KTH Matematik

5B1309, Algebra Exam 3 March 19, 2007

- Exam's time:16:00-17:00.
- No books or notes can be used
- All you write has to be motivated
- At least 3 points are required to pass this exam.
- (1) (3 p.) How many groups of cardinality 33 are there, up to isomorphism?

(Hint for the solution) Using Sylow Theorem one sees that any group of cardinality 33 has a unique subgroup of order 3, $H \cong \mathbb{Z}_3$, and a unique subgroup of order 11, $K \cong \mathbb{Z}_{11}$. Because they are normal (since they are unique) they commute with each other and thus the set HK is a subgroup of cardinality 33 (since $K \cap H = \{0\}$, because they hace orders which are coprime). It follows that G = HK and that $f : HK \to H \times K$ defined by f(hk) = (h, k) is an isomorphism. The answer is then that there is only one group (up to isomorphism): $\mathbb{Z}_{11} \times \mathbb{Z}_3$.

(2) (2 p.) Let A, B be commutative rings. Let Hom(A, B) denote the set of ring homomorphisms between A and B. Similarly Hom(A[x], B)denotes the set of ring homomorphisms between the polynomial ring A[x] and B. Sow that the map:

$$T: Hom(A[x], B) \to B \times Hom(A, B)$$

defined by $T(\phi) = (\phi(x), \phi|_A)$, defines a bijection of sets. (Hint for the solution)injectivity: Assume that $T(\phi) = T(\psi)$, i.e. $\phi|_A = \psi|_A$ and $\phi(x) = \psi(x)$ then, since ϕ and ψ are ringhomomorphisms, for every $p(x) = a_0 + a_1x + \ldots + a_nx^n \in A[x]$

 $\phi(p(x)) = \phi(a_0) + \phi(a_1)\phi(x) + \dots + \phi(a_n)\phi(x)^n = \psi(a_0) + \psi(a_1)\psi(x) + \dots + \psi(a_n)\psi(x)^n = \psi(p(x)).$ which means that $\phi = \psi$. surjectivity: For every $(b, f) \in B \times$

Hom(A, B) the morphism:

 $\phi(a_0 + a_1x + \dots + a_nx^n) = f(a_0) + f(a_1)b + \dots + f(a_n)b^n$

is a ring homomorphism in Hom(A[x], B) such that $T(\phi) = (b, f)$.

(3) (4 p.) Consider the ring $\mathbb{Z}[2i] = \{a + 2bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$. (Recall that $i^2 = -1$.)

- (a) (1 p) Show that $\mathbb{Z}[2i]$ is a subring of \mathbb{C} . It is a subgroup: the inverse -(c+2di) = (-a-2di) and (a+2bi) + (-(c+2di)) = $(a-c) + 2(b-d)i \in \mathbb{Z}[2i]$. It is closed under multiplication: $(a+2bi)(c+2di) = (ac-4bd) + 2(bc+ad)i \in \mathbb{Z}[2i].$
- (b) (2 p) Let (2i) be the principal ideal generated by the element 2i. Show that

$$\frac{\mathbb{Z}[2i]}{(2i)} \cong \mathbb{Z}_4 \text{ as rings.}$$

(Hint for the solution)Consider the surjective map of rings ϕ : $\mathbb{Z}[2i] \to \mathbb{Z}_4$ defined by $\phi(a+2bi) = [a]_4$. Because for every $\alpha, \beta \in \mathbb{Z}, 2i(\alpha + 2\beta i) = -4\beta + 2i\alpha, \text{ the ideal } (2i) = \{a + 2bi|a/a\}.$ Therefore $Ker(\phi = (2i)$ and thus $\frac{\mathbb{Z}[2i]}{(2i)} \cong \mathbb{Z}_4$ as rings. (c) (1 p) Is (2i) a prime ideal? Since \mathbb{Z}_4 is not an I.D. the ideat

(2i) is not prime.

Do not forget to register for the final exam. The deadline is: 2007-03-25 at 24:00.

Good Luck!