KTH Matematik

5B1309, Algebra
 Exam 2
 Februari 19, 2007

- Exam's time:16:00-17:00.
- No books or notes can be used
- All you write has to be motivated
- At least 3 points are required to pass this exam.
(1) (3 p.) Find the maximal order of a cyclic subgroup of \mathbb{S}_{12}.

Let $\sigma \in \mathbb{S}_{12}$ be of type $n_{1}^{k_{1}} \ldots n_{t}^{k_{t}}$ (i.e $(123)(45)(67)(89101112)$ is og type $2^{2} 35$.), where $k_{1} n_{1}+\ldots k_{t} n_{t}=12$.

$$
\operatorname{ord}(\sigma)=l . c . m\left(n_{1}, \ldots, n_{t}\right)
$$

Then the answer is given by

$$
\max \left\{l . c . m\left(\left(n_{1}, \ldots, n_{t}\right), k_{1} n_{1}+\ldots k_{t} n_{t}=12, k_{i} \geq 1, n_{1} \geq 1\right\}\right.
$$

which is $\operatorname{l.c.m}(3,4,5)=60$.
(2) (4 p.) Let $G=\mathbb{S}_{n}$, for some $n \in \mathbb{Z}_{+}$and fix some i between 1 and n. Let:

$$
G_{i}=\{\sigma \in G, \sigma(i)=i .\}
$$

(a) Show that G_{i} is a subgroup of G.

Let $I_{n}=\{1,2, \ldots, n\}$. The symmeric group \mathbb{S}_{n} acts on I_{n} by the action:

$$
(\sigma, i)=\sigma(i)
$$

G_{i} is the stabilizer of the element i and therefore a group.
(b) Show that there are n distinct left-cosets of G_{i}. Moreover we know that:

$$
\left[G: G_{i}\right]=|\operatorname{Orb}(i)|
$$

where $\operatorname{Orb}(i)=\left\{\sigma(i), \sigma \in \mathbb{S}_{n}\right\}=I_{n}$.
(c) Show that G_{i} is not a normal subgroup.

For $\tau \in \mathbb{S}_{n}$ let $k=\tau^{-1}(i)$ and $\tau(i)=j$.

$$
\begin{aligned}
G_{i} \tau & =\{\alpha=\sigma \tau, \alpha(k)=i\} \\
\tau G_{i} & =\{\beta=\tau \sigma, \beta(i)=j\}
\end{aligned}
$$

They are different in general, for example: $i=1, n=7, \sigma=$ (1) $(2 \ldots 7), \tau=(12 \ldots 7), \tau^{-1}(1)=7, \tau(1)=2$. Since $\tau \sigma(7)=3 \neq$ $1, \tau \sigma \notin \tau G_{1}$.
(3) (2 p.) List all non isomorphic abelian groups of order 100 and of order 145.
A finite abelian group $G,|G|=n$, (up to isomorphism) can be decomposed uniquely as:

$$
G=\mathbb{Z}_{n_{1}} \times \ldots \times \mathbb{Z}_{n_{t}}
$$

where $n_{1} \cdot n_{1} \ldots \cdot n_{t}=n$ and $n_{i} / n_{i-1}, i=2, \ldots, t$. Since $100=2^{2} 5^{2}$ we have that the possibilities are:
(a) $n_{1}=100, G=\mathbb{Z}_{100}$.
(b) $n_{1}=2^{2} 5, n_{2}=5, G=\mathbb{Z}_{20} \times \mathbb{Z}_{5}$.
(c) $n_{1}=25^{2}, n_{2}=2, G=\mathbb{Z}_{50} \times \mathbb{Z}_{2}$.
(d) $n_{1}=10, n_{2}=10, G=\mathbb{Z}_{10} \times \mathbb{Z}_{10}$.

Since $145=5 \cdot 29$ the only abelian group is

$$
G=\mathbb{Z}_{29} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{145}
$$

