KTH Matematik

5B1309, Algebra Exam 1 Februari 5, 2007

- Exam's time:16:00-17:00.
- No books or notes can be used
- All you write has to be motivated
- At least 3 points are required to pass this exam.
- (1) (4 p.) Consider the following set:

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right), 0 = [0]_3, a, b, c \in \mathbb{Z}_3, \det(A) = 1 \right\}$$

(a) Show that (G, \cdot) is a group, where \cdot is the matrix-multiplication. Because det $(A) = ac = 1(in\mathbb{Z}_3)$ it is a = 1, b = 1 Or a = 2, b = 2. It follows that G contains 6 elements:

$$G = \left\{ I_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} \right\}$$

The operation is closed, in fact if $A, B \in G$ then $AB \in G$ (show the multiplication). It is associative because the matrix multiplication is associative. The identity is given by I_3 . regarding the inverse, denoting by -a the inverse of a in \mathbb{Z}_3 :

$$\left(\begin{array}{cc}1&a\\0&1\end{array}\right)^{-1} = \left(\begin{array}{cc}1&-a\\0&1\end{array}\right), \left(\begin{array}{cc}2&a\\0&2\end{array}\right)^{-1} = \left(\begin{array}{cc}2&-a\\0&2\end{array}\right)$$

(b) Show that (A, \cdot) is isomorphic to $(\mathbb{Z}_6, +)$. By keep multiplying one shoes that

$$\left(\begin{array}{cc} 2 & 1\\ 0 & 2 \end{array}\right)^6 = I_3$$

and the lower powers are never equal to the identity. Since G contains an element of order 6 it must be equal to the cyclic group generated by that element. So G is a cyclic group of order 6 and thus isomorphic to $(\mathbb{Z}_6, +)$.

(2) (2 p.) Consider the following permutation:

$\sigma =$	(1	2	3	4	5	6	7	8	9	10)
		2	3	1	7	5	8	4	9	10	6)

(a) Find the cycle decomposition of σ and σ^2 . $\sigma = (123)(47)(5)(68910), \sigma^2 = (132)(4)(7)(5)(69)(810).$

- (b) Say if σ is even or odd. They are both even.
- (3) (3 p.) Let G be a finite group with an even number of elements. Show that G contains an element of order 2 (i.e. there is $x \in G$, such that $x^2 = 1$).

Recall that by definition $ord(1_G) = 1$. Let G = 2k and $S = \{1_G \neq x \in G, ord(x) \neq 2\}$, and $T = \{x \in G, ord(x) = 2\}$. It is

$$G = S \cup T \cup \{1_G\}.$$

Moreover since G and T are disjoint and do not contain the identity it is

$$|G| = |S| + |T| + 1.$$

Observe that for every element $x \in S$ it must be $x \neq x^{-1} \in S$ because $ord(x) \neq 2$. This shows that the cardinality of S is even, say |S| = 2m. Then |G| = 2k = 1 + 2m + |T|, which implies that T is not empty and thus there is an element of order two.