
5B1466, Fourier Analysis, KTH spring 2006.

Brief notes from Lecture 3.
Convolution: Suppose f is a Riemann (absolutely) integrable 2π-periodic

function, ||f ||1 = 1
2π

∫ π

−π
|f(θ)| dθ < ∞. The convolution of two such functions,

f and g, is defined by

f ∗ g(θ) =
1

2π

∫ π

−π

f(θ − t)g(t) dt.

Then
||f ∗ g||1 ≤ ||f ||1||g||1, (1)

because the LHS ≤ 1
(2π)2

∫ π

−π

∫ π

−π
|f(θ−t)| dθ|g(t)| dt = RHS. A simple change

of variables shows that f ∗ g = g ∗ f , so it does not matter in which order
two functions are convolved. The following very important, easily proved,
formula shows how convolution and multiplication correspond (under the
Fourier transform on the circle):

f̂ ∗ g(n) = f̂(n)ĝ(n), n ∈ Z.

We have already seen that the Poisson integral is the convolution

∞∑
n=−∞

f̂(n)r|n|einθ =
1

2π

∫ π

−π

Pr(θ − t)f(t) dt, Pr(θ) =
1− r2

1− 2r cos θ + r2
.

Similarly the partial sum of the Fourier series is the convolution with the
Dirichlet kernel:

SN(f)(θ) =
1

2π

∫ π

−π

DN(θ − t)f(t) dt, DN(θ) =
sin((2N + 1)θ/2)

sin(θ/2)
.

Regularity: Generally speaking, convolution improves the regularity. For
instance, if we convolve a differentiable function with an integrable one, the
result is a differentiable function. If one of them is Ck (continuous derivatives
of order ≤ k), the convolution is Ck.

Example: Let f be the (2π-periodic) function which is identically one
on the interval [−1/2, 1/2] and zero on the rest of [−π, π]. Clearly f is not
continuous, but f ∗ f is continuous. Its graph is the isosceles triangle with
base [−1, 1] and height one, and it is zero outside this interval.
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It is proved in the book that f∗g is continuous when f and g are integrable
and bounded. (Prop. 3.1. (v).)

Approximation with regular functions. This is a very important
idea which permeates all of Fourier analysis.

Approximation by continuous functions. We first prove that given
f , absolutely integrable on a finite interval, I say, there is a sequence of
continuous functions gn such that

∫
I
|f−gn| dx → 0 as n →∞. Equivalently,

given ε > 0, there is a continuous function g with ||f−g|| =
∫

I
|f−g| dx < ε.

Since f is absolutely Riemann integrable, there is a step function φ with
||f − φ||1 < ε/2. That φ is a step function means that there is a partition of
I such that φ is constant on each (half-open, say) subinterval. If we consider
such a rectangle-shaped part, it is clear that we can tilt the sides in the
rectangle so that the area difference is < ε/(2n), where n is the number of
subintervals. Doing this for each subinterval, we obtain a continuous function
g such that ||φ− g|| < ε/2. Then

||f − g|| = ||(f − φ) + (φ− g)|| ≤ ||f − φ||+ ||φ− g|| < ε

2
+

ε

2
= ε,

as asserted.

Approximation by infinitely differentiable functions. Let f be a
given 2π-periodic function with ||f ||1 < ∞. For fixed 0 ≤ r < 1, the series
Pr ∗ f(θ) =

∑∞
n=−∞ f̂(n)r|n|einθ is infinitely differentiable w.r.t. θ (uniform

convergence). We shall show that given ε > 0 we have ||Pr ∗ f − f ||1 < ε.

First, we choose a continuous function g with ||f − g||1 < ε/3. Write

||Pr ∗ f − f ||1 = ||Pr ∗ (f − g) + (Pr ∗ g − g)− (f − g)||1
≤ ||Pr ∗ (f − g)||1 + ||Pr ∗ g − g||1 + ||f − g||1

The third term on the second line is less than ε/3. This holds for the first term
as well, because by Eq. (1), ||Pr ∗ (f − g)||1 ≤ ||Pr||1||f − g||1 and ||Pr||1 = 1.
The second term becomes small by choosing r close enough to 1. We know
that Pr ∗ g(θ) → g(θ) uniformly as r → 1−, i.e. maxθ|Pr ∗ g(θ)g(θ)| → 0 as
r → 1−. Hence there is an r0 such that it is < ε/3 whenever r0 ≤ r < 1.
Clearly the second term is less than maxθ|Pr ∗ g(θ) − g(θ)|. Thus all terms
on the last line are < ε/3, so that ||Pr ∗ f − f ||1 < ε.

The following is an important application of the above approximation
results. It is known as the Riemann-Lebesgue lemma.
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Lemma 1 Let f be periodic and absolutely integrable. Then f̂(n) → 0 as
|n| → ∞.

Proof. We assume that the period is 2π and write ||f ||1 = 1
2π

∫ π

−π
|f(θ)| dθ,

as usual. By assumption ||f ||1 < ∞. Given ε > 0. We must show that there
is an N such that |n| > N implies |f̂(n)| < ε. Choose a periodic C1 function
g with ||f − g||1 < ε/2. Then, partially integrating, we get (for n 6= 0)

ĝ(n) = − 1

2π

∫ π

−π

g′(θ)
e−inθ

−in
dθ.

Hence

|ĝ(n)| ≤ ||g′||1
|n|

<
ε

2
, if |n| > N,

for some N . Writing f̂(n) = (f̂(n) − ĝ(n)) + ĝ(n) = ̂(f − g)(n) + ĝ(n), the

lemma follows upon using | ̂(f − g)(n)| ≤ ||f − g||1 < ε/2.
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