as groups? No. $(\mathbb{Z}_4, +) = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$. If it were isomorphic to \mathbb{Z}_4 , then it would contain an element of order 4 and therefore it would be cyclic. But there is no element of order 4, since: ord(0, 0) =1, ord(0, 1) = ord(1, 0) = ord(1, 1) = 2.

(3) (3 pts) (motivate your answer!) List all the subgroups of \mathbb{Z}_{12} and illustrate the list with a diagram. Recall that \mathbb{Z}_{12} is a cyclic group generated by elements which are coprime with 12. So: $\mathbb{Z}_{12} = \langle 1 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 11 \rangle$.

The proper subgroups must be cyclic.

We have that: $<2>=\{0,2,4,6,8,10\}=<10>,$ $<3>=\{0,3,6,9\}=<3>,$ $<4>=\{0,4,8\}=<8>,$ $<6>=\{0,6\}$

 $\mathbf{2}$