KTH Matematik

5B1309, Algebra
Exam
March 31, 2007

- No books or notes can be used.
- All you write has to be motivated!
- At least 3 points from each part are required to pass this exam. Minimun 15 points is required for grade 4 and minimum 6 points in each part is required for grade 5 .

PART 1

(1) (3 p.) Consider the following set:

$$
G_{a}=\left\{A \in G L_{n}(\mathbb{R}) \text { such that } \operatorname{det}(A)=a\right\}
$$

(a) For which $a \in \mathbb{R}$ is $\left(G_{a}, \cdot\right)$ a subgroup?(. denotes the matrix multiplication). A subgroup has to contain the identity I_{n}, thus the only possibility is $a=1$. Moreover for any $A, B \in G_{1}$, it is $\operatorname{det}\left(A \cdot B^{-1}\right)=\operatorname{det}(A)(\operatorname{det}(B))^{-1}=1$. This shows that G_{1} is a subgroup.
(b) For which $a \in \mathbb{R}$ is $\left(G_{a}, \cdot\right)$ a normal subgroup? We only have to check G_{1}. It is a normal subgroup since it is the kernel of

$$
\operatorname{det}:\left(G L_{n}(\mathbb{R}), \cdot\right) \rightarrow(\mathbb{R} \backslash\{0\}, \cdot)
$$

which is a homomorphism: $\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$.
(2) (2 p.) Consider the following permutation:

$$
\sigma=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
5 & 9 & 1 & 7 & 2 & 8 & 4 & 3 & 10 & 6
\end{array}\right)
$$

(a) Find the cycle decomposition of σ^{3}.

$$
\sigma^{3}=(198510326)(47)
$$

(b) Is $\sigma^{3} \in A_{10}$ (the subgroup of even permutations)? σ^{3} can be decomposed in the following transpositions:

$$
(16)(12)(13)(110)(15)(18)(19)(47)
$$

It follows that $\sigma^{3} \in A_{10}$.
(3) (3 p.) Give an example of a nonabelian group such that each of its proper subgroups are cyclic. One example is \mathbb{S}_{3}. It is non-abelian and it has cardinality 6 . All proper subgroups have cardinality 2 or 3 , which are prime numbers, and hence they are cyclic.

PART 2

(1) (4 p.)(Motivate your answer!) Let $\operatorname{Aut}(G)$ denote the group of automorphisms (isomorphisms $f: G \rightarrow G$), where the binary operation is the composition. Is $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ isomorphic to any of the following groups?

$$
\mathbb{Z}_{6}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{S}_{3}
$$

We know that $\mid \operatorname{Aut}\left(\mathbb{Z}_{8}\right)=\phi(n)$ (the Euler number of 8 , the numebr of positive integers smaller that 8 and coprime with 8). It follws that $\left|\operatorname{Aut}\left(\mathbb{Z}_{8}\right)\right|=4$. The only groups of cardinality 4 are $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or the cyclic one \mathbb{Z}_{4}. An element $f \in \operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ has to take 1 to a generator so they are $f_{1}, f_{2}, f_{3}, f_{4}$, where

$$
f_{1}(1)=1, f_{2}(1)=3, f_{3}(1)=5, f_{4}(1)=7
$$

We see that $f_{1}^{2}(1)=1, f_{2}^{2}(1)=3 \cdot 3=1, f_{3}^{2}(1)=25=1, f_{4}^{2}(1)=$ $49=1$ and thus $\operatorname{ord}\left(f_{i}\right)=2$ for $i=1,2,3,4$. Then it must be $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(2) (3 p.) Let G be a group of cardinality 21. Assume that there is an element $a \in Z(G)$ with $\operatorname{ord}(a)=3$, then show that G is cyclic.

Since $|Z(G)| \geq 3$ and $|Z(G)| / 21$ it is $|Z(G)|=3$ or 21 . If $Z(G)=$ 21 then G is abelian, and thus isomorphic to \mathbb{Z}_{21}, which is cyclic. We can than assume that

$$
|Z(G)|=3, Z(G)=<e>
$$

we have that $|G / Z(G)|=7$ cyclic. Let $b \cdot Z(G)$ be a generator, i.e. $b^{7} \in Z(G)$, and $b^{6} \notin Z(G)$. Thus $\operatorname{ord}(b)=7$ in G. Let $H=$. Since H commutes with $Z(G) H \cdot Z(G)$ is a subgroup and it has the same cardinality as G. So it is

$$
G=H \cdot Z(G) \cong \mathbb{Z}_{3} \times \mathbb{Z}_{7}
$$

The isomorphism is given by $\phi\left(e^{i} b^{j}\right)=\left(e^{i}, b^{j}\right)$. It follows that G is cyclic.
(3) (2 p.) How many non cyclic abelian groups of cardinality 245 are there? A finite abelian group $G,|G|=n$, (up to isomorphism) can be decomposed uniquely as:

$$
G=\mathbb{Z}_{n_{1}} \times \ldots \times \mathbb{Z}_{n_{t}}
$$

where $n_{1} \cdot n_{1} \ldots \cdot n_{t}=n$ and $n_{i} / n_{i-1}, i=2, \ldots, t$. Since $245=5 \cdot 7^{2}$ we have that the possibilities are:
(a) $n_{1}=245, G=\mathbb{Z}_{245}$.
(b) $n_{1}=35, n_{2}=7, G=\mathbb{Z}_{35} \times \mathbb{Z}_{7}$.

There is only one non cyclic:

$$
G=\mathbb{Z}_{35} \times \mathbb{Z}_{7}
$$

PART 3

(1) (4 p.) Show that no group of cardinality 48 is simple. The number of 2-Sylow subgroups can be 1 or 3 . If there is only one subgorup of order 16, then by Sylow theorem, it must be normal and thus the group is not simple.

Assume that that there are 3 subgroups of cardinality $16, P_{1}, P_{2}, P_{3}$. Since as a set

$$
P_{1} \cdot P_{2}=\frac{\left|P_{1}\right|\left|P_{2}\right|}{\left|P_{1} \cap P_{2}\right|},
$$

we have that $\left|P_{1} \cap P_{2}\right|=8$. This implies that $\left[P_{1} \cap P_{2}: P_{1}\right]=2$ for $i=1,2$, and thus $P_{1} \cap P_{2}$ is normal in P_{1} and P_{2}. This implies that the normalizer $N\left(P_{1} \cap P_{2}\right)$ in G contains $P_{1} \cup P_{2}$, subset which has more than 16 elements. At the same time

$$
16<\left|N\left(P_{1} \cap P_{2}\right)\right| /|G|=16 \cdot 3 .
$$

We can conclude that $N\left(P_{1} \cap P_{2}\right)=G$ and thus $N\left(P_{1} \cap P_{2}\right)$ is normal in G, which implies that G is not simple.
(2) (2 p.) Show that the ideal $(2, x)$ (ideal generated by the elements 2 and x) in the ring $\mathbb{Z}[x]$ is maximal. This ideal is the kernel of the ring-morphism

$$
\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{2}, \phi(p(x))=[p(0)]_{2} .
$$

Since \mathbb{Z}_{2} is a field the ideal is maximal.
(3) (3 p.) Let R be a commutative ring such that $R[x]$ is a P.I.D. Show that R is a field.
Every non zero prime ideal is maximal in a PID. Morover since R is a subring of $R[x], R$ is an integral domain. The kernel of the ring homomorphism

$$
\phi: R[x] \rightarrow R, \phi(p(x))=p\left(0_{R}\right),
$$

is the ideal (x), which is prime since R is an integral domain. It follows that (x) is maximal and hence the quotient (via $\phi) R[x] /(x) \cong R$ is a field.

Good Luck!

