5B1466, Fourier Analysis, KTH spring 2006.

Brief notes from Lecture 3.

Convolution: Suppose f is a Riemann (absolutely) integrable 2m-periodic
function, | f; = &= [7_|f(0)]d9 < oo. The convolution of two such functions,
f and g, is defined by

f (0 / 10—ty

I+ gl < 1flgly, (1)

because the LHS < 75 f S 1f(0—1)] dfg(t)| dt = RHS. A simple change
of variables shows that f*xg=gxf,so it does not matter in which order
two functions are convolved. The following very important, easily proved,
formula shows how convolution and multiplication correspond (under the
Fourier transform on the circle):

Then

—

Fxgn) = f(n)gn), nel

We have already seen that the Poisson integral is the convolution

I 1—r?
Jrinlen? = P.(0—t)f(t)dt, P.(0) = :
Z fn T or /7r 2 Jf(&)dt, Fr(0) 1 —2rcosf + r?

n=—oo

Similarly the partial sum of the Fourier series is the convolution with the
Dirichlet kernel:

sin((2N +1)6/2)
sin(6/2)

Sn(f)(0) = % /7r Dn(0 —t)f(t)dt, Dy(0) =

Regularity: Generally speaking, convolution improves the regularity. For
instance, if we convolve a differentiable function with an integrable one, the
result is a differentiable function. If one of them is C* (continuous derivatives
of order < k), the convolution is C*.

Example: Let f be the (2r-periodic) function which is identically one
on the interval [—1/2,1/2] and zero on the rest of [—m,x|. Clearly f is not
continuous, but f * f is continuous. Its graph is the isosceles triangle with
base [—1, 1] and height one, and it is zero outside this interval.

1



It is proved in the book that fx*g is continuous when f and g are integrable
and bounded. (Prop. 3.1. (v).)

Approximation with regular functions. This is a very important
idea which permeates all of Fourier analysis.

Approximation by continuous functions. We first prove that given
f, absolutely integrable on a finite interval, I say, there is a sequence of
continuous functions g, such that [, |f—g,|dz — 0 as n — co. Equivalently,
given € > 0, there is a continuous function g with || f —g|| = [, |f —g|dz < e.

Since f is absolutely Riemann integrable, there is a step function ¢ with
||f — &||1 < /2. That ¢ is a step function means that there is a partition of
I such that ¢ is constant on each (half-open, say) subinterval. If we consider
such a rectangle-shaped part, it is clear that we can tilt the sides in the
rectangle so that the area difference is < €/(2n), where n is the number of
subintervals. Doing this for each subinterval, we obtain a continuous function
g such that ||¢ — g|| < ¢/2. Then

1 =gl =l = &)+ @ =l <IIf = ¢l +lo —gll < 5 +

as asserted.

£
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Approximation by infinitely differentiable functions. Let f be a
given 2m-periodic function with [|f|[; < co. For fixed 0 < r < 1, the series
Pox f(0) = Y00 f(n)ri"le™? is infinitely differentiable w.r.t. @ (uniform

convergence). We shall show that given € > 0 we have ||P. x f — f||; < e.

First, we choose a continuous function g with ||f — ¢||1 < &/3. Write

P f=fli=|P*x(f—g)+(Prxg—9)— (=9l
<P+ (f =gl +1|1Pr*xg—gll +|[f —gll

The third term on the second line is less than /3. This holds for the first term
as well, because by Eq. (1), [P+ (f —g)lly < [[P[Ll[f —gll and [|F ][y = 1.
The second term becomes small by choosing r close enough to 1. We know
that P, x g(6) — ¢(f) uniformly as r — 17, i.e. maxy|P, * g(6)g(f)| — 0 as
r — 17. Hence there is an ry such that it is < £/3 whenever 7y < r < 1.
Clearly the second term is less than maxy|P, * g(6) — ¢g(#)|. Thus all terms
on the last line are < €/3, so that ||P. % f — f||; <e.

The following is an important application of the above approximation
results. It is known as the Riemann-Lebesque lemma.

2



Lemma 1 Let f be periodic and absolutely integrable. Then f(n) — 0 as
In| — oo.

Proof. We assume that the period is 27 and write ||f]|, = 5= [7_|f(0)] 0,
as usual. By assumption ||f|[; < co. Given € > 0. We must show that there
is an N such that |n| > N implies | f(n)| < . Choose a periodic C'' function
g with ||f — g||1 < £/2. Then, partially integrating, we get (for n # 0)

i) = -2 M@ ap.
2 J_. —in
Hence .
9(n)] < ”f ‘|'1 <S i nl >N,
n

A

for some N. Writing f(n) :/(&1) —g(n)) +g(n) = (f/—\g)(n) + g(n), the
lemma follows upon using [(f — g)(n)| < ||f —g|l1 < /2.



