KTH Matematik

5B1309, Algebra Exam March 31, 2007

- No books or notes can be used.
- All you write has to be motivated!
- At least 3 points from each part are required to pass this exam. Minimum 15 points is required for grade 4 and minimum 6 points in each part is required for grade 5.

PART 1

(1) (3 p.) Consider the following set:

 $G_a = \{A \in GL_n(\mathbb{R}) \text{ such that } \det(A) = a\}.$

- (a) For which $a \in \mathbb{R}$ is (G_a, \cdot) a subgroup?(\cdot denotes the matrix multiplication). A subgroup has to contain the identity I_n , thus the only possibility is a = 1. Moreover for any $A, B \in G_1$, it is $\det(A \cdot B^{-1}) = \det(A)(\det(B))^{-1} = 1$. This shows that G_1 is a subgroup.
- (b) For which $a \in \mathbb{R}$ is (G_a, \cdot) a normal subgroup? We only have to check G_1 . It is a normal subgroup since it is the kernel of

 $\det : (GL_n(\mathbb{R}), \cdot) \to (\mathbb{R} \setminus \{0\}, \cdot),$

which is a homomorphism: $det(A \cdot B) = det(A) \cdot det(B)$.

(2) (2 p.) Consider the following permutation:

(a) Find the cycle decomposition of σ^3 .

$$\sigma^3 = (198510326)(47)$$

(b) Is $\sigma^3 \in A_{10}$ (the subgroup of even permutations)? σ^3 can be decomposed in the following transpositions:

(16)(12)(13)(110)(15)(18)(19)(47)

It follows that $\sigma^3 \in A_{10}$.

(3) (3 p.) Give an example of a nonabelian group such that each of its proper subgroups are cyclic. One example is S_3 . It is non-abelian and it has cardinality 6. All proper subgroups have cardinality 2 or 3, which are prime numbers, and hence they are cyclic.

PART 2

(1) (4 p.)(Motivate your answer!) Let Aut(G) denote the group of automorphisms (isomorphisms $f : G \to G$), where the binary operation is the composition. Is $Aut(\mathbb{Z}_8)$ isomorphic to any of the following groups?

$$\mathbb{Z}_6, \mathbb{Z}_2 \times \mathbb{Z}_4, \mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{S}_3$$

We know that $|Aut(\mathbb{Z}_8) = \phi(n)$ (the Euler number of 8, the number of positive integers smaller that 8 and coprime with 8). It follows that $|Aut(\mathbb{Z}_8)| = 4$. The only groups of cardinality 4 are $\mathbb{Z}_2 \times \mathbb{Z}_2$ or the cyclic one \mathbb{Z}_4 . An element $f \in Aut(\mathbb{Z}_8)$ has to take 1 to a generator so they are f_1, f_2, f_3, f_4 , where

$$f_1(1) = 1, f_2(1) = 3, f_3(1) = 5, f_4(1) = 7.$$

We see that $f_1^2(1) = 1, f_2^2(1) = 3 \cdot 3 = 1, f_3^2(1) = 25 = 1, f_4^2(1) = 49 = 1$ and thus $ord(f_i) = 2$ for i = 1, 2, 3, 4. Then it must be $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(2) (3 p.) Let G be a group of cardinality 21. Assume that there is an element $a \in Z(G)$ with ord(a) = 3, then show that G is cyclic.

Since $|Z(G)| \ge 3$ and |Z(G)|/21 it is |Z(G)| = 3 or 21. If Z(G) = 21 then G is abelian, and thus isomorphic to \mathbb{Z}_{21} , which is cyclic. We can than assume that

$$|Z(G)| = 3, Z(G) = \langle e \rangle.$$

we have that |G/Z(G)| = 7 cyclic. Let $b \cdot Z(G)$ be a generator, i.e. $b^7 \in Z(G)$, and $b^6 \notin Z(G)$. Thus ord(b) = 7 in G. Let $H = \langle b \rangle$. Since H commutes with $Z(G) H \cdot Z(G)$ is a subgroup and it has the same cardinality as G. So it is

$$G = H \cdot Z(G) \cong \mathbb{Z}_3 \times \mathbb{Z}_7.$$

The isomorphism is given by $\phi(e^i b^j) = (e^i, b^j)$. It follows that G is cyclic.

(3) (2 p.) How many non cyclic abelian groups of cardinality 245 are there? A finite abelian group G, |G| = n, (up to isomorphism) can be decomposed uniquely as:

$$G = \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_t}$$

 $\mathbf{2}$

where $n_1 \cdot n_1 \dots \cdot n_t = n$ and n_i/n_{i-1} , $i = 2, \dots, t$. Since $245 = 5 \cdot 7^2$ we have that the possibilities are: (a) $n_1 = 245, G = \mathbb{Z}_{245}$. (b) $n_1 = 35, n_2 = 7, G = \mathbb{Z}_{35} \times \mathbb{Z}_7$. There is only one non cyclic:

$$G = \mathbb{Z}_{35} \times \mathbb{Z}_7.$$

PART 3

(1) (4 p.) Show that no group of cardinality 48 is simple. The number of 2-Sylow subgroups can be 1 or 3. If there is only one subgorup of order 16, then by Sylow theorem, it must be normal and thus the group is not simple.

Assume that there are 3 subgroups of cardinality 16, P_1 , P_2 , P_3 . Since as a set

$$P_1 \cdot P_2 = \frac{|P_1||P_2|}{|P_1 \cap P_2|},$$

we have that $|P_1 \cap P_2| = 8$. This implies that $[P_1 \cap P_2 : P_1] = 2$ for i = 1, 2, and thus $P_1 \cap P_2$ is normal in P_1 and P_2 . This implies that the normalizer $N(P_1 \cap P_2)$ in G contains $P_1 \cup P_2$, subset which has more than 16 elements. At the same time

$$16 < |N(P_1 \cap P_2)|/|G| = 16 \cdot 3.$$

We can conclude that $N(P_1 \cap P_2) = G$ and thus $N(P_1 \cap P_2)$ is normal in G, which implies that G is not simple.

(2) (2 p.) Show that the ideal (2, x) (ideal generated by the elements 2 and x) in the ring $\mathbb{Z}[x]$ is maximal. This ideal is the kernel of the ring-morphism

$$\phi: \mathbb{Z}[x] \to \mathbb{Z}_2, \ \phi(p(x)) = [p(0)]_2.$$

Since \mathbb{Z}_2 is a field the ideal is maximal.

(3) (3 p.) Let R be a commutative ring such that R[x] is a P.I.D. Show that R is a field.

Every non zero prime ideal is maximal in a PID. Moreover since R is a subring of R[x], R is an integral domain. The kernel of the ring homomorphism

$$\phi: R[x] \to R, \ \phi(p(x)) = p(0_R),$$

is the ideal (x), which is prime since R is an integral domain. It follows that (x) is maximal and hence the quotient (via ϕ) $R[x]/(x) \cong R$ is a field.

Good Luck!