5B1466, Fourier Analysis, KTH spring 2006.

Brief notes from Lecture 1. In addition to ordinary Fourier series and Fourier integrals, we shall study the Fourier transform on \mathbb{Z}_{n}, integers modulo n, and more general examples of FT on abelian groups. If time permits, we will also study FT on finite groups.

Among the applications of FT we mention theory of numbers, probability, the beautiful interplay with analytic functions, e.g. in the Payley-Wiener theorems.

Historically, FT arose when trying to solve differential equations of mathematical physics.

Wave equation. In $1+1$ dimensions (time and space) this is the linear partial differential equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

where u represents the amplitude (height) of the wave, and $c>0$ is a physical constant (often $=1$ below). A particular type of solution is given by travelling waves $G(x-c t)$, travelling to the right as t increases, or $F(x+c t)$ travelling to the left. We simply translate the same function. Here, F and G are arbitrary functions with continuous derivatives of order two ($F, G \in C^{2}$). By linearity $F(x+c t)+G(x-c t)$ is also a solution.

A classical result, due to d'Alembert, is that given a solution u (in C^{2}) to the wave equation, satisfying $u(x, 0)=f(x)$ and $\partial u / \partial t(x, 0)=g(x)$, where $f \in C^{2}$ and $g \in C^{1}$ are given, we can find F and G so that $u(x, t)=$ $F(x+c t)+G(x-c t)$. In fact, the formula (due to Lagrange)

$$
u(x, t)=\frac{1}{2}\left(f(x+t)+f(x-t)+\int_{0}^{x+t} g(y) d y-\int_{0}^{x-t} g(y) d y\right)
$$

holds. It is a rather straight-forward consequence of the variable transformation $\xi=x+t, \eta=x-t$. (With $v(\xi, \eta)=u(x, t)$ we get $\partial^{2} v / \partial \xi \partial \eta=0$. It is easy to integrate this equation to $v=F(\xi)+G(\eta) \ldots .$.

Standing waves. The idea is a string moving up and down as time evolves, with both ends fixed. Suppose we make the Ansatz $\phi(x) \psi(t)$ (separation of variables) for a solution to the wave equation. Differentiating and rewriting, we obtain $\phi^{\prime \prime}(x) / \phi(x)=\psi^{\prime \prime}(t) / \psi(t)$. Since the left-hand side is a
function of x and the right-hand side is a function of t, they must be constant. We get the equations $\phi^{\prime \prime}(x)=\lambda \phi(x)$ and $\psi^{\prime \prime}(t)=\lambda \psi(t)$. Only the case $\lambda<0$ is of interest. Then we get sine and cosine functions. If we require $\phi(0)=\phi(\pi)=0$, corresponding to $\lambda=-m^{2}$, where $m=1,2, \ldots$, we obtain the elementary solutions

$$
u_{m}=\left(A_{m} \cos m t+B_{m} \sin m t\right) \sin m x
$$

where A_{m} and B_{m} are constants. By superposition we get (convergence questions are postponed) the solution

$$
u(t, x)=\sum_{m=1}^{\infty} u_{m}(x, t)=\sum_{m=1}^{\infty}\left(A_{m} \cos m t+B_{m} \sin m t\right) \sin m x
$$

so that $u(x, 0)=\sum_{m=1}^{\infty} A_{m} \sin m x=f(x)$.
The basic question that arises is: given f (vanishing at 0 and π), can we find numbers A_{m} such that $f(x)=\sum_{m=1}^{\infty} A_{m} \sin m x$? In what sense? How do we find the A_{m} ?

Well, assume the formula holds, and integrate $f(x) \sin n x$:

$$
\int_{0}^{\pi} f(x) \sin n x d x=\int_{0}^{\pi} \sum_{m=1}^{\infty} A_{m} \sin m x \sin n x d x=\sum_{m=1}^{\infty} A_{m} \int_{0}^{\pi} \sin m x \sin n x d x
$$

The last integral vanishes if $m \neq n$ and equals $\pi / 2$ if $n=m$. Hence

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

A_{n} is what is now known as the nth Fourier sine coefficient for f.
More generally, we could consider a series $f(x)=\sum_{m=1}^{\infty} A_{m} \sin m x+$ $\sum_{\sum_{m}^{\infty}=0}^{\infty} B_{m} \cos m x$, or, using Euler's formula $e^{i y}=\cos y+i \sin y, f(x)=$ $\sum_{m=-\infty}^{\infty} a_{m} e^{i m x}$, where the coefficients a_{m} may be complex numbers. Then $a_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x$.

Heat equation. In $2+1$ dimensions (variables (x, y) and t), it is

$$
c \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\Delta u
$$

where $c>0$ is a physical constant and u is the temperature. Δ is the Laplacian. The equation $\Delta u=0$ is called Laplace's equation, and a solution is said to be harmonic in the open domain considered. Clearly harmonic functions solve the heat equation. They are steady state solutions.

We shall consider the Dirichlet problem for the unit disk $D=\left\{x^{2}+y^{2}<\right.$ $1\}$, with boundary $C=\left\{x^{2}+y^{2}=1\right\}$, the unit circle. Given a suitable function f on C, the problem is to find a function u which is harmonic in D and coincides with f on C. In polar coordinates r and $\theta, u(1, \theta)=f(\theta)$.

Expressing the Laplacian in polar coordinates: $\Delta=\partial^{2} / \partial r^{2}+\frac{1}{r} \partial / \partial r+$ $\frac{1}{r^{2}} \partial / \partial \theta$, one can separate the variables r and θ. This leads to elementary solutions

$$
u_{m}(r, \theta)=r^{|m|} e^{i m \theta}, \quad m=0, \pm 1, \pm 2, \ldots .
$$

By linearity and superposition we obtain a solution of the form

$$
u(r, \theta)=\sum_{m=-\infty}^{\infty} a_{m} r^{|m|} e^{i m \theta}
$$

where a_{m} are constants. Putting $r=1$ we get (formally)

$$
u(1, \theta)=\sum_{m=-\infty}^{\infty} a_{m} e^{i m \theta}=f(\theta)
$$

Again we see the need to represent f as a Fourier series.
Comparison with the wave equation. If we identify the point (x, y) with the complex number $z=x+i y$, then $z=r e^{i \theta}$ using polar coordinates. Then $r^{|m|} e^{i m \theta}=\left(r e^{i \theta}\right)^{m}=z^{m}$, if $m \geq 0$, and $r^{|m|} e^{i m \theta}=\bar{z}^{-m}$ if $m<0$. Hence we may write

$$
u(x, y)=\sum_{m=0}^{\infty} a_{m} z^{m}+\sum_{m=1}^{\infty} a_{-m} \bar{z}^{m}=F(x+i y)+G(x-i y) .
$$

