
5B1466, Fourier Analysis, KTH spring 2006.

Brief notes from Lecture 2. Suppose f is a continuous 2π-periodic
function, and define its Fourier coefficients by

f̂(n) =
1

2π

∫ π

−π

f(θ)e−inθ dθ, n ∈ Z.

Interpreting θ as an angle, we realise that equivalently, f may be considered
as a function on the unit circle.

Remarks: 1. If the period is T , the definition is changed to

f̂(n) = 1
T

∫ T/2

−T/2
f(θ)e−2πinθ/T dθ for n ∈ Z.

2. For f̂ to be defined it is sufficient to assume that ||f ||1 =
∫ π

−π
|f(θ)| dθ is

finite. Indeed, |f̂(n)| ≤ ||f ||1 for any n.

We shall show

Proposition.

lim
r→1−

∞∑
n=−∞

f̂(n)r|n|einθ = f(θ), for all θ. (1)

Proof. Denote by u(r, θ) the sum on the left. We first show that

u(r, θ) =
1

2π

∫ π

−π

P (r, θ − t)f(t) dt, where P (r, θ) =
1− r2

1− 2r cos θ + r2
,

the Poisson kernel for the unit disk, encountered in §1. For fixed 0 ≤ r < 1,
the series defining u(r, θ) is uniformly convergent, which implies that we may
interchange integration and summation:

u(r, θ) =
∞∑

n=−∞

r|n|
(

1

2π

∫ π

−π

f(t)e−int dt

)
einθ =

1

2π

∫ π

−π

(
∞∑

n=−∞

r|n|ein(θ−t)

)
f(t) dt

For t = 0, the sum in parentheses may be written as (we use the geometric
series formula 1 + z + z2 + z3 + .... = 1/(1− z), if |z| < 1)

∞∑
N=0

(reiθ)n +
∞∑

n=1

(re−iθ)n =
1

1− reiθ
+ re−iθ 1

1− re−iθ
.
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This is easily seen to give the explicit formula for P (r, θ).
Now, P (r, ·) satisfies three important properties, viz.

(i) P (r, θ) ≥ 0; (ii)
1

2π

∫ π

−π

P (r, θ) dθ = 1; (iii) ∀δ > 0 : lim
r→1−

∫
δ<|θ|≤π

P (r, θ) dθ = 0.

The explicit formula for P shows (i) (for 0 ≤ r < 1). (ii) is proved using the
absolutely fundamental formula

1

2π

∫ π

−π

einθ dθ =

{
1, n 6= 0

0, n = 0

together with uniform convergence, as above:

1

2π

∫ π

−π

P (r, θ) dθ =
1

2π

∫ π

−π

∞∑
n=−∞

r|n|einθ dθ =
∞∑

n=−∞

r|n|
(

1

2π

∫ π

−π

einθ dθ

)
= 1,

because the only term that contributes corresponds to n = 0.
To deduce (iii), we write P (r, θ) = (1− r2)/((1− r cos θ)2 + r2 sin2 θ). If

π/2 ≤ |θ| ≤ π this is clearly ≤ 1 − r2. whereas it is ≤ (1 − r2)/(r2 sin2 δ) if
δ ≤ |θ| ≤ π. In both cases it is at most a constant times 1− r2. (iii) follows.

To show that u(r, θ) → f(θ) as r → 1−, we assume θ = 0, without loss of
generality. By property (ii), and P (r, ·) being even, we get

u(r, 0)− f(0) =
1

2π

∫ π

−π

P (r, t)(f(t)− f(0)) dt

Choose ε > 0. There is a δ > 0 such that |f(t) − f(0)| < ε/2 whenever
|t| < δ. Split the integral into

∫
|t|<δ

and
∫

δ≤|t|≤π
. Since P ≥ 0 (property (i)),

we get

|u(r, 0)−f(0)| = 1

2π

∫
|t|<δ

P (r, t)|f(t)−f(0)| dt+
1

2π

∫
δ≤|t|≤π

P (r, t)|f(t)−f(0)| dt = A+B.

Here A < ε/2 by (ii) and the choice of δ. Clearly |f(t)− f(0)| < 2M , where
M is the maximum of |f |. By (iii) we can choose r0 so that

1
2π

∫
δ≤|t|≤π

P (r, t) dt < ε/(4M) whenever r0 < r < 1.

This means that also B < ε/2. The claim follows.
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Remarks: 1. Essentially the same proof shows that maxθ|u(r, θ)−f(θ)| → 0
as r → 1−, for f continuous. This is because f is a continuous function on a
compact interval, and therefore uniformly continuous.
2. If f is just (absolutely) integrable (||f ||1 < ∞), the result is valid at each
continuity point of f .

Definition: A sequence of 2π-periodic functions Kn, n = 1, 2, ..., is called a
sequence of good kernels if properties (i) and (ii) are fulfilled for each n, and
if (iii) holds as n → ∞ for each δ > 0. (The main difference compared to
P (r, θ) is that the continuous parameter r has been replaced by a discrete
one.)

Denote by SN(f)(θ) =
∑N

n=−N f̂(n)einθ the partial sum for the Fourier
series of f . It can be written

SN(f)(θ) =
1

2π

∫ π

−π

DN(θ − t)f(t) dt, where DN(θ) =
sin((2N + 1)θ/2)

sin(θ/2)
.

The Dirichlet kernel DN fulfills (ii) and (iii), but it is not positive. To get
pointwise convergence one needs to require more about f . Assume that f
is differentiable at the origin. One can reason very much like we did for
the Poisson kernel. However, the integral

∫
|t|<δ

becomes troublesome, since,

loosely speaking, DN is not absolutely integrable at t = 0, as N →∞. The
extra requirement on f allows us to estimate the integral as∫

|t|<δ

∣∣∣∣sin((2N + 1)t/2)
t

sin t/2

f(t)− f(0)

t

∣∣∣∣ dt ≤ C

∫
|t|<δ

|f ′(τ(t)| dt

which is as small as we like. We’ll return to this in more detail in the next
chapter.

If we take the mean-value of the Dn, we get the Fejér kernel

FN =
1

N
(D0 + D1 + .... + DN−1).

This is a sequence of good kernels. In fact,

Fn(θ) =
1

N

sin2(Nθ/2)

sin2(θ/2)
,

3



showing that FN ≥ 0. The other criteria holds since they were already
fulfilled by the Dirichlet kernel.

Uniqueness. Suppose f is a continuous 2π periodic function. It follows
from Proposition 1, that if f satisfies f̂(n) = 0 for all n ∈ Z, then f(θ) = 0
for all θ. The Fourier coefficients determine f . A consequence is that if the
Fourier coefficients of f fulfill

∞∑
n=−∞

|f̂(n)| < ∞, (2)

then f is equal to its Fourier series:

f(θ) =
∞∑

n=−∞

f̂(n)einθ. (3)

We shall see later, that this does not hold for all continuous functions.
A simple criterion for (2), and thereby (3) to hold, is that f̂(n) = O(1/n2),

which in its turn holds if f is twice differentiable.

A final remark: We have seen how the Fejér kernel, which has better con-
vergence properties, was obtained from the Dirichlet kernel. as a Cesàro mean
value. The Poisson kernel is obtained from using an Abel mean value. These
mean value formations when trying to understand convergence of infinite se-
ries around 200 years ago. As an example consider the series 1−1+1−1+ ....
It is clearly divergent since each partial sum is either 0 or 1. We form the
Cesàro mean of the partial sums. It is clear that this goes to 1/2 as n →∞,
the partial sums alternating between 0 and 1. With Abel’s method we re-
place 1− 1 + 1− 1 + ... by 1− r + r2− r3 + .... = 1/(1 + r), where 0 ≤ r < 1.
As r → 1− we get the limit 1/2 also in this case.
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