
5B1466, Fourier Analysis, KTH spring 2006.

Brief notes from Lecture 1. In addition to ordinary Fourier series and
Fourier integrals, we shall study the Fourier transform on Zn, integers modulo
n, and more general examples of FT on abelian groups. If time permits, we
will also study FT on finite groups.

Among the applications of FT we mention theory of numbers, probability,
the beautiful interplay with analytic functions, e.g. in the Payley-Wiener
theorems.

Historically, FT arose when trying to solve differential equations of math-
ematical physics.

Wave equation. In 1+1 dimensions (time and space) this is the linear
partial differential equation

∂2u

∂t2
= c2

∂2u

∂x2
,

where u represents the amplitude (height) of the wave, and c > 0 is a physical
constant (often = 1 below). A particular type of solution is given by travelling
waves G(x−ct), travelling to the right as t increases, or F (x+ct) travelling to
the left. We simply translate the same function. Here, F and G are arbitrary
functions with continuous derivatives of order two (F, G ∈ C2). By linearity
F (x+ ct) +G(x− ct) is also a solution.

A classical result, due to d’Alembert, is that given a solution u (in C2) to
the wave equation, satisfying u(x, 0) = f(x) and ∂u/∂t(x, 0) = g(x), where
f ∈ C2 and g ∈ C1 are given, we can find F and G so that u(x, t) =
F (x+ ct) +G(x− ct). In fact, the formula (due to Lagrange)

u(x, t) =
1

2

(
f(x+ t) + f(x− t) +

∫ x+t

0

g(y) dy −
∫ x−t

0

g(y) dy

)
holds. It is a rather straight-forward consequence of the variable transforma-
tion ξ = x+ t, η = x− t. (With v(ξ, η) = u(x, t) we get ∂2v/∂ξ∂η = 0. It is
easy to integrate this equation to v = F (ξ) +G(η)..... )

Standing waves. The idea is a string moving up and down as time
evolves, with both ends fixed. Suppose we make the Ansatz φ(x)ψ(t) (sepa-
ration of variables) for a solution to the wave equation. Differentiating and
rewriting, we obtain φ′′(x)/φ(x) = ψ′′(t)/ψ(t). Since the left-hand side is a
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function of x and the right-hand side is a function of t, they must be con-
stant. We get the equations φ′′(x) = λφ(x) and ψ′′(t) = λψ(t). Only the
case λ < 0 is of interest. Then we get sine and cosine functions. If we require
φ(0) = φ(π) = 0, corresponding to λ = −m2, where m = 1, 2, ...., we obtain
the elementary solutions

um = (Am cosmt+Bm sinmt) sinmx,

where Am and Bm are constants. By superposition we get (convergence
questions are postponed) the solution

u(t, x) =
∞∑

m=1

um(x, t) =
∞∑

m=1

(Am cosmt+Bm sinmt) sinmx,

so that u(x, 0) =
∑∞

m=1Am sinmx = f(x).
The basic question that arises is: given f (vanishing at 0 and π), can we

find numbers Am such that f(x) =
∑∞

m=1Am sinmx? In what sense? How
do we find the Am?

Well, assume the formula holds, and integrate f(x) sinnx:∫ π

0

f(x) sinnx dx =

∫ π

0

∞∑
m=1

Am sinmx sinnx dx =
∞∑

m=1

Am

∫ π

0

sinmx sinnx dx.

The last integral vanishes if m 6= n and equals π/2 if n = m. Hence

An =
2

π

∫ π

0

f(x) sinnx dx.

An is what is now known as the nth Fourier sine coefficient for f .

More generally, we could consider a series f(x) =
∑∞

m=1Am sinmx +∑∞
m=0Bm cosmx, or, using Euler’s formula eiy = cos y + i sin y, f(x) =∑∞
m=−∞ ame

imx, where the coefficients am may be complex numbers. Then

am = 1
2π

∫ 2π

0
f(x)e−imx dx.

Heat equation. In 2 + 1 dimensions (variables (x, y) and t), it is

c
∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
= ∆u,
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where c > 0 is a physical constant and u is the temperature. ∆ is the
Laplacian. The equation ∆u = 0 is called Laplace’s equation, and a solution
is said to be harmonic in the open domain considered. Clearly harmonic
functions solve the heat equation. They are steady state solutions.

We shall consider the Dirichlet problem for the unit disk D = {x2 + y2 <
1}, with boundary C = {x2 + y2 = 1}, the unit circle. Given a suitable
function f on C, the problem is to find a function u which is harmonic in D
and coincides with f on C. In polar coordinates r and θ, u(1, θ) = f(θ).

Expressing the Laplacian in polar coordinates: ∆ = ∂2/∂r2 + 1
r
∂/∂r +

1
r2∂/∂θ, one can separate the variables r and θ. This leads to elementary
solutions

um(r, θ) = r|m|eimθ, m = 0,±1,±2, ....

By linearity and superposition we obtain a solution of the form

u(r, θ) =
∞∑

m=−∞

amr
|m|eimθ,

where am are constants. Putting r = 1 we get (formally)

u(1, θ) =
∞∑

m=−∞

ame
imθ = f(θ).

Again we see the need to represent f as a Fourier series.

Comparison with the wave equation. If we identify the point (x, y)
with the complex number z = x+ iy, then z = reiθ using polar coordinates.
Then r|m|eimθ = (reiθ)m = zm, if m ≥ 0, and r|m|eimθ = z−m if m < 0. Hence
we may write

u(x, y) =
∞∑

m=0

amz
m +

∞∑
m=1

a−mz
m = F (x+ iy) +G(x− iy).
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